@inproceedings{wang-etal-2024-enhancing-high,
title = "Enhancing High-order Interaction Awareness in {LLM}-based Recommender Model",
author = "Wang, Xinfeng and
Cui, Jin and
Fukumoto, Fumiyo and
Suzuki, Yoshimi",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-main.653",
pages = "11696--11711",
abstract = "Large language models (LLMs) have demonstrated prominent reasoning capabilities in recommendation tasks by transforming them into text-generation tasks. However, existing approaches either disregard or ineffectively model the user-item high-order interactions. To this end, this paper presents an enhanced LLM-based recommender (ELMRec). We enhance whole-word embeddings to substantially enhance LLMs{'} interpretation of graph-constructed interactions for recommendations, without requiring graph pre-training. This finding may inspire endeavors to incorporate rich knowledge graphs into LLM-based recommenders via whole-word embedding. We also found that LLMs often recommend items based on users{'} earlier interactions rather than recent ones, and present a reranking solution. Our ELMRec outperforms state-of-the-art (SOTA) methods, especially achieving a 124.3{\%} to 293.7{\%} improvement over SOTA LLM-based methods in direct recommendations. Our code is available online.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2024-enhancing-high">
<titleInfo>
<title>Enhancing High-order Interaction Awareness in LLM-based Recommender Model</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xinfeng</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jin</namePart>
<namePart type="family">Cui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fumiyo</namePart>
<namePart type="family">Fukumoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoshimi</namePart>
<namePart type="family">Suzuki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Large language models (LLMs) have demonstrated prominent reasoning capabilities in recommendation tasks by transforming them into text-generation tasks. However, existing approaches either disregard or ineffectively model the user-item high-order interactions. To this end, this paper presents an enhanced LLM-based recommender (ELMRec). We enhance whole-word embeddings to substantially enhance LLMs’ interpretation of graph-constructed interactions for recommendations, without requiring graph pre-training. This finding may inspire endeavors to incorporate rich knowledge graphs into LLM-based recommenders via whole-word embedding. We also found that LLMs often recommend items based on users’ earlier interactions rather than recent ones, and present a reranking solution. Our ELMRec outperforms state-of-the-art (SOTA) methods, especially achieving a 124.3% to 293.7% improvement over SOTA LLM-based methods in direct recommendations. Our code is available online.</abstract>
<identifier type="citekey">wang-etal-2024-enhancing-high</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-main.653</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>11696</start>
<end>11711</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Enhancing High-order Interaction Awareness in LLM-based Recommender Model
%A Wang, Xinfeng
%A Cui, Jin
%A Fukumoto, Fumiyo
%A Suzuki, Yoshimi
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F wang-etal-2024-enhancing-high
%X Large language models (LLMs) have demonstrated prominent reasoning capabilities in recommendation tasks by transforming them into text-generation tasks. However, existing approaches either disregard or ineffectively model the user-item high-order interactions. To this end, this paper presents an enhanced LLM-based recommender (ELMRec). We enhance whole-word embeddings to substantially enhance LLMs’ interpretation of graph-constructed interactions for recommendations, without requiring graph pre-training. This finding may inspire endeavors to incorporate rich knowledge graphs into LLM-based recommenders via whole-word embedding. We also found that LLMs often recommend items based on users’ earlier interactions rather than recent ones, and present a reranking solution. Our ELMRec outperforms state-of-the-art (SOTA) methods, especially achieving a 124.3% to 293.7% improvement over SOTA LLM-based methods in direct recommendations. Our code is available online.
%U https://aclanthology.org/2024.emnlp-main.653
%P 11696-11711
Markdown (Informal)
[Enhancing High-order Interaction Awareness in LLM-based Recommender Model](https://aclanthology.org/2024.emnlp-main.653) (Wang et al., EMNLP 2024)
ACL