
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 11696–11711
November 12-16, 2024 ©2024 Association for Computational Linguistics

Enhancing High-order Interaction Awareness in LLM-based
Recommender Model

Xinfeng Wang†, Jin Cui†, Fumiyo Fukumoto‡, and Yoshimi Suzuki‡
†Graduate School of Engineering
‡Interdisciplinary Graduate School

University of Yamanashi, Kofu, Japan
{g22dtsa7, g22dtsa5, fukumoto, ysuzuki}@yamanashi.ac.jp

Abstract

Large language models (LLMs) have demon-
strated prominent reasoning capabilities in
recommendation tasks by transforming them
into text-generation tasks. However, existing
approaches either disregard or ineffectively
model the user–item high-order interactions.
To this end, this paper presents an enhanced
LLM-based recommender (ELMRec). We
enhance whole-word embeddings to substan-
tially enhance LLMs’ interpretation of graph-
constructed interactions for recommendations,
without requiring graph pre-training. This
finding may inspire endeavors to incorporate
rich knowledge graphs into LLM-based recom-
menders via whole-word embedding. We also
found that LLMs often recommend items based
on users’ earlier interactions rather than recent
ones, and present a reranking solution. Our
ELMRec outperforms state-of-the-art (SOTA)
methods in both direct and sequential recom-
mendations. Our code is available online1.

1 Introduction

Large language models (LLMs) with powerful rea-
soning capabilities have attracted considerable at-
tention in recommendations (Li et al., 2022; Huang
et al., 2023; Yang et al., 2023; Wei et al., 2024).
They typically exploit prompt learning (Liu et al.,
2023) to integrate user and item IDs into LLMs,
including discrete prompts, which leverage alterna-
tive words (e.g., a movie title) to represent IDs (Li
et al., 2023a, 2024), continuous prompts to directly
fine-tune ID vectors (Yu et al., 2024), and hybrid
prompts (Liao et al., 2023; Wang et al., 2024a).
Furthermore, several attempts (Geng et al., 2022;
Li et al., 2023b; Wang et al., 2024b) convert multi-
ple recommendation tasks into generation tasks via
textual prompts for training LLMs. As illustrated
in Fig. 1 (a), these tasks are (i) direct recommen-
dation, (ii) sequential recommendation, and (iii)

1https://github.com/WangXFng/ELMRec

Figure 1: Illustration of our motivation. In (a), LLM-
based recommenders bridge users (pink) and items
(green) via text prompts (blue), failing to capture high-
order interactive signals. Conversely, GNNs can capture
these signals, e.g., 3-hop neighbors (red arrows) in (b).

explanation generation based on user reviews. This
enables LLMs to understand diverse perspectives in
behavioral semantics for recommendations. How-
ever, there still remain two major drawbacks for
these LLM-based recommenders. One is their in-
ability to learn the high-order collaborative signal
within the user–item interaction graph, even though
this signal could greatly assist models which iden-
tify the target from millions of candidates. As de-
picted in Fig. 1 (b), graph neural networks (GNNs),
by propagating node embeddings via user–item
interaction edges, have been widely utilized to cap-
ture these signals for recommendations (He et al.,
2020; Zhao et al., 2022; Yu et al., 2022, 2023; Wang
et al., 2023). More recently, researchers have ex-
ploited LLMs to enhance graph learning for rec-
ommendations (Wei et al., 2024; Du et al., 2024;
Wang et al., 2024e,f). Nevertheless, integrating the
learning process of GNNs into LLMs for recom-

11696

mendations still poses an unresolved challenge.

Another issue with LLM-based recommenders
is their struggle with token decomposition, where
an ID token (e.g., “user_1234”) is often split into
multiple tokens by LLMs (e.g., “user”, “_”, “12”,
and “34”). To address the issue, Geng et al. (2022)
and Li et al. (2023b) propose representing each
user or item (e.g., “user_1234”) with both its ID to-
kens (e.g., “user”, “_”, “12”, and “34”) and whole-
word embeddings. Each ID’s tokens are covered
by one whole-word embedding vector, while all
other non-ID tokens share an identical embedding
vector. This can emphasize the self-attention corre-
lations among tokens representing the same user or
item. However, such whole-word embeddings can-
not independently represent users and items, failing
to address spurious relatedness among their IDs,
e.g., “1234” and “8912” are independent, while
they share the same token “12”.

Motivated by the issues, we propose an enhanced
LLM-based recommender model (ELMRec). We
present novel whole-word embeddings using ran-
dom feature propagation (Eliasof et al., 2023),
which remarkably enhance high-order interaction
awareness of LLMs for recommendations. This is
inspired by the fact that GNNs propagate node em-
beddings to their neighbors, leading them to convey
similar features (Wang et al., 2024c), which can
reflect their relationships in the interactive graph.
This also mitigates the spurious relatedness be-
tween IDs, as each ID is represented by both its
tokens and their corresponding whole-word embed-
dings. Our approach allows LLMs to seamlessly
absorb high-order interactive signals for recommen-
dations without requiring graph pre-training.

Furthermore, LLM-based recommenders may
prioritize predicting the next items based on ear-
lier interactions rather than recent ones. We at-
tribute this to two factors: (1) during training, they
repeatedly sample random segments from interac-
tion sequences to predict the last item in each seg-
ment, potentially causing them to overly emphasize
past interactions; and (2) the Transformer (Vaswani
et al., 2017) in LLMs excels at capturing long-term
dependencies among historical interactions, which
potentially leads LLMs to pay less attention to re-
cent ones. Hence, we introduce a simple, effective,
and training-free reranking approach.

The main contributions of our work are summa-
rized as follows: (1) we present a novel whole-word
embedding approach, which significantly boosts

the ability of LLMs to capture the relative positions
of users and items within the interaction graph.
This finding may inspire endeavors to incorpo-
rate knowledge graphs into LLMs via whole-word
embedding for recommendations; (2) we demon-
strate that LLMs might recommend items based
on users’ past interactions and propose a plug-and-
play reranking solution; and (3) extensive exper-
iments demonstrate that EMLRec achieves state-
of-the-art (SOTA) performance in both direct and
sequential recommendations.

2 Related Work

2.1 LLM-based Recommendation

LLMs have exhibited remarkable capabilities in
item recommendations (Li et al., 2022; Wei et al.,
2024; Huang et al., 2023; Li et al., 2024; Wang
et al., 2024a) and explainable recommendations
(Yang et al., 2023; Cheng et al., 2023). Many ef-
forts have leveraged the LLMs’ knowledge to en-
hance recommendations, addressing zero-/few-shot
and cold-start scenarios (He et al., 2023; Sanner
et al., 2023), reranking candidates (Yue et al., 2023;
Carraro and Bridge, 2024), and refining representa-
tions (Harte et al., 2023; Ren et al., 2023; Lin et al.,
2023; Lei et al., 2023; Viswanathan et al., 2023).

Recently, Geng et al. (2022) convert multi-modal
data, e.g., reviews, user–item interactions, and se-
quential behaviors, into text-to-text prompts for
LLM-based recommenders. Li et al. (2023b) fur-
ther propose a novel prompt distillation, reducing
inference time without compromising performance.

2.2 GNN-based Recommendation

Many studies (He et al., 2020; Wang et al., 2022;
Zhao et al., 2022; Lin et al., 2022; Yu et al., 2023;
Wang et al., 2024d) have been conducted to capture
high-order features from the interaction graph. A
surge of research has recently leveraged LLMs to
enhance graph learning for recommendation tasks.
This includes LLM-based graph structure augmen-
tation (Wei et al., 2024), enhancing the text at-
tributes of nodes and their neighbors (Chen et al.,
2024; Du et al., 2024; Damianou et al., 2024), align-
ing graph-structured interactive patterns with tex-
tual inference (Guo et al., 2024; Huang et al., 2024),
and leveraging massive textual prompts to gener-
ate the interaction edges for LLM-based recom-
menders (Wang et al., 2024e). However, they pay
no attention to incorporating the learning process
of GNNs into LLMs for recommendations.

11697

3 Preliminary

3.1 Model Basics
Following prior research (Li et al., 2023b), ELM-
Rec utilizes three recommendation tasks and dis-
tills their long textual prompts into prompt words
(i.e., “P1”, “P2”, and “P3” in Fig. 2). These tasks
are (i) direct recommendations, suggesting an item
from a given candidate list to a user, (ii) sequen-
tial recommendations, forecasting the next item
through user sequential interactions, and (iii) expla-
nation generation for user interactions. This work
aims to enhance (i) and (ii), while the task (iii)
follows the previous work by Li et al. (2023b).

We define the input and output words of each
task asX = [x1, ..., x|X|] and Y = [y1, ..., y|Y |]. We
concatenate the input tokens with prompt vectors
via Xp = [x1, ..., x|X|, p1, ..., p|P |]. Given the
whole-word embedding Xω = [ω1, ..., ω|X|+|P |],
we feed X̂ = Xp + αXω into LLMs to obtain
a probability distribution p(y|Y<t, X) over a vo-
cabulary at step t, where Y<t denotes the tokens
generated before step t. We adopt a log-likelihood
loss function to optimize the model parameters Θ:

LΘ =
1

|D|
∑

(X,Y)∈D

1

|Y |

|Y |∑

t=1

− log p(y|Y<t, X),

(1)
where D indicates a set of input-output pairs for
three tasks. |D| and |Y | denote the number of pairs,
and words in each output, respectively.

3.2 Whole-word Embedding
To comprehend the functioning of whole-word em-
bedding (Geng et al., 2022; Li et al., 2023b), we
revisit the self-attention value ai,j in LLMs with
the whole-word embeddings (i.e., ωi and ωj):

qi = (xi + ωi)WQ,

kj = (xj + ωj)WK ,

vi = (xi + ωi)WV ,

ai,j = softmax(qik
⊤
j).

(2)

We further unfold qik
⊤
j as follows:

qik
⊤
j = (xi + ωi)WQW

⊤
K(xj + ωj)

⊤,

= xiWQW
⊤
Kx⊤

j︸ ︷︷ ︸
Self-attention Correlations

+ xiWQW
⊤
Kω

⊤
j

+ ωiWQW
⊤
Kx⊤

j + ωiWQW
⊤
Kω

⊤
j︸ ︷︷ ︸

Whole-word Correlations

.

(3)

Figure 2: Illustration of input and output words.

The whole-word correlations can improve the
self-attention weights among tokens of the same
user or item. This is attributed to the fact that ωi

and ωj are identical if they are the same ID’s tokens.
Therefore, we propose enhancing graph awareness
in LLMs by representing user–item relationships
with ωi and ωj .

4 Approach

We present our ELMRec from both direct and se-
quential recommendation perspectives.

4.1 Enhancing Direct Recommendation

Motivated by Wang et al. (2024c)’s work, we uti-
lize the random feature propagation (Eliasof et al.,
2023) based on LightGCN (He et al., 2020) to gen-
erate interaction graph-aware whole-word embed-
dings. The whole-word embeddings can enhance
LLMs’ ability to understand the graph-constructed
user–item interactions.
Random Feature Propagation. As illustrated in
Fig. 3, the random feature propagation via Light-
GCN makes close nodes comprise similar informa-
tion, thereby sharing semantic similarity. Specif-
ically, we initiate user and item embeddings by
the normal distribution with mean 0 and standard
deviation σ as follows:

ψ(v) ∼ N (0, σ2), ϕ(u) ∼ N (0, σ2), (4)

where ψ(v) and ϕ(u) indicate the embeddings of
item v and user u, respectively. We then utilize
LightGCN to perform the graph convolutions due
to its simplification and effectiveness, which is for-
mulated layer by layer as follows:

ψ(v)(l+1) =
∑

u∈Nv

1√
|Nv|

√
|Nu|

ϕ(u)(l),

ϕ(u)(l+1) =
∑

v∈Nu

1√
|Nu|

√
|Nv|

ψ(v)(l),

(5)

11698

Figure 3: Illustration of integrating interaction graph awareness into LLMs. We first leverage random feature
propagation based on LightGCN to obtain whole-word embeddings, which can reflect user–item positions in the
interaction graph by their semantic similarity conveyed by red, blue, and yellow edges. We then merge whole-word
and word embeddings to enhance LLMs with interaction graph awareness.

where l refers to the layer of LightGCN, and Nv

and Nu denote the neighbor nodes of item v and
user u, respectively. By repeatedly applying Eq.
(5), we can obtain the coefficient cuj−>ui repre-
senting the influence of ui’s 2-order neighbor uj
on ui as follows:

cuj−>ui =
1√

|Nu|
√
|Nv|

∑

k∈Nui∩Nuj

1

|Nk|
. (6)

We can observe that the influence is determined by:
(1) the number of their co-interactions, the more
the stronger; (2) the popularity of the shared items,
the less popular the stronger; and (3) the activity
level of user ui, the less active the stronger. The
stronger influence indicates that more information
is propagated to its high-order neighbors, reflect-
ing the high-order interactive correlations between
users and items in the graph.
Interaction Graph-aware Embeddings.We de-
fine the final embeddings after performing random
feature propagation as follows:

ψ̂(v) =

∑L
l=0 ψ(v)

(l)

L+ 1
, ϕ̂(u) =

∑L
l=0 ϕ(u)

(l)

L+ 1
,

(7)
where L indicates the number of LightGCN layers.

We substitute the whole-word embeddings by:

ωi =

ψ̂(v) ωi represents item v,

ϕ̂(u) ωi represents user u,

ω0 otherwise,

(8)

where ω0 refers to the general embedding vector for
all non-ID tokens. As such, the enhanced whole-
word embedding not only mitigates the spurious
relatedness between user and item IDs but also cap-
tures high-order collaborative signals among users
and items. This is because each ID is represented
by both its tokens and whole-word embeddings.
Remarks. The majority of tokenizers separate
large digital numbers into subwords using Byte-
Pair Encoding (Sennrich et al., 2016) or Unigram
(Kudo and Richardson, 2018). As a result, only a
small number of subwords in the vocabulary are
leveraged to represent all digital tokens (e.g., 5292

out of 32,100 subwords in T5-11b3). This leads to a
low rank in embedding matrices due to the limited
number of digital subwords compared to users and
items. In contrast, incorporating the whole-word
embedding into the matrices allows a higher rank,
further enhancing LLMs’ ID representation power
(Chen et al., 2021).

2There are 326 digital subtokens such as “12" and “34"
and 203 continuation subwords such as“_12” and “_34”.

3https://huggingface.co/google-t5/t5-11b

11699

Figure 4: Influence of relative positions within the inter-
action graph on direct and sequential recommendations.

4.2 Enhancing Sequential Recommendation
To prevent LLMs from overly prioritizing earlier
interactions, we introduce incremental whole-word
embeddings and a reranking approach.
Incremental whole-word embeddings. Indeed,
negative samples for direct recommendations are
randomly drawn from the sparse interaction graph,
often making only the ground-truth item a close
node for the target user. As shown in Fig. 4, by
assessing their positions, ELMRec can effectively
distinguish the close node from remote ones (i.e.,
negative samples). An input example of a direct
recommendation is given as follows:

< P1 > user_123︸ ︷︷ ︸
target user

item_567 item_334︸ ︷︷ ︸
target item

... item_1238.

(9)

The self-attention values between token embed-
dings of user_123 and item_334 are enhanced
since they are close in the graph and have strong
graph-based correlations. In contrast, an input ex-
ample of a sequential recommendation would be
given by:

< P2 > user_123︸ ︷︷ ︸
target user

item_100 item_104 ... item_136︸ ︷︷ ︸
tokens whose self-attention is highlighted

.

(10)

All these items of {item_100 ... item_136} are
the user’s interacted items, which are close to the
user in the graph as shown in Fig. 4. As a result,
the self-attention values among all these token em-
beddings are highlighted, potentially exacerbating
the model’s tendency to prioritize earlier interac-
tions overly and weakening the sequential patterns
needed for LLMs to generate the next item.

We thus employ incremental whole-word em-
beddings (Geng et al., 2022; Li et al., 2023b), in
which we assign increasing indices to users and
items based on their appearance order in the input
sequence as follows:

< P2 > user_123︸ ︷︷ ︸
#0

item_100︸ ︷︷ ︸
#1

item_104︸ ︷︷ ︸
#2

... item_136︸ ︷︷ ︸
#N

.

(11)

Dataset #User #Item #Review Avg. Density (%)
Sports 48,993 34,298 296,337 8.3 0.0453
Beauty 22,363 12,101 198,502 8.9 0.0734
Toys 19,804 22,086 167,597 8.6 0.0724

Table 1: Statistics of dataset. “#User”, “#Item”, “#Re-
view”, and “#Avg” denote the number of users, items,
reviews, and the average user interactions, respectively.

Subsequently, we utilize the indices to extract the
corresponding embeddings from the global whole-
word embedding matrix Xω̂ (Xω̂ ∈ RI×dn , where
I refers to the maximum incremental index). There-
fore, each ID is represented by its literal represen-
tation and the appearance order, which not only
identifies tokens belonging to the same ID but also
indicates their appearance order. The approach po-
tentially emphasizes recent interactions with whole-
word embeddings of larger index numbers.
Reranking approach. To capture the sequential
dependencies among items, recent research (Geng
et al., 2022; Li et al., 2023b) leaves the last item
in each user’s historical interactions for testing,
and then iteratively and randomly selects interac-
tion subsequences to predict the last item within
each subsequence for training LLMs. We posit
that this training strategy would lead LLMs to
overemphasize early subsequences. For instance,
when presented with the sequential interactions
(i1 −→ i2 −→ i3 −→ i4 −→ i5) of user u1, LLMs are
highly likely to recommend items i3 and i4. This
is because the subsequences (i1 −→ i2 −→ i3) and
(i2 −→ i3 −→ i4) might be included in the training
data caused by this strategy.

To alleviate the issue, we propose a training-free,
straightforward, yet effective reranking approach.
Specifically, for each prediction, we prompt LLMs
to provide N more items with their ordered prob-
abilities. We then rerank the first (k+N) candi-
dates to filter out the items that the user has inter-
acted with. We refine the probability distribution
p(y|Y<t, X) at step t as follows:

p(:k)(y|Y<t, X)←− rerank(p(:k+N)(y|Y<t, X)).
(12)

5 Experiments

5.1 Experimental Setup
Dataset and Metrics. We performed experiments
on three benchmark datasets, i.e., Sports & Out-
doors, Beauty, and Toys & Games4. Following

4https://www.amazon.com/

11700

Models
Sports Beauty Toys

H@5 N@5 H@10 N@10 H@5 N@5 H@10 N@10 H@5 N@5 H@10 N@10
Traditional Approach

SampleX 0.2362 0.1505 0.3290 0.1800 0.2247 0.1441 0.3090 0.1711 0.1958 0.1244 0.2662 0.1469
Large Language Model-based Approach

P5 0.1955 0.1355 0.2802 0.1627 0.1564 0.1096 0.2300 0.1332 0.1322 0.0889 0.2023 0.1114
RSL 0.2092 0.1502 0.3001 0.1703 0.1564 0.1096 0.2300 0.1332 0.1423 0.0825 0.1926 0.1028
POD 0.2105 0.1539 0.2889 0.1782 0.1931 0.1404 0.2677 0.1639 0.1461 0.1029 0.2119 0.1244

ELMRec 0.5782 0.4792 0.6479 0.4852 0.6052 0.4852 0.6794 0.4973 0.5178 0.4051 0.6045 0.4141
Impv. 174.7%* 211.4%* 124.3%* 172.3%* 213.4%* 245.6%* 153.8%* 203.4%* 254.4%* 293.7%* 185.3%* 232.9%*

Graph Neural Network-based Approach
LightGCN 0.4150 0.3002 0.5436 0.3418 0.4205 0.3067 0.5383 0.3451 0.3879 0.2874 0.5106 0.3272

NCL 0.4292 0.3131 0.5592 0.3551 0.4378 0.3228 0.5542 0.3607 0.3975 0.2925 0.5120 0.3325
XSimGCL 0.3547 0.2689 0.4486 0.2992 0.3530 0.2734 0.4392 0.3012 0.3351 0.2614 0.4186 0.2885
ELMRec 0.5782 0.4792 0.6479 0.4852 0.6052 0.4852 0.6794 0.4973 0.5178 0.4051 0.6045 0.4141

Impv. 34.7%* 53.1%* 15.9%* 36.6%* 38.2%* 50.3%* 22.6%* 37.9%* 30.3%* 38.5%* 16.0%* 24.5%*

Table 2: Performance comparison on direct recommendation. Bold: Best, underline: Second best. “*” indicates
that the improvement is statistically significant (p-value < 0.05) in the 10-trial T-test.

Models
Sports Beauty Toys

H@5 N@5 H@10 N@10 H@5 N@5 H@10 N@10 H@5 N@5 H@10 N@10
Traditional Approach

Caser 0.0116 0.0072 0.0194 0.0097 0.0205 0.0131 0.0347 0.0176 0.0166 0.0107 0.0270 0.0141
GRU4Rec 0.0129 0.0086 0.0204 0.0110 0.0164 0.0099 0.0283 0.0137 0.0097 0.0059 0.0176 0.0084

HGN 0.0189 0.0120 0.0313 0.0159 0.0325 0.0206 0.0512 0.0266 0.0321 0.0221 0.0497 0.0277
SASRec 0.0233 0.0154 0.0350 0.0192 0.0387 0.0249 0.0605 0.0318 0.0463 0.0306 0.0675 0.0374

Transformer-based Approach
BERT4Rec 0.0115 0.0075 0.0191 0.0099 0.0203 0.0124 0.0347 0.0170 0.0116 0.0071 0.0203 0.0099

FDSA 0.0182 0.0122 0.0288 0.0156 0.0267 0.0163 0.0407 0.0208 0.0228 0.0140 0.0381 0.0189
S3-Rec 0.0251 0.0161 0.0385 0.0204 0.0387 0.0244 0.0647 0.0327 0.0443 0.0294 0.0700 0.0376

Large Language Model-based Approach
P5 0.0387 0.0312 0.0460 0.0336 0.0508 0.0379 0.0664 0.0429 0.0648 0.0567 0.0709 0.0587

RSL 0.0392 0.0330 0.0512 0.0375 0.0508 0.0381 0.0667 0.0446 0.0676 0.0583 0.0712 0.0596
POD 0.0497 0.0399 0.0585 0.0422 0.0559 0.0420 0.0696 0.0471 0.0692 0.0589 0.0744 0.0601

ELMRec 0.0538 0.0453 0.0616 0.0471 0.0609 0.0486 0.0750 0.0529 0.0713 0.0608 0.0764 0.0618
Impv. 8.2%* 13.5%* 5.3%* 11.6%* 8.9%* 13.5%* 7.8%* 12.3%* 3.0% 3.2% 2.7% 2.8%

Table 3: Performance comparison between ELMRec and baselines in the sequential recommendation task.

Li et al. (2023b)’s work, for direct and sequential
recommendation tasks, we designate the last inter-
action as the test label, the second-to-last as the
validation label, and the remaining interactions as
training data. Likewise, for the explanation genera-
tion task, we split each dataset into training, vali-
dation, and test sets in an 8:1:1 ratio. Table 1 pro-
vides the statistics of datasets. We utilized hit rate
(HR)@k (H@k) and normalized discounted cumu-
lative gain (NDCG)@k (N@k) with k ∈ {5, 10}
as evaluation metrics.

Baselines. We compared ELMRec with seven
methods for direct recommendations: SimpleX
(Mao et al., 2021), P5 (Geng et al., 2022), RLS
(Chu et al., 2023), POD (Li et al., 2023b), Light-
GCN (He et al., 2020), NCL (Lin et al., 2022)
and XSimGCL (Yu et al., 2023). We also com-
pared ELMRec with ten methods for sequential rec-
ommendations: CASER (Tang and Wang, 2018),
HGN (Ma et al., 2019), GRU4Rec (Hidasi et al.,
2015), BERT4Rec (Sun et al., 2019), FDSA (Zhang

et al., 2019), SASRec (Kang and McAuley, 2018),
S3-Rec (Zhou et al., 2020), P5 (Geng et al., 2022),
RLS (Chu et al., 2023) and POD (Li et al., 2023b).

Consistent with the LLM-based competitors P5
and POD, ELMRec adopts T5-small (Raffel et al.,
2020) as the LLM. Due to space limits, further
experimental details are provided in Appendix A.1.

5.2 Main Results
Tables 2 and 3 show the comparative results be-
tween ELMRec and baselines for direct and se-
quential recommendations, respectively. We can
see that ELMRec is consistently superior to all
competitors on all three datasets. Specifically, the
improvements compared with the runner-up NCL
were 15.9% ∼ 53.1% for direct recommendations,
and the improvements compared with the runner-
up POD were 2.7% ∼ 13.5% for sequential recom-
mendations across three datasets. We also have the
following observations:

(1) LLM-based competitors notably fall short of
GNN-based ones in direct recommendations, high-

11701

Models
Sports Beauty Toys

H@10 N@10 H@10 N@10 H@10 N@10
Direct recommendation

w/o Text Prompt 0.1270 0.1006 0.0381 0.0296 0.0190 0.0180
w/o Graph-aware 0.2890 0.1783 0.2687 0.1650 0.2141 0.1243

ELMRec 0.6479 0.4852 0.6794 0.4973 0.6045 0.4141
Impv. 124.2% 172.1% 152.8% 201.4% 182.3% 233.1%

Sequential recommendation
w/o Reranking 0.0599 0.0435 0.0703 0.0471 0.0737 0.0572

ELMRec 0.0616 0.0471 0.0750 0.0529 0.0764 0.0618
Impv. 2.7% 8.3% 6.7% 7.7% 3.7% 8.0%

Table 4: Ablation study. “w/o Graph-aware” and “w/o
Reranking” denote the ELMRec without the interaction
graph awareness and reranking approach, respectively.
“w/o Text Prompt” indicates that only whole-word em-
beddings are fed into the LLM for recommendations.

lighting the significance of high-order interactive
signals. Our ELMRec, by integrating graph aware-
ness into LLMs, surpasses the leading LLM-based
competitor, POD, by 124.3% to 293.7%.

(2) GNN-based approaches, LightGCN, NCL,
and XSimGCL, that learn high-order signals are
competitive among baselines for direct recommen-
dations. In contrast, ELMRec outperforms them
by leveraging richer semantic information through
learning text-to-text prompts of sequential behav-
iors and reviews.

(3) Traditional and Transformer-based methods
without pre-trained knowledge are less effective
than LLM-based methods in the sequential recom-
mendation task. In contrast, by leveraging LLMs’
knowledge to extract user preferences and item
characteristics from multimodal textual prompts,
P5, RSL, POD, and ELMRec effectively infer
users’ behavioral patterns, enhancing the potential
of LLMs for sequential recommendations.

(4) Overall, the sequential recommendation task
is more challenging than the direct recommenda-
tion task, as evidenced by the lower HR@k and
N@k values across all methods. This is mainly
because the number of candidates in sequential rec-
ommendations is much larger than those in direct
recommendations. Exploring effective prompts to
reduce the candidate range for the former task is an
interesting direction for future work.

5.3 Ablation Study

To examine the effectiveness of each component
in ELMRec, we conducted an ablation study in
Tables 4 and 5. The result provides four findings
as follows:

(1) The substantial performance drop of ELM-
Rec without interaction graph awareness supports
our assumption that the novel whole-word embed-

Models
Sports Beauty Toys

H@10 N@10 H@10 N@10 H@10 N@10
Direct recommendation

w/o Graph-aware 0.2890 0.1783 0.2687 0.1650 0.2141 0.1243
Prepending 0.3456 0.2174 0.2730 0.1675 0.2362 0.1309
Addition 0.6479 0.4852 0.6794 0.4973 0.6045 0.4141

Table 5: Results by various methods of incorporating
graph-aware whole-word embeddings. “Prepending”
refers to prepending directly whole word embedding
before the input sequence. “Addition” indicates adding
graph-aware embeddings to ID tokens.

Whole-word Sports Beauty Toys
Embeddings H@10 N@10 H@10 N@10 H@10 N@10

Direct recommendation
- Random 0.2758 0.1736 0.2850 0.1752 0.2127 0.1240
- Incremental 0.2989 0.1820 0.2881 0.1753 0.2207 0.1334
- Graph-aware 0.6479 0.4852 0.6794 0.4973 0.6045 0.4141

Sequential recommendation
- Random 0.0579 0.0413 0.0713 0.0473 0.0741 0.0572
- Incremental 0.0616 0.0471 0.0750 0.0529 0.0764 0.0618
- Graph-aware 0.0556 0.0407 0.0708 0.0481 0.0733 0.0601

Table 6: Effect of various whole-word embeddings.
“Graph-aware” represents the interaction graph-aware
whole-word embeddings. “Incremental” indicates that
the graph-aware whole-word embeddings are replaced
with incremental embeddings. The result of “Random”
is obtained by disordering the indices for incremental
whole-word embeddings.

dings can enhance the LLM’s comprehension of
graph-based user-item relationships. This finding
suggests that integrating comprehensive knowledge
graphs into LLMs using whole-word embeddings
could be a promising approach to further improve
recommendation performance.

(2) The reranking approach boosts ELMRec’s
performance across all datasets, especially in yield-
ing noticeable improvement in NDCG values. This
demonstrates that the approach can mitigate the is-
sue of overly prioritizing users’ earlier interactions
by optimizing the order of candidates.

(3) Without text prompts, the LLM struggles
to effectively understand recommendation tasks.
This shows that text prompts are essential for LLM-
based recommenders, while graph awareness plays
a supplementary role in improving its recommen-
dation performance.

(4) We can see that prepending graph-aware em-
beddings can slightly improve performance but not
as well as adding them with ID tokens. This sup-
ports our assumption that the graph-based correla-
tions can enhance the self-attention values of to-
kens for direct recommendations.

11702

Figure 5: Effect of α. The x-axis and the y-axis indicate
the values of α and NDCG@10 (%), respectively.

Hyperprameter
Sports Beauty Toys

H@10 N@10 H@10 N@10 H@10 N@10
N = 0 0.0599 0.0435 0.0703 0.0471 0.0737 0.0572
N = 5 0.0614 0.0469 0.0744 0.0528 0.0763 0.0617
N = 10 0.0616 0.0471 0.0748 0.0528 0.0764 0.0618
N = 15 0.0616 0.0471 0.0750 0.0529 0.0764 0.0618

Table 7: Effect of N for reranking candidates.

5.4 In-depth Analyses of ELMRec

We conducted in-depth analyses to better under-
stand ELMRec, including the effect of whole-word
embedding, parameter sensitivity, computational
complexity analysis, and visualization.

5.4.1 Effect of Whole-word Embedding

To show how to choose better whole-word embed-
ding for different tasks, we conducted experiments
and reported the result by ELMRec equipped with
various whole-word embeddings in Table 6. We
have the following insights:

(1) For the direct recommendation, the random
indexed and incremental whole-word embeddings
make similar contributions. The interaction graph-
aware whole-word embeddings significantly im-
prove LLMs’ performance by empowering them to
understand the relative positions of users and items
in the graph-constructed interactions.

(2) For the sequential recommendation, graph-
aware whole-word embeddings slightly harm the
performance, as the way it emphasizes all inter-
acted items weakens the sequential patterns. The
incremental whole-word embeddings work better
than the random indexed ones. This is because the
increasing indices can better represent the appear-
ance order of users’ historical interactions.

Figure 6: Effect of σ and L in direct recommendations.

5.4.2 Parameter Sensitivity
We investigated the impact of the four hyperparam-
eters, i.e., α, N , σ, and L on ELMRec.
Effect of α. The parameter α was assigned to
vary the influence level of whole-word embeddings.
In Fig. 5, the optimal performance of sequential
recommendation is distributed at smaller values of
α, whereas the direct recommendation task requires
a larger value of α.
Effect of N . N was to control the number of ad-
ditional candidates in reranking approaching. The
first five additional candidates, as shown in Table
7, contribute the most to the performance improve-
ment, while increasing N to 10 or 15 results in
minimal or negligible improvements.
Effect of σ. σ represents the standard deviation to
initiate user and item embeddings. Fig. 6 (a) illus-
trates that performance improves with increasing σ
until it reaches an optimum, after which it declines
across all datasets, emphasizing the importance of
an appropriate σ.
Effect of L. L indicates the number of LightGCN
layers. In Fig. 6 (b), when the number of layers
L exceeds 4, high-order features have limited or
negative effects on performance, while resulting in
higher computational costs.

5.4.3 Computational Complexity Analysis
The computational complexity of ELMRec hinges
on Transformer (m2) and LightGCN (n2), wherem
signifies the number of average input tokens and n
denotes the total count of users and items. Givenm
« n, the complexity of ELMRec in the fixed setting
is (n2), underscoring that it is essential to consider
the number of users and items in practical deploy-
ment. That also prompts us to explore GNNs of
less computational complexity for ELMRec, such
as SIGN (Frasca et al., 2020), Nodeformer (Wu

11703

Figure 7: Visualization of whole-word embeddings of users and items after 1st and 3rd rounds of propagation. The
dots in the same color denote users (or items) who have interacted with the same items (or users). The closer the
dots, the greater their similarity. Further visualization results are provided in the Appendix. A.1.3.

Datasets Stages
Pre-training DirRec SeqRec

Sports 04h06m58s 17m07s 07m38s
Beauty 02h08m48s 10m32s 04m49s
Toys 03h56m09s 12m44s 04m04s

Table 8: Running time in various stages on three
datasets. “DirRec” and “SeqRec” denote the cumula-
tive time cost in direct and sequential recommendations,
respectively. “h”, “m”, and “s” indicate “hours” and
“minutes”, and “seconds” respectively.

et al., 2022) and HGCN (Wang et al., 2023).
In Table 8, we present the running time by ELM-

Rec in pretraining, direct recommendation, and
sequential recommendation, respectively. Despite
the substantial cost of the initial pretraining stage,
ELMRec shows efficient performance in both di-
rect and sequential recommendation inference.

5.4.4 Visualization
We visualized whole-word embeddings via t-SNE
(Van der Maaten and Hinton, 2008). The result in
Fig. 7 prompts the observations as stated below:

(1) The whole-word embeddings, learned via
random feature propagation within the interaction
graph, effectively represent similarity and diver-
sity in collaborative signals among users and items.
These embeddings guarantee that similar users and
items are closely located in semantic space, so as to
enhance the self-attention mechanism and integrate
graph awareness into LLMs for recommendations.

(2) Both high- and low-order collaborative sig-

nals reveal user and item similarities. Compared
to low-order signals, high-order signals offer three
advantages: (i) they better disperse embeddings of
active users at the center of distributions on Toys
and Beauty, (ii) they reinforce cohesion within clus-
ters of items in the same color on Beauty, and (iii)
they facilitate the detection of latent high-order re-
lations among nodes (e.g., items in purple on Toys).

6 Conclusion

This paper presents ELMRec, an enhanced LLM-
based recommender model. We introduce novel
whole-word embeddings to improve the interac-
tion graph awareness of LLMs and a reranking
approach to prevent LLMs from prioritizing earlier
interactions. Extensive experiments show the effec-
tiveness of ELMRec in both direct and sequential
recommendations. Future work involves (i) explor-
ing computationally efficient GNNs (Frasca et al.,
2020; Wu et al., 2022) and (ii) investigating more
effective and learnable reranking approaches.

Acknowledgements

We would like to thank anonymous reviewers
for their thorough comments and suggestions.
This work is supported by the international ex-
change grant from Tateisi Science and Technol-
ogy Foundation (No.2242112), the research grant
from JKA, and the China Scholarship Council
(No.202208330093).

11704

Limitations

In the fine-tuning stage, the ELMRec model adopts
time-consuming modules LightGCN (O(n2))
where n refers to the number of nodes in the in-
teraction graph, therefore its computational cost
heavily relies on the number of users and items
in the recommender system. Another limitation
is the same as LightGCN in its inability to handle
cold start scenarios. It requires retraining the en-
tire model from scratch if a new user or item is
introduced, which can be costly.

Ethics Statement

This paper does not involve the presentation of a
new dataset, an NLP application, and the utilization
of demographic or identity characteristics informa-
tion.

References
Sheldon Axler. 2015. Linear algebra done right.

Springer.

Diego Carraro and Derek Bridge. 2024. Enhancing
recommendation diversity by re-ranking with large
language models. arXiv preprint arXiv:2401.11506.

Pu-Chin Chen, Henry Tsai, Srinadh Bhojanapalli,
Hyung Won Chung, Yin-Wen Chang, and Chun-Sung
Ferng. 2021. A simple and effective positional en-
coding for transformers. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2974–2988.

Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi
Wen, Xiaochi Wei, Shuaiqiang Wang, Dawei Yin,
Wenqi Fan, Hui Liu, et al. 2024. Exploring the po-
tential of large language models (llms) in learning
on graphs. ACM SIGKDD Explorations Newsletter,
25(2):42–61.

Hao Cheng, Shuo Wang, Wensheng Lu, Wei Zhang,
Mingyang Zhou, Kezhong Lu, and Hao Liao. 2023.
Explainable recommendation with personalized re-
view retrieval and aspect learning. In the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 51–64.

Zhixuan Chu, Hongyan Hao, Xin Ouyang, Simeng
Wang, Yan Wang, Yue Shen, Jinjie Gu, Qing Cui,
Longfei Li, Siqiao Xue, et al. 2023. Leveraging large
language models for pre-trained recommender sys-
tems. arXiv preprint arXiv:2308.10837.

Andreas Damianou, Francesco Fabbri, Paul Gigioli,
Marco De Nadai, Alice Wang, Enrico Palumbo, and
Mounia Lalmas. 2024. Towards graph foundation
models for personalization. In Companion Proceed-
ings of the ACM on Web Conference 2024, pages
1798–1802.

Yingpeng Du, Ziyan Wang, Zhu Sun, Haoyan Chua,
Hongzhi Liu, Zhonghai Wu, Yining Ma, Jie Zhang,
and Youchen Sun. 2024. Large language model
with graph convolution for recommendation. arXiv
preprint arXiv:2402.08859.

Moshe Eliasof, Fabrizio Frasca, Beatrice Bevilacqua,
Eran Treister, Gal Chechik, and Haggai Maron. 2023.
Graph positional encoding via random feature prop-
agation. In International Conference on Machine
Learning, pages 9202–9223. PMLR.

Fabrizio Frasca, Emanuele Rossi, Davide Eynard,
Ben Chamberlain, Michael Bronstein, and Federico
Monti. 2020. Sign: Scalable inception graph neural
networks. arXiv preprint arXiv:2004.11198.

Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge,
and Yongfeng Zhang. 2022. Recommendation as
language processing (rlp): A unified pretrain, person-
alized prompt & predict paradigm (p5). In Proceed-
ings of the 16th ACM Conference on Recommender
Systems, pages 299–315.

Naicheng Guo, Hongwei Cheng, Qianqiao Liang,
Linxun Chen, and Bing Han. 2024. Integrating large
language models with graphical session-based rec-
ommendation. arXiv preprint arXiv:2402.16539.

Jesse Harte, Wouter Zorgdrager, Panos Louridas, As-
terios Katsifodimos, Dietmar Jannach, and Marios
Fragkoulis. 2023. Leveraging large language models
for sequential recommendation. In Proceedings of
the 17th ACM Conference on Recommender Systems,
pages 1096–1102.

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yong-
dong Zhang, and Meng Wang. 2020. Lightgcn: Sim-
plifying and powering graph convolution network for
recommendation. In Proceedings of the 43rd Inter-
national ACM SIGIR conference on research and de-
velopment in Information Retrieval, pages 639–648.

Zhankui He, Zhouhang Xie, Rahul Jha, Harald Steck,
Dawen Liang, Yesu Feng, Bodhisattwa Prasad Ma-
jumder, Nathan Kallus, and Julian McAuley. 2023.
Large language models as zero-shot conversational
recommenders. In Proceedings of the 32nd ACM
international conference on information and knowl-
edge management, pages 720–730.

Balázs Hidasi, Alexandros Karatzoglou, Linas Bal-
trunas, and Domonkos Tikk. 2015. Session-based
recommendations with recurrent neural networks.
arXiv preprint arXiv:1511.06939.

Xu Huang, Jianxun Lian, Yuxuan Lei, Jing Yao, Defu
Lian, and Xing Xie. 2023. Recommender ai agent:
Integrating large language models for interactive rec-
ommendations. arXiv preprint arXiv:2308.16505.

Xuanwen Huang, Kaiqiao Han, Yang Yang, Dezheng
Bao, Quanjin Tao, Ziwei Chai, and Qi Zhu. 2024.
Can gnn be good adapter for llms? arXiv preprint
arXiv:2402.12984.

11705

Wang-Cheng Kang and Julian McAuley. 2018. Self-
attentive sequential recommendation. In 2018 IEEE
international conference on data mining (ICDM),
pages 197–206. IEEE.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing.
arxiv 2018. arXiv preprint arXiv:1808.06226.

Yuxuan Lei, Jianxun Lian, Jing Yao, Xu Huang, Defu
Lian, and Xing Xie. 2023. Recexplainer: Aligning
large language models for recommendation model
interpretability. arXiv preprint arXiv:2311.10947.

Jian Li, Jieming Zhu, Qiwei Bi, Guohao Cai, Lifeng
Shang, Zhenhua Dong, Xin Jiang, and Qun Liu. 2022.
Miner: multi-interest matching network for news
recommendation. In Findings of the Association for
Computational Linguistics: ACL 2022, pages 343–
352.

Lei Li, Yongfeng Zhang, and Li Chen. 2023a. Person-
alized prompt learning for explainable recommen-
dation. ACM Transactions on Information Systems,
41(4):1–26.

Lei Li, Yongfeng Zhang, and Li Chen. 2023b. Prompt
distillation for efficient llm-based recommendation.
In Proceedings of the 32nd ACM International Con-
ference on Information and Knowledge Management,
pages 1348–1357.

Yaoyiran Li, Xiang Zhai, Moustafa Alzantot, Keyi Yu,
Ivan Vulić, Anna Korhonen, and Mohamed Hammad.
2024. Calrec: Contrastive alignment of generative
llms for sequential recommendation. arXiv preprint
arXiv:2405.02429.

Jiayi Liao, Sihang Li, Zhengyi Yang, Jiancan Wu,
Yancheng Yuan, Xiang Wang, and Xiangnan He.
2023. Llara: Aligning large language models
with sequential recommenders. arXiv preprint
arXiv:2312.02445.

Xinyu Lin, Wenjie Wang, Yongqi Li, Fuli Feng, See-
Kiong Ng, and Tat-Seng Chua. 2023. A multi-facet
paradigm to bridge large language model and recom-
mendation. arXiv preprint arXiv:2310.06491.

Zihan Lin, Changxin Tian, Yupeng Hou, and Wayne Xin
Zhao. 2022. Improving graph collaborative filtering
with neighborhood-enriched contrastive learning. In
Proceedings of the ACM Web Conference 2022, pages
2320–2329.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Computing Surveys, 55(9):1–35.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Chen Ma, Peng Kang, and Xue Liu. 2019. Hierarchical
gating networks for sequential recommendation. In
Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining,
pages 825–833.

Kelong Mao, Jieming Zhu, Jinpeng Wang, Quanyu Dai,
Zhenhua Dong, Xi Xiao, and Xiuqiang He. 2021.
Simplex: A simple and strong baseline for collab-
orative filtering. In Proceedings of the 30th ACM
International Conference on Information & Knowl-
edge Management, pages 1243–1252.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Xubin Ren, Wei Wei, Lianghao Xia, Lixin Su, Suqi
Cheng, Junfeng Wang, Dawei Yin, and Chao Huang.
2023. Representation learning with large lan-
guage models for recommendation. arXiv preprint
arXiv:2310.15950.

Scott Sanner, Krisztian Balog, Filip Radlinski, Ben
Wedin, and Lucas Dixon. 2023. Large language mod-
els are competitive near cold-start recommenders for
language-and item-based preferences. In Proceed-
ings of the 17th ACM conference on recommender
systems, pages 890–896.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725.

Gilbert Strang. 2022. Introduction to linear algebra.
SIAM.

Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin,
Wenwu Ou, and Peng Jiang. 2019. Bert4rec: Se-
quential recommendation with bidirectional encoder
representations from transformer. In Proceedings of
the 28th ACM international conference on informa-
tion and knowledge management, pages 1441–1450.

Jiaxi Tang and Ke Wang. 2018. Personalized top-n se-
quential recommendation via convolutional sequence
embedding. In Proceedings of the eleventh ACM
international conference on web search and data
mining, pages 565–573.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(11).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

11706

Vijay Viswanathan, Luyu Gao, Tongshuang Wu, Pengfei
Liu, and Graham Neubig. 2023. Datafinder: Scien-
tific dataset recommendation from natural language
descriptions. In the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 10288–10303.

Chenyang Wang, Yuanqing Yu, Weizhi Ma, Min Zhang,
Chong Chen, Yiqun Liu, and Shaoping Ma. 2022.
Towards representation alignment and uniformity in
collaborative filtering. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pages 1816–1825.

Tianhao Wang, Sheng Wu, Fen Yi, Lidan Kuang, You
Wang, and Jin Zhang. 2024a. Hybrid prompt rec-
ommendation explanation generation combined with
graph encoder. Neural Processing Letters, 56(1):32.

Xinfeng Wang, Jin Cui, Yoshimi Suzuki, and Fu-
miyo Fukumoto. 2024b. Rdrec: Rationale distilla-
tion for llm-based recommendation. arXiv preprint
arXiv:2405.10587.

Xinfeng Wang, Fumiyo Fukumoto, Jin Cui, Yoshimi
Suzuki, Jiyi Li, and Dongjin Yu. 2023. Eedn:
Enhanced encoder-decoder network with local and
global context learning for poi recommendation. In
Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, pages 383–392.

Xinfeng Wang, Fumiyo Fukumoto, Jin Cui, Yoshimi
Suzuki, Jiyi Li, and Dongjin Yu. 2024c. Cadrec:
Contextualized and debiased recommender model.
In Proceedings of the 47th International ACM SI-
GIR Conference on Research and Development in
Information Retrieval, pages 405–415.

Xinfeng Wang, Fumiyo Fukumoto, Jin Cui, Yoshimi
Suzuki, and Dongjin Yu. 2024d. Nfarec: A negative
feedback-aware recommender model. In Proceed-
ings of the 47th International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, pages 935–945.

Xinyuan Wang, Liang Wu, Liangjie Hong, Hao Liu, and
Yanjie Fu. 2024e. Llm-enhanced user-item interac-
tions: Leveraging edge information for optimized
recommendations. arXiv preprint arXiv:2402.09617.

Yan Wang, Zhixuan Chu, Xin Ouyang, Simeng Wang,
Hongyan Hao, Yue Shen, Jinjie Gu, Siqiao Xue,
James Zhang, Qing Cui, et al. 2024f. Llmrg: Improv-
ing recommendations through large language model
reasoning graphs. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 38, pages
19189–19196.

Wei Wei, Xubin Ren, Jiabin Tang, Qinyong Wang, Lixin
Su, Suqi Cheng, Junfeng Wang, Dawei Yin, and Chao
Huang. 2024. Llmrec: Large language models with
graph augmentation for recommendation. In Pro-
ceedings of the 17th ACM International Conference
on Web Search and Data Mining, pages 806–815.

Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and
Junchi Yan. 2022. Nodeformer: A scalable graph
structure learning transformer for node classification.
Advances in Neural Information Processing Systems,
35:27387–27401.

Zhengyi Yang, Jiancan Wu, Yanchen Luo, Jizhi Zhang,
Yancheng Yuan, An Zhang, Xiang Wang, and Xiang-
nan He. 2023. Large language model can interpret la-
tent space of sequential recommender. arXiv preprint
arXiv:2310.20487.

Junliang Yu, Xin Xia, Tong Chen, Lizhen Cui, Nguyen
Quoc Viet Hung, and Hongzhi Yin. 2023. Xsimgcl:
Towards extremely simple graph contrastive learning
for recommendation. IEEE Transactions on Knowl-
edge and Data Engineering.

Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Lizhen
Cui, and Quoc Viet Hung Nguyen. 2022. Are graph
augmentations necessary? simple graph contrastive
learning for recommendation. In Proceedings of
the 45th international ACM SIGIR conference on
research and development in information retrieval,
pages 1294–1303.

Xiaohan Yu, Li Zhang, Xin Zhao, Yue Wang, and Zhon-
grui Ma. 2024. Ra-rec: An efficient id representation
alignment framework for llm-based recommendation.
arXiv preprint arXiv:2402.04527.

Zhenrui Yue, Sara Rabhi, Gabriel de Souza Pereira
Moreira, Dong Wang, and Even Oldridge. 2023.
Llamarec: Two-stage recommendation using large
language models for ranking. arXiv preprint
arXiv:2311.02089.

Tingting Zhang, Pengpeng Zhao, Yanchi Liu, Victor S
Sheng, Jiajie Xu, Deqing Wang, Guanfeng Liu, Xi-
aofang Zhou, et al. 2019. Feature-level deeper self-
attention network for sequential recommendation. In
IJCAI, pages 4320–4326.

Sen Zhao, Wei Wei, Ding Zou, and Xianling Mao. 2022.
Multi-view intent disentangle graph networks for bun-
dle recommendation. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36,
pages 4379–4387.

Kun Zhou, Hui Wang, Wayne Xin Zhao, Yutao Zhu,
Sirui Wang, Fuzheng Zhang, Zhongyuan Wang, and
Ji-Rong Wen. 2020. S3-rec: Self-supervised learning
for sequential recommendation with mutual informa-
tion maximization. In Proceedings of the 29th ACM
international conference on information & knowl-
edge management, pages 1893–1902.

11707

A Appendix

A.1 Experimental Details

This section provides further experimental details,
including implementation setup, visualization re-
sults, computational complexity analysis, running
time, and model optimization and inference.

A.1.1 Implementation Details
For a fair comparison, the hyperparameters of
ELMRec were set to the same as POD. Both the en-
coder and decoder consist of 6 layers with 8-headed
attention in each layer. The number of negative
items for direct recommendation is set to 99 for
both training and evaluation. We set the number of
prompt words to 3 for all tasks, and the batch size
for training all three tasks to 64. Consistent with
the LLM-based competitors P5 and POD, ELMRec
adopts T5-small (Raffel et al., 2020) as the LLM
for comparison.

For α, σ, N , and L, which are not included in
POD, we tuned them to attain the best performance.
The search range for α, σ, N , and L were 1 ∼ 10,
1 ∼ 10, {5, 10, 15} and {1, 2, 3, 4, 5}, respectively.
Table 9 displayed the result. Specifically, in the
direct recommendation task, α and σ were 5 and
5 for Sports, 9 and 6 for Beauty, and 9 and 5 for
Toys, while in the sequential recommendation task,
they were 11 and 5 for Sports, 6 and 6 for Beauty,
and 1 and 5 for Toys, respectively. N and L were
15 and 4 for Beauty, and 10 and 4 for others. The
embedding size of word tokens and whole-word
tokens was 512. We employed a learning rate of
0.01 for all datasets.

We iteratively and randomly sample a segment
from a user’s item sequence for training the sequen-
tial recommendation task. We exploit the discrete
prompt templates for different tasks from (Geng
et al., 2022). We utilized the AdamW optimizer
(Loshchilov and Hutter, 2017). We implemented
and evaluated our ELMRec using PyTorch on an
Nvidia GeForce RTX 4090 (24GB memories).

A.1.2 Baselines
To evaluate the performance of sequential and di-
rect recommendations, we compared our ELMRec
with the following fourteen baselines which are
divided into four groups:
- Traditional Approach
• GRU4Rec (Hidasi et al., 2015) regards the entire

item sequence of each user as the user’s session
and employs GRUs to recommend.

Dataset
DirRec SeqRec

α σ N L α σ N L

Sports 5 5 10 4 11 5 10 4
Beauty 9 6 15 4 6 6 15 4
Toys 9 5 10 4 1 5 10 4

Table 9: Best values of hyperparameter for the three
datasets. “DirRec” and “SeqRec” denote direct and
sequential recommendations, respectively.

• CASER (Tang and Wang, 2018) treats user in-
teractions as images and employs 2-dimensional
convolutions to capture sequential patterns.

• SASRec (Kang and McAuley, 2018) exploits
Markov Chains to excavate short-term semantics
in users’ sequential patterns.

• HGN (Ma et al., 2019) exploits a novel gating
strategy to model users’ long- and short-term
interests in candidate items.

• SimpleX (Chen et al., 2021) incorporates the
cosine contrastive loss into simple unified col-
laborative filtering to deliver recommendations.

- Transformer-based Approach
• BERT4Rec (Sun et al., 2019) proposes to lever-

age the BERT-style cloze task for the sequential
recommender algorithm.

• FDSA (Zhang et al., 2019) incorporates item
features with item sequences of users to perform
recommendations.

• S3-Rec (Zhou et al., 2020) learns users’ latent be-
havioral features via employing a self-supervised
learning paradigm.

- Graph Neural Network (GNN)-based Approach
• LightGCN (He et al., 2020) simplifies the de-

sign of GCN to make it more suitable for recom-
mendation purposes.

• NCL (Lin et al., 2022) regards users (or items)
and their structural neighbors as contrastive pairs
to augment the user and item embeddings.

• XSimGCL (Yu et al., 2023) creates contrastive
views by adding uniform noise to enhance the
robustness of user and item representations.

- Large Language Model (LLM)-based Approach
• P5 (Geng et al., 2022) converts three different

recommendation tasks into textual generation
tasks using LLMs for recommendations.

• RSL (Chu et al., 2023) adopts novel training
and inference strategies to deliver LLM-based
recommendations.

• POD (Li et al., 2023b) refines P5 through prompt
distillation to make efficient and precise recom-
mendations.

11708

Figure 8: Visualization of user and item whole-word embeddings at each round of random feature propagation. The
dots in the same color denote users who have interacted with the same items or the items that are interacted with by
the same user. Similar users and items are close to each other in the distribution.

A.1.3 Visualization Details
Fig. 8 shows the visualization result of user and
item whole-word embeddings at each round of
random feature propagation. We found that the
random feature propagation based on LightGCN
makes the embeddings of similar users and items
closer in the semantic space for all three datasets.
This explains why the whole-word embeddings can
enhance the self-attention mechanism and integrate
graph awareness into LLMs for recommendations.
We can also observe that both high- and low-order
collaborative signals can reveal which users and
items are similar. Also, high-order signals can bet-
ter disperse the embeddings of active nodes (e.g.,
user distributions in the Toys and Beauty datasets),
reinforce cohesion within clusters (e.g., item dis-
tribution in the Beauty dataset), and detect latent
high-order relations (e.g., some dots of the same
color begin to cluster in the high-order signals).

It is noteworthy that we only feed the whole-
word embeddings and their colors into the t-SNE
tool to generate visualizations. The t-SNE tool
maps high-dimensional data into two or three di-
mensions and keeps similar data points close.

A.1.4 Model Optimization and Inference
The input for the explanation task comprises solely
two IDs (i.e., user and item), whereas for direct and
sequential recommendation tasks, it could contain

a hundred or more IDs due to the negative samples
and the user’s historical item sequence. The diverse
input and output lengths across tasks hinder the ef-
ficiency of training the model with mixed samples
from various tasks (Geng et al., 2022). Therefore,
to avoid unnecessary padding and extra comput-
ing costs, we train our ELMRec model alternately,
using a batch of samples from one task and then
switching to another task.

During training, we shuffle the input-output pairs
of the three tasks and repeatedly select samples
from each task in a specific batch size. We save a
checkpoint if the total validation loss of the model
in all tasks is the lowest for the current epoch. If
this doesn’t occur 5 times, we terminate the training
process and load the best checkpoint for evaluation.
During inference, we employ a beam search algo-
rithm to generate results by selecting the candidate
sequences with the highest likelihood over the vo-
cabulary (Li et al., 2023b). We set the number of
beams at 20 for sequential and direct recommenda-
tions. For generation tasks, we apply group beam
search with the number of beams and beam groups
set to 21 and 3, respectively.

A.2 Reranking Approach

To capture sequential dependencies among items,
Geng et al. (2022) and Li et al. (2023b) use the last
item in each user’s interaction history for testing,

11709

Figure 9: Illustration of reranking approach. The gray
nodes such as i4 and i5 indicate the user’ interacted
items. The red arrows refer to the reranking processes.

and randomly select subsequences from users’ his-
tories to predict the last item in each subsequence
for training LLMs to make generative recommenda-
tions. However, this strategy often causes LLMs to
emphasize fragmentary early subsequences overly.
For example, in Fig. 9, given user u1’s interac-
tions (i1 −→ i2 −→ i3 −→ i4 −→ i5 −→ i6), the
LLM is likely to recommend items i4 and i5 be-
cause subsequences (i1 −→ i2 −→ i3 −→ i4) and
(i1 −→ i2 −→ i3 −→ i4 −→ i5) are included in the
training data.

To address this issue, we propose a straightfor-
ward, training-free reranking approach. As shown
in Fig. 9, for each prediction, we prompt the LLM
to provide N additional items with their ordered
probabilities (where N is a hyperparameter). We
then filter out items the user has already interacted
with and rerank the top (k+N) candidates for the
sequential recommendation.

A.3 Matrix Form of Random Feature
Propagation

We present the matrix form of random feature
propagation, which enables straightforward imple-
mentation. Specifically, we define the user–item
interaction matrix as R ∈ R|U|×|V|, where |U|
and |V| denote the number of users and items,
respectively. Each entry Ru,v is 1 if user u has
interacted with item v otherwise 0. We then ob-
tain the adjacency matrix of the user–item graph
A ∈ R(|U|+|V|)×(|U|+|V|) as follows:

A =

[
0 R

R⊤ 0

]
. (13)

Consider the initial user–item embedding ma-
trix to be the 0-th layer embedding matrix, E(0) ∈
R(|U|+|V|)×dn , where user and item embeddings
are randomly generated via the normal distribu-
tion. Subsequently, the matrix equivalent form of
information propagation is given by:

E(l+1) = (D−1/2AD−1/2)E(l), (14)

where D ∈ R(|U|+|V|)×(|U|+|V|) is a diagonal ma-
trix in which each entry dij denotes the number of
nonzero entries in the i-th row vector of matrix A.
The final graph-aware whole-embeddings matrix
Ω ∈ R(|U|+|V|)×dn is obtained by:

Ω =
1

L+ 1

L∑

l=0

ÃE(l), (15)

where Ã = D−1/2AD−1/2 is the symmetrically
normalized adjacency matrix.

A.4 Mitigation of Low Rank Issue

Since tokenizers separate large digital numbers into
subwords (Sennrich et al., 2016; Kudo and Richard-
son, 2018), only a small number of subwords in the
vocabulary are leveraged to represent all digital to-
kens. We argue that when considering all samples,
the whole-word embedding improves the ID rep-
resentation power in terms of the rank of attention
matrices for T5-base and T5-11B.
Theorem 1. Let dx be the number of digital sub-
words in vocabulary, and dp be the number of users
and items. Consider input ID embeddings X and
their whole-word embeddings P ∈ Rn×dn , where
n is the number of samples. Let WQ and WK ∈
Rdn×dh be weight matrices for queries and keys, re-
spectively, where (n > dp > dh = dn > dx)5. De-
fine Ax = XWQW

⊤
KX

⊤ and Ax+p = (X + P)
WQW

⊤
K(X + P)⊤ as attention matrices with

and without whole-word embeddings, respectively.
Then, for any WQ and WK , we have:

rank(Ax) = min{dx, dn} = dx,

rank(Ax+p) = min{dx + dn, dn} = dn > dx.
(16)

Let dx represent the number of digital subwords
within the vocabulary, and let dp denote the total
count of users and items. Consider the input ID
embeddings X ∈ Rn×dn and their corresponding

5In T5 models, dn = dh = 768 for T5-base and 1024 for
T5-11B, and dx = 529.

11710

whole-word embeddings P ∈ Rn×dn , where n
denotes the total number of samples.

Notably, X denotes pre-trained embeddings ex-
tracted from the vocabulary, while P is randomly
generated from a normal distribution. Due to their
distinct origins, the matrices X and P are lin-
early independent (Axler, 2015; Strang, 2022), i.e.,
X ∩ P = ∅. We thus have:

rank(X + P)

= rank(X) + rank(P)− rank(X ∩ P)
= min(dx, dn) +min(dp, dn)− 0

= dx + dn.

Define WQ ∈ Rdn×dh and WK ∈ Rdn×dh as
weight matrices for queries and keys, respectively,
where n > dp > dh = dn > dx. Define Ax =
XWQW

⊤
KX

⊤ and Ax+p = (X + P)WQW
⊤
K

(X + P)⊤ as the attention matrices with and with-
out whole-word embeddings, respectively. Since
the rank of the product of two matrices is upper
bounded by the minimum of their ranks, we derive:

rank(Ax)

= rank(XWQW
⊤
KX

⊤)

= min(rank(X), rank(WQ), rank(WK))

= min(dx, dn)

= dx.

rank(Ax+p)

= rank((X + P)WQW
⊤
K(X + P)⊤)

= min(rank(X + P), rank(WQ), rank(WK))

= min(dx + dn, dn)

= dn > dx.

The above deviation shows that, when consider-
ing all samples, whole-word embeddings increase
the lower bound of the rank of the attention matrix
from dx to dn. This can enhance the model’s ID
representation power in terms of the rank of the
attention matrix (Chen et al., 2021).

11711

