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Abstract

As one of the common rhetorical devices, puns
play a vital role in linguistic study, including
the comprehensive analysis of linguistic hu-
mor. Although large language models (LLMs)
have been widely explored on various tasks
of natural language understanding and gen-
eration, their ability to understand puns has
not been systematically studied, limiting the
utilization of LLMs in creative writing and
humor creation. In this paper, we leverage
three popular tasks, i.e., pun recognition, pun
explanation, and pun generation, to system-
atically evaluate LLMs’ capability of under-
standing puns. In addition to the evaluation
metrics adopted by prior research, we intro-
duce some new evaluation methods and metrics
that are better suited to the in-context learning
paradigm of LLMs. These new metrics offer a
more rigorous assessment of an LLM’s capabil-
ity to understand puns and align more closely
with human cognition. Our research findings
reveal the “lazy pun generation” pattern and
identify the primary challenges in understand-
ing puns with LLMs. The code is available at
https://github.com/Zhijun-Xu/PunEval.

1 Introduction

Pun, as a form of wordplay, cleverly exploits dou-
ble or multiple meanings of words (Miller et al.,
2017). For example, for a pun sentence, “A good
pun is its own reword”, it plays on the similar
sounds of “reword” and “reward”, suggesting that
the intrinsic value or reward of a good pun lies in
its clever use of language or its inventive rephras-
ing. In most cases, the use of puns can produce
humorous effects, as it creates a lexical-semantic
ambiguity (Kao et al., 2016) and a context-shift
surprise (He et al., 2019). Compared to other forms
of humor, such as jokes (Dynel, 2009) and come-
dies (Stott, 2014), puns are appropriate for linguis-
tic humor study as they have a more precise defini-
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Text: A good pun is its own reword.
Pun word: reword <express the same message in different words>
Alternative word: reward <a recompense for worthy acts or 
retribution for wrongdoing>

Pun Recognition

The given text is a pun.
Determine whether 
the Text is a pun？

The given text is a 
Non-pun.

Paradoxical Response!

Pun Explanation

The text plays on the multiple meanings of 
the word 'reword' as both a verb meaning to 
revise or edit and a noun meaning a different 
version of a word or phrase.

Missing Alternative Word!

Determine whether the 
Text is a Non-pun？

Explain the humor in this text.

Pun Generation

The author was asked to reword  
his submission for a greater reward.

Lazy Pattern!

Generate a pun sentence with 
given punchline.

Figure 1: Toy examples of achieving three represen-
tative tasks related to pun understanding with LLMs,
including pun recognition, explanation and generation.
We explore the primary difficulties (e.g., paradoxical
response, missing alternative word and lazy pattern) in
these tasks.

tion and a relatively fixed structure (Hempelmann,
2008; Attardo, 2018).

Previous research on pun exploration primar-
ily concentrated on developing specific language
models or complex frameworks to recognize (Zou
and Lu, 2019; Zhou et al., 2020), explain (Sun
et al., 2022a), or generate (Mittal et al., 2022; Tian
et al., 2022) puns. With the advancement of large
language models (LLMs), recent studies have ex-
plored using LLMs for detecting jokes (Gupta et al.,
2021; Baranov et al., 2023) and identifying hu-
mor in images (Hessel et al., 2023) and videos (Ko
et al., 2023). Exploring LLMs’ comprehension of
puns could further enhance their values on creative
text creation and humor generation. Unfortunately,
there are still no studies evaluating LLMs’ capa-
bility of understanding puns systematically. There-
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fore, in this paper, we aim to systematically evalu-
ate the capabilities of LLMs on pun understanding.
As illustrated in Figure 1, to provide comprehen-
sive assessments, we focus on three tasks from
previous work, i.e., pun recognition, pun explana-
tion, and pun generation. To adapt these tasks to
the in-context learning (ICL) paradigm of LLMs,
we develop some new methods and metrics to en-
sure rigorous evaluation. For pun recognition, we
create dual-biased prompts to gauge the confidence
level of LLMs’ responses. These prompts explic-
itly incorporate the terms "pun" or "non-pun" to
interfere with the model’s judgment. For pun expla-
nation, we employ both a fine-grained punchline
check and a coarse-grained pairwise comparison.
These methods help identify LLMs’ shortcomings
and assess the overall quality of LLMs’ explana-
tions. For pun generation, we introduce two novel
settings, i.e. free and constrained generation, which
demonstrate the LLMs’ ability to create puns un-
der varying conditions. Moreover, we introduce
an Overlap metric to measure the originality of the
puns generated by LLMs.

Our research has demonstrated that most LLMs
are easily influenced by prompt bias in recognizing
puns. They also struggle to explain puns which
are based on phonetic similarities. In addition, we
observe that LLMs often resort to a low-quality
and incorrect pattern in pun generation, separating
the double meanings instead of combining them.
We term this pattern as "lazy pun generation". De-
spite all these issues, some powerful LLMs still ex-
hibit impressive performance across the three tasks.
Specifically, LLMs are competitive with humans
in pun explanation and surpass the state-of-the-art
models in pun generation. The main contributions
of this paper are summarized as follows:

• To the best of our knowledge, our work is the
first to systematically evaluate LLMs’ capa-
bilities of pun understanding.

• We propose several novel evaluation methods
and metrics, including dual-biased prompted
asking, punchline check, and overlap indicator
for assessing the originality of pun generation.
Compared to previous work, our evaluation
methods and metrics better adapt to the ICL
paradigm of LLMs.

• Through extensive experiments with various
LLMs under different pun settings, we pro-
vide a detailed and in-depth analysis of the

results. Our findings highlight the primary
difficulties LLMs face in pun understanding
and offer insights that could benefit future re-
search in this area.

2 Related Work

Studies on Puns Puns, recognized as a signifi-
cant linguistic art form, have garnered attention in
AI research (Xiu et al., 2017; Doogan et al., 2017;
Yu et al., 2018),. Previous work mainly collects
various types of puns (Miller et al., 2017) from liter-
ature and the Internet and proposes diverse tasks to
evaluate the pun understanding capabilities of LMs.
These tasks can be divided into three categories:
1) pun recognition (Diao et al., 2018; Zou and Lu,
2019; Zhou et al., 2020), which involves the detec-
tion of puns and localization of pun words. 2) pun
explanation (Sun et al., 2022a), which clarifies why
the puns are funny by natural language explana-
tions. 3) pun generation, which mainly requests
small LMs to either rewrite retrieved sentences into
puns (He et al., 2019; Yu et al., 2020) or create puns
more flexibly using acquired context words (Mittal
et al., 2022; Tian et al., 2022; Sun et al., 2022b).
For evaluation metrics, some work analyses pun
from multiple quantifiable dimensions like ambi-
guity and distinctiveness (Kao et al., 2016), as well
as surprise and unusualness (He et al., 2019). How-
ever, these studies mostly focus on training small
models in pun tasks. Our research is the first to
systematically evaluate the capabilities of LLMs to
recognize, explain, and generate puns.

LLMs for Humors With vastly improved under-
standing and creativity, LLMs not only excel in
traditional humor tasks such as detection and rat-
ing (Gupta et al., 2021; Baranov et al., 2023; Choi
et al., 2023) but also demonstrate exciting poten-
tial in humor explanation and generation (Jentzsch
and Kersting, 2023; Zhong et al., 2023). Some
works aid LLMs in joke generation with humor
algorithms (Toplyn, 2023) or feedback-driven tech-
niques (Ravi et al., 2024), while others focus on
comprehending and explaining punchlines in im-
ages (Hessel et al., 2023) or videos (Ko et al., 2023).
Our work is the first to focus on pun understanding,
a vital part of the humor.

3 Preliminaries

In this paper, we focus on two primary types of
puns: homographic pun (hom-pun) and hetero-
graphic pun (het-pun) (Miller et al., 2017).
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• Hom-Pun: Hom-puns play on the dual mean-
ing of homographs (Attardo, 2009), referring to
the words that have different meanings but share
the same spelling. For example, the hom-pun
“Pick (Pick) your friends, but not to pieces” uti-
lizes the dual entendre of the word “pick”. The
first part “Pick your friends” suggests choosing
or selecting friends. However, combined with
the second part “but not to pieces”, it evokes the
phrase “pick someone to pieces”, meaning to crit-
icize or find fault with someone. This pun leads
to an unexpected twist and creates humor.

• Het-Pun: Het-puns leverage the double mean-
ing of paronyms or homophones (Attardo, 2009),
both of which are similar-sounding words but
with different meanings. Take the het-pun “Life is
a puzzle, look here for the missing peace (piece)”
as an example. The word “peace” typically refers
to tranquility or serenity in life. Meanwhile,
it can be easily recognized as the homophone
“piece”, as in a puzzle piece. This play on “peace”
and “piece” delivers a humorous dual entendre.

In the above two examples, the underlined parts
represent the pun-alternative word pair (He et al.,
2019), with the alternative word in (parentheses).
For hom-puns, the pun word wp and the alterna-
tive word wa are identical. For het-puns, these two
words have a similar pronunciation, but only the
former appears in the sentence. Both wp and wa

have their respective meanings: pun sense Sp and
alternative sense Sa, which are supported by the
clever use of contextual words Cw. In the first in-
stance, the Cw are “friend” and “to piece”, and in
the second example, are “life” and “puzzle”. Fol-
lowing the notation of Sun et al. (2022b), we refer
to wp, wa, Sp, and Sa together as the pun pair,
denoted as Pp =< wp, wa, Sp, Sa >.

4 Probing Protocol

In this section, we design an evaluation proto-
col consisting of three progressive tasks to assess
whether LLMs can understand puns well.

4.1 Task Formulation
Task 1: Pun Recognition This task requires the
LLM to determine the corresponding category C ∈
{pun, non-pun} for a given text T , as shown in the
following two examples.

Input Text: Pick your friends, but not to pieces.
Model Output: The given text is a pun.
Input Text: A man’s home is his castle.
Model Output: The given text is a non-pun.

Task 2: Pun Explanation This task asks the
LLM to provide a natural language explanation E
for a given pun text Tp, by explicitly clarifying
each element of the pun pair and the humor they
express. Here is an example:

Input Text: Life is a puzzle, look here for the
missing peace.
Model Output: The text uses the homophones
"piece" and "peace". "Piece" is expected in a
puzzle context, but "peace" is used, shifting the
meaning to tranquility. Thus it delivers a sense of
humor.

Task 3: Pun Generation This task requires the
LLM to generate a pun text Tp based on the in-
put. We explore two types of inputs in our settings.
Both types accept a pun pair Pp as the basic in-
put, but one can freely use context, while the other
must utilize the given contextual words Cw. In
the following two examples, senses Sp and Sa are
enclosed with “<>”:

Pun Pair Pp: peace <freedom from disputes>;
piece <separate part of a whole>

Model Output: When the pie was divided, every-
one had a peace.
Pun Pair Pp: peace <freedom from disputes>;

piece <separate part of a whole>
Contextual Words Cw: life, puzzle
Model Output: In the puzzle of life, finding
peace is difficult.

4.2 Task Implementation
We design specific prompts for LLMs to test their
inherent abilities on these three tasks.1

• For pun recognition, we focus on the model’s
accuracy and confidence in its response. There-
fore, we craft two slightly biased instructions
(one leaning towards pun and the other non-pun)
in the prompt. We also incorporate the definition
of puns and several examples into the prompt to
assess their impact.

• For pun explanation, we introduce the Chain-
of-Thought (CoT) technique (Wei et al., 2022)
in the recognition prompt, which requires the
LLM to provide the reason before making a de-
cision. The “reason” part is directly collected as
the corresponding explanation.

• For pun generation, we employ two prompts
with different requirements. In the free mode,
LLM can freely choose its context based on the
given Pp. In the restricted mode, LLM needs to
leverage the words from Cw as much as possible.
This enables us to evaluate the LLM’s capacity
to generate puns freely and under constraints.

1All prompts for three pun-related tasks are available at
Appendix B.
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Data Split
Examples Test Data

hom het non hom het non

Hom-Dataset 10 0 10 810 0 633
Het-Dataset 0 10 10 0 647 499

Table 1: Dataset statistics. We use "hom", "het", and
"non" to represent hom-puns, het-puns, and non-puns.

4.3 Dataset Construction

The dataset used in our evaluations integrates the
Semeval-2017-Task-7 dataset (Miller et al., 2017)
with the ExPun dataset (Sun et al., 2022a). The
former is a widely used open-source pun dataset,
while the latter augments the former with de-
tailed crowdsourced annotations. Since these two
datasets are not perfectly aligned and some data in
ExPun lack explanations for puns, we conduct a
review and filtered out some of the data. Through
this process, we ensure that each pun entry includes
the pun text, pun pair, human explanation, and key-
word set, whereas each non-pun entry contains only
non-pun text.2 The keyword set here serves as the
contextual words Cw for generating puns since it
usually provides a proper context without hinder-
ing the model’s generation. We divide the entire
dataset into two parts: the hom-dataset and the het-
dataset, and select a small number of samples as
the demonstration examples in prompts, as shown
in Table 1.

4.4 Model Selection

To assess the pun understanding level of LLMs
with varying parameter sizes and capabilities, we
selected eight well-known LLMs from two cate-
gories for our experiments. The first category in-
cludes open-source 7B models, such as Llama2-
7B-Chat (Touvron et al., 2023), Mistral-7B (Jiang
et al., 2023), Vicuna-7B (Zheng et al., 2024), and
OpenChat-7B (Wang et al., 2024). The second
category consists of closed-source models with
larger parameter scales, like Gemini-Pro (Google,
2023), GPT-3.5-Turbo (OpenAI, 2023a), Claude-
3-Opus (Anthropic, 2024) and GPT-4-Turbo (Ope-
nAI, 2023b). All of them are generative text models
endowing with in-context learning and instruction-
following abilities.

2We selected the longest explanation and the most exten-
sive set of keywords in ExPun, expecting them to be more
informative.

4.5 Evaluation Metrics
Metrics for Recognition We measure the accu-
racy and confidence of LLMs on pun recognition
through the following three indicators. 1) True
Positive Rate (TPR) (Yerushalmy, 1947) indicates
the ratio of puns correctly identified. 2) True Nega-
tive Rate (TNR) is the ratio of non-puns accurately
recognized. 3) Cohen’s Kappa (κ) (Cohen, 1960)
measures the agreement between two sets of biased
recognitions. Moreover, we compute the varia-
tions (∆) in TPR and TNR when the prompt leans
towards non-pun compared to pun, as they reflect
the model’s inconsistency intuitively.

Metrics for Explanation Considering the labor-
intensive and time-consuming nature of manually
evaluating pun explanation, we combine manual
assessment with automatic evaluation according
to the following two methods. 1) A small-scale,
fine-grained punchline check: We randomly se-
lect 100 hom-puns and 100 het-puns and employ
three annotators to assess the quality of their ex-
planations.3 For each sample, we ask annota-
tors to check whether elements of the pun pair
Pp =< wp, wa, Sp, Sa > are correctly mentioned
in the explanation. Their annotations demonstrate
a high level of agreement (with Fleiss’s κ = 0.87),
highlighting the reliability of this method. In cases
of disagreement, we adopt the majority view. Then,
we compute the average mentioned ratio (denoted
as Average Mention Ratio) of wp, wa, Sp, and
Sa as indicators. 2) A large-scale coarse-grained
pairwise comparison: We instruct GPT-4 (OpenAI,
2023c) to choose the winner between the human ex-
planation and the model explanation (allowing for
a tie), and then calculate the Win Rate, Tie Rate,
and Loss Rate of each LLM. This kind of approach
is widely used for evaluation (Li et al., 2024; Yuan
et al., 2024; Qin et al., 2024). It is worth noting that
GPT-4 achieves a high level of consistency with
our annotators, showing an accuracy of 88.3% on
the sampled data.

Metrics for Generation The metrics used for
pun generation in our study consist of two main
dimensions: 1) automatic indicators, which are pri-
marily based on word probability modeling, like
Ambiguity (A), Distinctiveness (D) (Kao et al.,
2016), and Surprise (S) (He et al., 2019).4 We

3More information about our annotators can be found in
Appendix A.

4The formula for calculating these metrics and the details
of their implementation are available at Appendix C.
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Model
Homographic Pun Heterographic Pun

TPR ∆TPR TNR ∆TNR κ TPR ∆TPR TNR ∆TNR κ

Basic Prompt (with only Instruction and Test Data)

Llama2-7B-Chat 0.993 -0.128 0.049 +0.294 0.148 0.985 -0.083 0.042 +0.323 0.173
Vicuna-7B 0.984 -0.299 0.028 +0.376 0.077 0.997 -0.195 0.024 +0.419 0.055
Mistral-7B 0.867 -0.533 0.208 +0.540 0.156 0.873 -0.442 0.202 +0.585 0.175
OpenChat-7B 0.948 -0.073 0.368 +0.120 0.722 0.930 -0.068 0.379 +0.120 0.742

Gemini-Pro 0.998 -0.048 0.166 +0.506 0.287 0.983 -0.133 0.192 +0.467 0.296
GPT-3.5-Turbo 0.990 -0.137 0.224 +0.510 0.291 0.977 -0.148 0.263 +0.467 0.342
Claude-3-Opus 0.989 -0.011 0.624 +0.109 0.867 0.969 -0.037 0.613 +0.096 0.839
GPT-4-Turbo 0.988 -0.003 0.630 +0.054 0.894 0.960 -0.020 0.621 +0.048 0.884

Enhanced Prompt (with Additional Pun Definition and 6 Examples)

Llama2-7B-Chat 0.738 +0.123 0.306 -0.071 0.309 0.770 +0.153 0.501 -0.313 0.208
Vicuna-7B 0.986 -0.001 0.112 +0.016 0.726 0.985 +0.000 0.283 +0.044 0.842
Mistral-7B 0.569 -0.181 0.798 +0.076 0.696 0.553 -0.158 0.894 +0.064 0.722
OpenChat-7B 0.890 -0.063 0.556 +0.107 0.816 0.873 -0.060 0.667 +0.048 0.881

Gemini-Pro 0.998 -0.058 0.460 +0.422 0.519 0.982 -0.097 0.499 +0.349 0.555
GPT-3.5-Turbo 0.974 -0.036 0.611 +0.137 0.811 0.935 -0.056 0.699 +0.106 0.814
Claude-3-Opus 0.982 -0.005 0.806 +0.041 0.953 0.991 -0.003 0.750 +0.070 0.929
GPT-4-Turbo 0.988 -0.001 0.758 +0.010 0.962 0.961 +0.008 0.796 -0.006 0.959

Table 2: Results of two biased pun recognition. Apart from TPR, TNR, and κ, we also compute the variations (∆)
in TPR and TNR when the prompt bias shifts from pun to non-pun. These variations are similarly marked based on
their absolute values. The best results (smallest variations) are bolded, and the second-best results are underlined.

also examine the inclusion rates of the pun and the
contextual word in the generation, denoted as One-
pun-word Incorporation Rate (1wp) and Contex-
tual Word Incorporation Rate (Sun et al., 2022b).
2) manual indicators, which include Success Rate
and Funniness Rating of human puns and LLM-
generated puns. We ask our annotators to identify
whether a pun text is successful and rate its funni-
ness on a scale from 1 to 5. These annotations are
performed on the same subset (100 hom-puns and
100 het-puns) of our dataset.

5 Results and Analysis

5.1 Can LLMs Distinguish Between Puns and
Non-puns?

We design two types of prompts for pun recogni-
tion: The first type is the basic prompt, which only
includes test data and biased instructions. The sec-
ond type is the enhanced prompt, which adds to the
basic prompt with the definition of puns and some
examples (3 puns and 3 non-puns).5

As shown in Table 2, we can find that: 1) Al-
most all tested LLMs are influenced by the bias in
the prompt, leading to results that tend to align
with this bias. Some models, such as Vicuna-

5To explore the respective roles of definition and examples,
we conduct ablation studies on the GPT series, with the results
presented in Appendix D.

TPR TNR Acc
0.00
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1.00 Llama2-7B-Chat

TPR TNR Acc
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0.25
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1.00 Mistral-7B

TPR TNR Acc
0.00

0.25

0.50

0.75

1.00 Gemini-Pro

TPR TNR Acc
0.00

0.25

0.50

0.75

1.00 GPT-4-Turbo

Answer Directly Answer with CoT

Figure 2: The performance of four selected LLMs in
recognizing puns via direct answers and CoT responses.
The Acc metric represents the overall accuracy.

7B, Mistral-7B, Gemini-Pro, and GPT-3.5-Turbo,
show significant fluctuations in their responses, in-
dicating their lack of confidence in their answers.
2) Adding a definition and examples as additional
information significantly improves the consistency
between LLMs’ two responses. It also enhances the
models’ accuracy in recognizing non-puns. 3) The
TNR metric is generally lower than the TPR. This
discrepancy arises because non-puns in our dataset
are mostly non-pun jokes and proverbs. They are
somewhat similar to puns. 4) There is no obvious
difference in recognizing hom-puns and het-puns.

11770



Model
Homographic Pun Heterographic Pun

wp wa Sp Sa wp wa Sp Sa

Llama2-7B-Chat 0.63 0.63 0.45 0.42 0.69 0.11 0.47 0.13
Vicuna-7B 0.71 0.71 0.64 0.59 0.85 0.21 0.81 0.29
Mistral-7B 0.78 0.78 0.73 0.68 0.69 0.22 0.68 0.22
OpenChat-7B 0.81 0.81 0.72 0.71 0.77 0.28 0.74 0.33

Gemini-Pro 0.92 0.92 0.87 0.81 0.89 0.42 0.83 0.42
GPT-3.5-Turbo 0.88 0.88 0.81 0.81 0.91 0.55 0.82 0.57
Claude-3-Opus 0.96 0.96 0.95 0.92 0.95 0.84 0.94 0.78
GPT-4-Turbo 0.98 0.98 0.96 0.93 0.96 0.90 0.93 0.85

Human 0.95 0.95 0.95 0.95 0.97 0.97 0.94 0.93

Table 3: Results of punchline check for pun explana-
tions. We represent the average mention ratio of the pun
pair elements in explanations with the corresponding
symbols. The top outcomes are bolded and the second
best are underlined.

This may reveal that LLMs capture the core fea-
ture (i.e., dual meanings) of puns and use it as
the main criterion for judgment. 5) GPT-4-Turbo
and Claude-3-Opus demonstrate exceptional per-
formance, exhibiting satisfactory pun recognition
capabilities.

CoT Prompting Although we primarily use CoT
to obtain explanations of puns from LLMs, it also
offers an opportunity to explore its impact on the
pun recognition task. We differentiate between two
response methods based on the enhanced prompt:
answering directly and answering with CoT, while
keeping the prompt’s bias towards pun. Then, we
select four models and chart their performance in
Figure 2. It is observable that, except for LLama2-
7B-Chat, the remaining three LLMs showed an
overall improvement in accuracy after using CoT.
Notably, Gemini-Pro and GPT-4-Turbo’s weak
spots in recognizing non-pun text are compensated
for through CoT response, showcasing a stronger
ability to distinguish between puns and non-puns.

5.2 Can LLMs Explain the Humor in Puns?

The humor in puns mainly stems from exploiting
double entendre. Thus, explaining the humor in
a pun is akin to identifying its dual meanings or,
more precisely, the corresponding pun pair.

We present the results of the punchline check
in Table 3. This evaluation shows that: 1) Most
LLMs accurately identify the pun words wp in both
hom-puns and het-puns, which is fundamental to
explaining puns. 2) Except for GPT-4-Turbo and
Claude-3-Opus, the remaining LLMs struggle to
identify alternative words wa and alternative sense

0% 20% 40% 60% 80% 100%

GPT-4-Turbo
Claude-3-Opus
GPT-3.5-Turbo

Gemini-Pro
OpenChat-7B

Mistral-7B
Vicuna-7B

Llama2-7B-Chat

Homographic Pun

0% 20% 40% 60% 80% 100%
Percentage (%)

GPT-4-Turbo
Claude-3-Opus
GPT-3.5-Turbo

Gemini-Pro
OpenChat-7B

Mistral-7B
Vicuna-7B

Llama2-7B-Chat

Heterographic Pun

Win Tie Lose

Figure 3: Results of pairwise comparison for pun expla-
nations.

Sa in het-puns. This challenge arises because wa

in het-puns does not directly appear in the text
but relies on evocation through context and similar
pronunciation to wp.

Unlike the detail-oriented punchline check, pair-
wise comparison focuses on the overall quality of
explanations. Its results, illustrated in Figure 3, in-
dicate that: 1) LLMs generally perform worse at
explaining het-puns than hom-puns, aligning with
the findings in the punchline check. Based on the
results of pun recognition, we infer that alterna-
tive words do not affect pun recognition but are
crucial for correctly explaining puns. 2) The expla-
nations by GPT-4-Turbo and Claude-3-Opus often
approach or even surpass those by humans. We find
that LLMs consistently use a general-to-specific
structure in their explanations, whereas human ex-
planations tend to be more casual.6 This aspect
gives the two models an edge in comparison.

Error Types in Explanation LLMs tend to make
various mistakes when explaining puns, and we
categorize the primary errors as follows: 1) Mis-
classify pun as non-pun, which means the model
fails to detect the double meaning. 2) Incorrect
pun word identification, which means the model
fails to find the correct wp. 3) Incorrect alterna-
tive word identification, a mistake only made in the
explanation of het-puns, which means the model
fails to evoke the correct wa. 4) Misinterpret het-

6The structure of the pun explanation is further discussed
in Appendix E.1.
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Model
Homographic Pun Heterographic Pun

A D S 1wp Success Funny A D S 1wp Success Funny

Generated non-pun 0.195 0.037 -0.640 0.983 0.010 1.042 0.113 0.071 -0.734 0.978 0.010 1.014

Pun Generation with only Pun Pair

Llama2-7B-Chat 0.206 0.033 -0.130 0.425 0.060 1.071 0.168 0.155 -0.029 0.145 0.040 1.042
Vicuna-7B 0.223 0.062 -0.249 0.690 0.120 1.216 0.211 0.088 -0.272 0.377 0.050 1.128
Mistral-7B 0.193 0.072 -0.239 0.583 0.170 1.321 0.211 0.151 -0.156 0.343 0.130 1.336
OpenChat-7B 0.208 0.058 -0.168 0.549 0.200 1.261 0.207 0.136 -0.261 0.271 0.080 1.128

Gemini-Pro 0.222 0.038 -0.203 0.680 0.320 1.699 0.241 0.072 -0.076 0.383 0.150 1.336
GPT-3.5-Turbo 0.220 0.064 -0.233 0.714 0.420 1.367 0.223 0.073 0.072 0.521 0.290 1.306
Claude-3-Opus 0.211 0.073 -0.150 0.893 0.540 2.050 0.200 0.208 0.096 0.915 0.470 1.931
GPT-4-Turbo 0.225 0.047 -0.027 0.890 0.600 2.016 0.221 0.098 0.121 0.847 0.510 1.948

Pun Generation with Pun Pair and Relevant Contextual Words

Llama2-7B-Chat 0.205 0.107 -0.093 0.605 0.340 1.602 0.180 0.235 -0.066 0.352 0.220 1.413
Vicuna-7B 0.199 0.077 -0.181 0.782 0.300 1.650 0.182 0.238 0.015 0.453 0.210 1.459
Mistral-7B 0.186 0.115 -0.201 0.616 0.280 1.618 0.176 0.213 0.108 0.373 0.220 1.506
OpenChat-7B 0.196 0.091 -0.133 0.636 0.370 1.715 0.166 0.235 0.013 0.352 0.240 1.522

Gemini-Pro 0.221 0.079 -0.200 0.689 0.440 1.880 0.198 0.149 0.142 0.581 0.330 1.731
GPT-3.5-Turbo 0.217 0.079 -0.076 0.856 0.550 2.137 0.216 0.163 0.205 0.543 0.320 1.699
Claude-3-Opus 0.237 0.081 -0.131 0.907 0.650 2.438 0.206 0.185 0.275 0.849 0.610 2.348
GPT-4-Turbo 0.217 0.082 -0.217 0.880 0.670 2.584 0.199 0.168 0.285 0.794 0.600 2.348

Human pun 0.225 0.129 -0.069 0.990 0.860 3.268 0.185 0.256 0.323 0.985 0.840 3.229

Table 4: Results of pun generation. We abbreviate the metrics Ambiguity, Distinctiveness, Surprise, and One-pun-
word Incorporation Rate as "A", "D", "S" and "1wp", respectively. For each generation method, the best results
appear in bold and the second best are underlined.

pun as hom-pun, which means the model wrongly
classifies the pun’s genre. 5) Lack of meaning anal-
ysis, which means the model points out wp and wa

but skips explaining the dual meanings. 6) Fab-
ricating non-existent meanings, which means the
model invents meanings for wp or wa that do not
exist. We provide a case for each type of error in
Appendix E.2 to help readers understand them. We
believe addressing these errors is key to enabling
LLMs to generate better explanations of puns.

5.3 Are LLMs Capable of Generating Puns?

To answer this question, we first ask GPT-3.5-
Turbo to generate non-puns containing the same
pun words wp as human puns, to serve as a baseline.
Then, we request all tested LLMs to generate puns
under two different inputs mentioned in § 4.1.

From Figure 4, we can see that with the excep-
tion of LLama2-7B-Chat, all other LLMs can eas-
ily accomplish the task of constrained generation.
They are notably efficient at incorporating nearly
all contextual words Cw in the generated sentences.
Other metrics are presented in Table 4. Our anal-
ysis reveals that: 1) All LLMs demonstrate a no-
ticeably weaker ability to generate het-puns than
hom-puns, indicating that het-pun generation is a
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Figure 4: Contextual word incorporation rate of differ-
ent LLMs in constrained pun generation.

more challenging task. 2) Since all Cw are derived
from human puns, we believe LLMs can grasp the
intrinsic relationship between these words and the
given pun pair, thereby improving the quality and
success rate of the generated puns. This suggests
that providing good context helps in pun genera-
tion. 3) Most LLMs, especially the 7B models,
tend to include multiple wp when generating puns.
This phenomenon is rarely seen in human puns,
which usually leads to the failure of pun genera-
tion. 4) GPT-4-Turbo and Claude-3-Opus achieve
impressive success in generating puns and rival the
traditional SOTA methods, which has a success rate
of 56% for hom-puns and 47% for het-puns (Tian
et al., 2022). However, the puns they generate are
still not as funny as those created by humans.
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Lazy Pun Generation Samples

/* Pun Pair */
dock <deprive someone of benefits, as a penalty>
dock: <come into dock>
/* Human Pun */
When longshoremen show up late for work they get docked.
/* LLM Generation */
The sailor’s pay was docked after he struggled to dock on
time.

/* Pun Pair */
two <the cardinal number that is the sum of one and one>
too <to a degree exceeding normal or proper limits>
/* Human Pun */
My friend gave me a book about puns for my birthday and I
loved it. It was two meaningful.
/* LLM Generation */
I tried to make puns about numbers, but two were too much
to handle.

Table 5: Examples of LLMs’ lazy pun generation pat-
tern. We underline the wp and wa in human puns and
LLM-generated puns.

“Lazy Pun Generation” Pattern No matter how
much the prompt emphasizes that only one wp

should be used, most LLMs frequently generate
text containing two or even more wp (and wa for
het-puns), as shown in Table 5. We refer to this
stubborn pattern as lazy pun generation, and clas-
sify pun sentences produced in this pattern as un-
successful. We attribute this pattern to two main
reasons. Firstly, including multiple wp allows for
expressing double meanings at different parts of the
sentence, making the construction relatively sim-
ple. Secondly, the current definitions of puns do
not explicitly limit the number of wp and wa used.
Avoiding wa in het-puns and adopting a single wp

is an unwritten rule that most human-crafted puns
follow, but LLMs often ignore. Since adding cor-
responding restrictions in the prompt can slightly
alleviate this issue, we believe it would be more
helpful for the LLM to learn this explicitly through
definitions or cases during training.

Copying or Originality? LLMs are trained on
vast amounts of text. It’s essential to ascertain
whether they merely reproduce existing puns or
genuinely create new ones. To assess this, we de-
veloped an Overlap metric to measure the similar-
ity between puns created by models and those by
humans. The metric’s computation involves three
steps. First, we identify the lemma word sets in
puns generated by LLMs and humans, labeled as
PunLLM and Punhuman. Next, we eliminate the
words wp, wa, and Cw provided in the prompt, re-

Llama2
Vicuna

Mistra
l

OpenChat
Gemini

GPT3.5
Claude3

GPT4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Av
g 

O
ve

rl
ap

0.0

0.2

0.4

0.6

0.8

1.0

S
uc

ce
ss

 R
at

e

Overlap of Given Pp

Overlap of Given Pp and Cw

Success of Given Pp

Strict Success of Given Pp

Success of Given Pp and Cw

Strict Success of Given Pp and Cw

Figure 5: Average overlap, success, and strict success
of two methods for generating puns.

sulting in refined sets ˜PunLLM and ˜Punhuman.
Finally, we compute the overlap ratio as the size of
the intersection over the size of the union of these
sets, as in the formula:

Overlap =
| ˜PunLLM ∩ ˜Punhuman|
| ˜PunLLM ∪ ˜Punhuman|

We establish a coarse criteria for originality as an
overlap < 0.5, thereby defining the “Strict Success”
of pun generation, which combines success with
originality. Figure 5 shows that: 1) When given
only pun pair Pp, LLMs rarely copy human puns,
relying probably on self-creation. 2) When given
additional Cw, the likelihood of LLMs reproduc-
ing human puns increases slightly, leading to a
decrease in strict success. We also find that the
larger the LLM, the more prone it is to do this, sug-
gesting that their stronger memory of the corpus
adversely affects the generation of creative puns.

6 Conclusion

In this paper, we examine the ability of large lan-
guage models (LLMs) to understand puns. We em-
ploy three tasks: pun recognition, pun explanation,
and pun generation, and develop various metrics
to systematically assess the capabilities of LLMs
in these areas. Experiments indicate that although
LLMs perform satisfactorily in recognizing and ex-
plaining puns, there is still room for improvement
in their ability to generate creative and humorous
puns. We also suggest that het-pun explanation and
generation are more difficult than those of hom-
pun. We believe our evaluation methods and find-
ings will contribute to advancing research on pun
understanding.
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Limitations

Although we utilize the most widely used pun
dataset currently available to evaluate the pun-
understanding ability of LLMs, our pun texts are
all in English. The ability of LLMs to understand
puns can vary across different languages, and puns
in languages other than English may have different
definitions, structures, or purposes. Such a limi-
tation highlights the potential for future work to
generalize to puns in other languages.

In addition, given that LLMs have massive train-
ing data, most of which are not publicly available,
it is possible that LLMs just copy puns that are not
present in our dataset. Thus, our Overlap metric is
not a precise measurement but only roughly indi-
cates the extent of LLMs’ plagiarism when generat-
ing puns. Since exploring originality is intriguing,
we eagerly hope for future work to develop more
accurate indicators.

Another limitation of our work stems from po-
tential biases in the evaluation process. Evaluat-
ing the quality of a pun explanation and the suc-
cess of a generated pun involves human annotator
judgments. Preferences vary among individuals:
some may prefer detailed explanations, while oth-
ers might seek clarity and brevity. Moreover, a pun
that amuses one person may offend another. Future
studies can consider designing more appropriate
evaluation metrics.

Ethics Statement

We acknowledge that all authors are informed
about and adhere to the ACL Code of Ethics and
the Code of Conduct.

Use of Human Annotations Our institution re-
cruited annotators to implement the annotations
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ing the data quality of pun explanation and gener-
ation is based on common sense, which can vary
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use ChatGPT to correct grammatical errors in this
paper.
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A Crowd-sourcing

We have recruited a team of three undergraduates
who majored in English. They are very familiar
with puns and are specifically trained for our evalu-
ation work. We pay each of them $9/h, exceeding
the local minimum wage. The screenshots of the
instructions and annotation interface are shown in
Figure 6, 7, 8.

B Details of Prompts

B.1 Prompt for Pun Recognition and
Explanation

When recognizing different types of puns, we will
provide accordingly 6 examples. The explanations
used in experiments are collected from enhanced
prompts for best performance. We set the tempera-
ture parameter to 0 to minimize the impact of the
model’s inherent randomness on recognition and
explanation tasks.

Pun Recognition and Explanation

/* Definition */
Puns are a form of wordplay exploiting different meanings
of a word or similar-sounding words, while non-puns are
jokes or statements that don’t rely on such linguistic ambi-
guities.

/* Instruction */
Determine whether the given Text is a pun/non-pun. Give
your reasons first, then make your final decision clearly.
You should either say "The given text is a pun" or say "The
given text is a non-pun". You must output the current status
in a parsable JSON format. An example output looks like
{"Reason": "XXX", "Choice": "The given text is a XXX"}

/* 6 Examples */
Text: Driving on so many turnpikes was taking its toll.
Output:{"Reason": "The text is using the word ’toll’ in a do-
uble entendre. It refers both to the physical tolls paid on tu-
rnpikes and to ’taking its toll’ as in having a negative effect
or cost.", "Choice": "The Given test is a pun."}
Text: Nothing ventured, nothing gained.
Output:{"Reason": "The given text is a proverb that expres-
ses a general truth or piece of advice and does not exploit
different meanings of a word or similar-sounding words.,
"Choice": "The given text is a non-pun."}
......

/* Test Data /
Text: I wanted to have dinner at a native American-themed
restaurant, but I didn’t have reservations.
Output:

Table 6: Prompt for pun recognition and explanation.
Red Text denotes the Chain of Thought (CoT) module.
We will select a single bias indicated by bold text at a
time.

B.2 Prompt for Pun Generation

In pun generation tasks, we will provide 3 exam-
ples in the prompt and test the effect of contextual
words on the final generation’s quality. Here, the
temperature parameter is set to 0.7, which strikes a
balance between stimulating the model’s creativity
and preventing it from going off the rails.

Pun Generation

/* Definition */
Puns are a form of wordplay exploiting different meanings of
a word or similar-sounding words, while non-puns are jokes
or statements that don’t rely on such linguistic ambiguities.

/* Instruction */
Below is a keyword, two of its meanings and a set of contex-
tual words. Please generate a pun sentence with a punchline
on the keyword that conveys both given meanings simulta-
neously and using all the contextual words. Except for the
keyword, the pun sentence must not utilize any words from
either of the two meanings. Besides, once a keyword is used,
it’s strictly prohibited to use it again in the latter half of the
sentence. You must output the current status in a parsable
JSON format. An example output looks like: {"Sentence":
"XXX"}

/* 3 Examples */
Keyword: toll
Meaning 1: toll <a fee levied for the use of roads or bridges
(used for maintenance)>
Meaning 2: toll <value measured by what must be given or
done or undergone to obtain something>
Contextual Words: Driving, many, turnpikes, taking its toll
Output:
{"Sentence": "{"Driving on so many turnpikes was taking
its toll."}"}
......

/* Test Data */
Keyword: bore
Meaning 1: <Make a hole, especially with a pointed power
or hand tool>
Meaning 2: <A carpenter sat on his drill and was bored to
tears.>
Contextual Words: carpenter, sat, drill, bored to tears
Output:

Table 7: Prompt for pun generation. Red texts denotes
the addition of contextual words.

B.3 Prompt for Non-pun Generation

We use GPT3.5-Turbo to generate non-puns as
lower-bound references for the evaluation metric.
This task is relatively simple so we don’t provide
examples. The prompt is presented in Table 8.

B.4 Prompt for Pairwise Comparison

During the preliminary experiments of pairwise
comparison, we provide GPT-4 with three exam-
ples for reference. However, we later noticed that
the model’s performance is similar with both 0-shot
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and 3-shot settings. Considering that not providing
examples could significantly save on token usage,
we ultimately opt for the 0-shot approach. The
prompt is placed in Table 9.

Non-pun Generation

/* Definition */
Puns are a form of wordplay exploiting different meanings of
a word or similar-sounding words, while non-puns are jokes
or statements that don’t rely on such linguistic ambiguities.

/* Instruction */
Below is a keyword and one of its meanings. Please generate
a non-pun sentence with the keyword that conveys the given
meaning. You must output the current status in a parsable
JSON format. An example output looks like: {"Sentence":
"XXX"}

/* Test Data */
Keyword: thick
Meaning: <having a short and solid form or stature>
Output:

Table 8: Prompt for non-pun generation.

Pairwise Comparison

/* Definition */
Puns are a form of wordplay exploiting different meanings
of a word or similar-sounding words.

/* Instruction */
Below is a pun text, gold meanings of pun, and two corre-
sponding explanations. Please carefully judge which expla-
nation is of better quality. A good explanation should point
out the correct pun word and analyze the multiple meanings
of the pun or similar-sounding words in detail appropriately
while avoiding unnecessary or incorrect interpretations. You
must choose from one of the three answers: "Explanation
1 is much better", "Explanation 2 is much better", "I’m not
sure which would be better.". You must output the current
status in a parsable JSON format. An example output looks
like: {"Choice": "XXX"}

/* Text Data */
Pun Text: Have another soft drink, Tom coaxed.
Gold Meanings of Pun:
1. coax < influence or urge by gentle urging, caressing, or
flattering >
2. coke < Coca Cola is a trademarked cola >
Explanation 1: This is a pun on how "coaxed" sounds like
"Coke" which is a brand of soft drink.
Explanation 2: The text plays on the double meaning of the
word ’coaxed’. "Coaxed" can mean persuading someone to
do something, but it can also refer to mixing or stirring a
drink. This creates a humorous double meaning.
Output:

Table 9: Prompt for pairwise comparison.

B.5 Prompt for Finding Synonyms
For assessing ambiguity, distinctiveness, surprise,
and unusualness, synonyms play a crucial role in
the calculations, as detailed in Appendix C.2. So

we design a prompt to find synonyms for both the
pun words and alternative words in hom-puns. We
use GPT-4 to complete this work.

Finding Synonyms

/* Instruction */
Below is a pun text, one keyword, and its two meanings.
The keyword is the pun in the text, which can be interpreted
in two meanings. Please find two different synonyms for
the keyword, each corresponding to one of the meanings.
The synonyms should be able to replace the keyword in the
text seamlessly to remove ambiguity, while ideally being a
simple word. You must output the current status in a parsable
JSON format. An example output looks like: {’Synonym
1 for Meaning 1’: ’XXX’, ’Synonym 2 for Meaning 2’:
’XXX’}

/* 6 Examples */
Text: Driving on so many turnpikes was taking its toll.
Keyword: toll
Meaning 1: < a fee levied for the use of roads or bridges
(used for maintenance) >
Meaning 2: < value measured by what must be given or
done or undergone to obtain something >
Output:
{"Synonym 1 for Meaning 1": "fee", "Synonym 2 for Mean-
ing 2": "impact"}
......

/* Test Data */
Text: A boy told his parents he wanted to raise goats for a
living, but he was only kidding.
Keyword: kid
Meaning 1: < tell false information to for fun >
Meaning 2: < young goat >
Output:

Table 10: Prompt for finding synonyms.

C Details of A, D, S, and U Metrics

C.1 Formulas
Ambiguity & Distinctiveness (Kao et al., 2016)
Ambiguity measures the extent to which the sen-
tence supports both pun sense and alternative sense.
It’s quantified by the entropy of P (m|w), where
m is either the pun word wp or the alternative word
wa.

P (m|w) =
∑

f

(
P (m)P (f)

∏

i

P (wi|m, fi)

)

Distinctiveness is indicative of how distinctive
the meanings m1 (wp) and m2 (wa) are, based on
the supporting subsets of words in the sentence and
it’s calculated by KL divergence.

DKL(F1||F2) +DKL(F2||F1)

Variables:
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• m: Pun word or alternative word.

• w: Context.

• f : Indicate whether a certain word is related
to the topic.

• F1, F2: Distributions of focus sets given sen-
tence topics m1 and m2, respectively.

• DKL: Symmetrized Kullback-Leibler diver-
gence score representing the distinctiveness
between F1 and F2.

Surprise & Unusualness (He et al., 2019) Sur-
prise in puns arises from the unexpected presence
of the pun word over an anticipated one within
a sentence, generating humor. It’s quantified by
Sratio.

S(c) = − log

(
p(wp|c)
p(wa|c)

)

Slocal = S(xp−d:p−1, xp+1:p+d),

Sglobal = S(x1:p−1, xp+1:n),

Sratio =

{
−1, if Slocal < 0 or Sglobal < 0,
Slocal
Sglobal

, otherwise.

Unusualness attends to the pun’s anomalous na-
ture, and it’s quantified by:

Unusualness def
= − 1

n
log

(
p(x1, . . . , xn)∏n

i=1 p(xi)

)

Variables are as follows:

• wp: Pun word.

• wa: Expected alternative word.

• c: Context.

• Slocal: Local surprisal.

• Sglobal: Global surprisal.

C.2 Implementation

Similar to previous papers, we apply a SkipGram
model (Mikolov et al., 2013) to evaluate Ambiguity
and Distinctiveness, and use an LM pre-trained on
WikiText (Merity et al., 2016) to evaluate Surprise.
Given that these models had limited vocabular-
ies, we only calculate metrics for generations with
words within the model’s lexicon. Additionally, we

Prompt Type TPR ∆TPR TNR ∆TNR κ

GPT-3.5-Turbo
Basic 0.990 -0.137 0.224 +0.510 0.291
Basic+D 0.974 -0.137 0.488 +0.360 0.511
Basic+E 0.984 -0.012 0.469 +0.134 0.817
Basic+D+E 0.974 -0.036 0.611 +0.137 0.811

GPT-4-Turbo
Basic 0.988 -0.003 0.630 +0.054 0.894
Basic+D 0.972 +0.004 0.840 -0.003 0.949
Basic+E 0.986 -0.001 0.698 +0.003 0.952
Basic+D+E 0.988 -0.001 0.758 +0.010 0.962

Table 11: Results of ablation study for prompt modules
in homographic pun recognition. We use "D" and "E"
to represent Definition and Example separately. The
best results (smallest variations) are bolded, and the
second-best results are underlined.

exclude the top 2% of extreme values in S calcu-
lations to prevent distortion of results due to near-
zero denominators.

These metrics based on word probability mod-
eling require the pun words and alternative words
to differ, which is not a problem for het-puns but
poses a challenge for hom-puns. To address this
issue, we adopt the idea of Tian et al. (2022). This
involves finding synonyms for both wp and wa ac-
cording to the double meanings in hom-puns and
then using these synonyms as substitutes for calcu-
lating the metrics. The prompt for synonym gener-
ation can be referenced in Table 10.

D Ablation Study for Prompt Modules in
Pun Recognition

In addition to the basic and enhanced prompts,
we also design two semi-enhanced prompts: ba-
sic+definition and basic+examples. We conduct
experiments on GPT-3.5-Turbo and GPT-4-Turbo
to verify the effect of different prompt modules on
pun recognition. Since the results for hom-pun and
het-pun are similar, we only include the hom-pun
results in Table 11. From this table, we can learn
that both pun definition and ICL examples aid in
recognizing puns. However, for GPT-4-Turbo, pro-
viding only the pun definition improves TNP more
effectively than giving both. It seems that GPT-
4-Turbo, as a top-tier LLM, can sufficiently learn
and distinguish between puns and non-puns from
definitions alone, while additional examples may
interfere with its judgment.

11779



E Case Study of LLM-Generated
Explanations

E.1 Text Structure

When interpreting puns, LLMs typically start by
identifying the wp and wa and then analyze the dual
meanings in the surrounding context. This clear
main-and-subordinate structure is not very com-
mon in human explanations, which makes them
less intuitive than those by models, as shown in
Table 12.

Pun Explanation Samples

/* Pun Text */
Actors are cast through their good and bad stages.

/* Human Explanation */
This sentence is a pun. It’s saying that actors are cast
through good and bad acting. The word used is stages
instead of acting. A stage is a raised platform that actors
act on.

/* LLM Explanation */
The text plays on the double meaning of the word ’stages’.
It refers to both the phases of an actor’s career (good and
bad times) and the physical stages (platforms) in theaters
where actors perform.

/* Pun Text */
Is that a pure rump roast? Nothing butt.

/* Human Explanation */
This is a joke on the fact that rump roasts come from the
butt of the animal, and the speaker answering the question
here is confirming that the product is nothing but pure rump
roast roast.

/* LLM Explanation */
The text plays on the homophones ’butt’ and ’but’, using
’butt’ in the context of a rump roast (which refers to the
rear or buttocks of the animal) and ’but’ as a conjunction
typically used to introduce a phrase or clause contrasting
with what has already been mentioned. This creates a
humorous double meaning.

Table 12: Comparison between human pun explanations
and LLM-generated pun explanations. We underline the
segments that explicitly point out the wp and wa.

E.2 Error Types

In our analysis, we’ve identified recurring error
patterns in the output of LLMs and will examine
these trends in the forthcoming case studies. All
results below are acquired from GPT-3.5’s result,
which we find struck a balance between generation
quality and noticeability of erroneous patterns.

Misclassify Pun as Non-pun For certain com-
mon puns, LLM tends to classify them as proverbs
instead of puns. This shows LLM’s comprehension
of puns is superimposed by its understanding of

certain common expressions. An example can be
found in Table 13.

Misclassify Pun as Non-pun

/* Pun Text */
He who lends to the poor gets interest from god.

/* Right explanation of Human */
This is a pun about earning interest, as in interest rates on
money and fascination, from god. Helping a poor person is
considered a good gesture in the eyes of religion.

/* Wrong Explanation of LLM */
The text is a proverb conveying a moral lesson and does not
exploit different meanings of a word or similar-sounding
words for humorous effect.

Table 13: LLM misclassifies pun as non-pun in explana-
tion.

Incorrect Pun Word Identification For certain
het-puns, LLM can’t correctly identify the pun
word because the relationship between the pun
word and alternative words is a bit far. Like in this
example (Table 14), we need to associate "slow"
with "sloe" using phonetic similarity and then asso-
ciate "sloe" with "blackthorn" by semantic similar-
ity. These types of puns are challenging for current
LLMs.

Incorrect Pun Word Identification

/* Pun Text */
’This looks like the fruit of the blackthorn’, said Tom
slowly.

/* Right explanation of Human */
This is a play on words. The word "slowly" means at a slow
speed but a "sloe" is the fruit of a blackthorn..

/* Wrong Explanation of LLM */
The text plays on the double meaning of ’blackthorn’,
which refers to both the fruit of the blackthorn plant and
the color black. This creates a humorous double meaning.

Table 14: LLM incorrectly pinpoints pun word in expla-
nation.

Incorrect Alternative Word Identification In
some het puns, LLM’s explanation shows a strange
pattern: it can’t identify the correct alternative
word, but it can give out the right alternative mean-
ing. Like in this example (Table 15), it doesn’t
pinpoint the pun word: "canvass" but the explana-
tion includes its meaning: "the act of going door-
to-door to promote a product or service". For these
cases, we think LLM truly understands both mean-
ings of the sentence. However, its inability to wield
phonetic similarity leads the failure in alternative
word identification.
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Incorrect Alternative Word Identification

/* Pun Text */
In his latest promotional campaign, the manager of City
Tent and Awning told his crew to canvas the entire area.

/* Right explanation of Human */
"Canvas" can both mean a noun that refers to a type of
rough, durable cloth or fabric commonly used in tents and
outdoor coverings such as awnings, and a verb that means
searching or covering a given area, usually in the context
of personal outreach for a given goal or mission. The play
on words here is that the manager of a business selling
tents and awnings, commonly made of canvas, is telling his
employees to help promote the business by *canvassing*
the area to that end.

/* Wrong Explanation of LLM */
The text plays on the double meaning of ’canvas’. In the
context of a promotional campaign, ’canvas’ refers to the
act of going door-to-door to promote a product or service.
However, ’canvas’ is also a material used for making tents
and awnings, which relates to the manager’s business. This
creates a humorous double meaning.

Table 15: LLM incorrectly pinpoints alternative word
in explanation.

Misinterpret Het as Hom A frequently appear-
ing pattern in het-puns explanations. These expla-
nations include expressions such as: "use the sim-
ilar sounding of", and "plays on the homophones
of". Demonstrating that LLM doesn’t have a firm
grasp of the definition of het-pun and hom-pun. An
example is presented in Table 16.

Misinterpret Het as Hom

/* Pun Text */
"I’ve been listening to the Brandenburg Concertos", Tom
barked

/* Right explanation of Human */
’Bark’ sounds like Bach, who is the composer of Branden-
burg Concertos. Using ’bark’ creates a humorous effect

/* Wrong Explanation of LLM */
The text plays on the homophones ’barked’ and ’barked’,
using ’barked’ in the context of a dog making a sound
and ’barked’ as in speaking loudly and aggressively. This
creates a humorous double meaning.

Table 16: LLM misinterprets het-pun as hom-pun in
explanation.

Lack of Meaning Analysis For certain common
puns, especially het puns, LLM will only pinpoint
the pun word and alternative words without an ex-
planation of their respective meanings, like in Ta-
ble 17.

Fabricating Non-existent Meanings After LLM
wrongly identifies a pun word or alternative word,

Lack of Meaning Analysis

/* Pun Text */
All students in Helsinki go to Finnish school.

/* Right explanation of Human */
This is a pun on ’finishing school’ which is a private school
where girls are prepared for entry into fashionable society,
but ’Finnish’ is used in its place because it sounds slightly
similar and since Helsinki is the capital of Finland, any
school there is a Finnish school.

/* Wrong Explanation of LLM */
The text plays on the similarity in sound between ’Finnish’
and ’finish’, creating a humorous double meaning. It ex-
ploits the similar-sounding words for a humorous effect.

Table 17: LLM doesn’t explain any meanings of
pun/alternative words in explanation.

they will continue to explain the pun based on the
previous incorrect conclusion. Just like the fol-
lowing example (Table 18) shows, after "plays on
the double meaning of splice", LLM generated the
nonexistent meaning of "splice" as "adding top-
pings to a pizza" to fit in the explanation.

Fabricating Non-existent Meanings

/* Pun Text */
Did you hear about the film editor at Hollywood who had a
part-time job at a pizza parlor? He used to ask customers
whether they wanted one splice or two.

/* Right explanation of Human */
"Splice" sounds like "slice" and "slice" is a word often
associated with pizza. "Splice" is a verb that means to join
or connect. In film, a splice is when a film has to be taped
together because of breakage. This is often seen during the
editing process. The joke is about a film editor’s part-time
job at a pizza parlor.

/* Wrong Explanation of LLM */
The text plays on the double meaning of ’splice’, which can
refer to both editing film and adding toppings to a pizza.
This creates a humorous play on words.

Table 18: LLM makes up non-existent meanings in
explanation.
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Figure 6: The screenshot of punchline check annotation.

Figure 7: The screenshot of pairwise comparison annotation.

Figure 8: The screenshot of generation success annotation.

11782


