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Abstract

Large Language Models (LLMs) have shown
impressive abilities in data annotation, open-
ing the way for new approaches to solve clas-
sic NLP problems. In this paper, we show
how to use LLMs to create NuNER, a com-
pact language representation model special-
ized in the Named Entity Recognition (NER)
task. NuNER can be fine-tuned to solve down-
stream NER problems in a data-efficient way,
outperforming similar-sized foundation mod-
els in the few-shot regime and competing with
much larger LLMs. We find that the size and
entity-type diversity of the pre-training dataset
are key to achieving good performance. We
view NuNER as a member of the broader fam-
ily of task-specific foundation models, recently
unlocked by LLMs. NuNER and NuNER’s
dataset are open-sourced with MIT License1.

1 Introduction

Named Entity Recognition (NER) — the generic
task of extracting and classifying entities from text
— is a core component of natural language process-
ing, present in a variety of applications such as
medical coding, financial news analysis, or legal
documents parsing (Francis et al., 2019; Dozier
et al., 2010). Such application typically involves
solving a particular NER problem, for a particular
set of entity types, thus requiring the creation of a
custom model.

For the last five years, the standard procedure
for creating such custom model has consisted of
using a transformer encoder (Vaswani et al., 2017)
pre-trained in a self-supervised way to satisfy a
masked language modeling (MLM) objective, such
as models of the BERT family (Devlin et al., 2019;
Liu et al., 2019). This foundation model is then
fine-tuned in a supervised way on human-annotated
data, either using a simple token-classification, or
a more advanced strategy (Zhang et al., 2023).

1 NuNER and NuNerZero are available on Huggingface

Figure 1: NuNER creation procedure. RoBERTa is fur-
ther pre-trained on a subset of C4 automatically anno-
tated by GPT-3.5. The resulting model can be fine-tuned
on various downstream NER problems.

In the last few years, we have witnessed the
emergence of generative large language models
(LLMs) such as GPT-3 (Brown et al., 2020) and,
more recently, GPT-4 (OpenAI, 2023), which typ-
ically have between 100 times and 10,000 times
more parameters than BERT. These massive auto-
regressive transformer models, trained via a next-
word prediction objective, are language generators
which can be prompted to perform a variety of
tasks. For example, these models can be directly
used through a well crafted prompt to tackle a par-
ticular NER problem with satisfying performance
(Wang et al., 2023a). The main issue with this ap-
proach is the high inference cost due to the size of
LLMs.

A simple solution to this inference-cost issue is
to use a correctly-prompted LLM to annotate data
for the particular NER problem and then to train a
smaller model on this data. LLMs have been shown
to outperform crowd workers (Gilardi et al., 2023)
on some tasks for a fraction of the cost but this strat-
egy has issues as well. First, crafting a good prompt
— like delegating a task to someone else — is not
easy; it requires multiple back-and-forth while val-
idating the performance using human-annotated
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data. Second, LLMs are not perfect annotators ei-
ther (Mao et al., 2023). Finally, the best LLMs are
mainly hosted on private companies’ opening the
door to potential confidentiality and privacy leaks.

We propose an alternative approach that lever-
ages LLMs to reduce the amount of human anno-
tations needed to create custom models. Instead
of using an LLM to directly annotate a particular
single-domain dataset for a particular NER prob-
lem, our idea is to use it to annotate a multi-domain
dataset for variety of NER problems. We then
further pre-train a small foundation model, such
as BERT, on this annotated dataset. The result-
ing pre-trained model can then be fine-tuned to
any downstream NER problem, just like any other
foundation model, as depicted in Figure 1.

Because the resulting pre-trained model is spe-
cialized to a generic task but is still meant to be
fine-tuned to a particular problem, we refer to such
a model as a task-specific foundation model. Note
that compact domain-specific foundation models
like SciBERT (Beltagy et al., 2019) or BioBERT
(Lee et al., 2019) are common, but task-specific
foundation models of this kind are rare, mostly due
to the lack of suitable datasets. Generative LLMs
are the key to building such models.

In this paper, we apply the above idea to create
NuNER, a task-specific foundation model for the
generic task of NER.

In Section 3, we describe both the dataset cre-
ation and the training procedures. In a nutshell, we
use GPT-3.5 to annotate a subset of C4 (Raffel et al.,
2020), resulting in a 24.4M words dataset contain-
ing 4.38M annotations from 200k unique concepts.
We then pre-train a base RoBERTa on this dataset
via a contrastive-learning approach (Chen et al.,
2020) to obtain NuNER.

In Section 4, we analyze the transfer learning
performance of NuNER in an extended few-shot
regime. We find that NuNER largely outperforms
both its base model and the same base model fur-
ther pre-trained on NER-BERT data (Liu et al.,
2021), which is the largest and most diverse NER
dataset we could find. These results demonstrate
the validity of our approach.

In Section 5, we investigate the factors influenc-
ing NuNER’s abilities. We find that the diversity
of the annotations and the size of the pre-training
dataset are the most influential factors. Surpris-
ingly, the diversity of the text does not appear to be
as influential.

In Section 6, for informational purposes, we

compare fine-tuning NuNER with using GPT-3.5
and GPT-4 via in-context learning. We find that
NuNER beats GPT-3.5 and competes with GPT-4
when more than a dozen entities of each type is
seen during training. We also compare, via fine-
tuning, NuNER with UniversalNER (Zhou et al.,
2023), a recent LLM specialized in the NER task.
We find that they exhibit similar transfer learning
performance when fine-tuned, despite NuNER be-
ing 56 times smaller.

The contributions of our paper are as follows.
1. We introduce and demonstrate the validity of a

procedure that consists of annotating raw data with
an LLM in order to train a task-specific foundation
model for NER.

2. We identify the factors that are likely to im-
prove the performance of the resulting task-specific
foundation model.

3. We provide and open-source NuNER2, a com-
pact encoder-based language representation model
for NER. NuNER outperforms similar-sized mod-
els, competes with LLMs, and can be used as a
drop-in replacement for RoBERTa.

4. We open-source an LLM-annotated NER
dataset2, containing 4.38M annotations from 200k
entity types, which is suitable for pre-training NER
models.

2 Related Work

Early attempts to create NER-specific foundation
models for low-resource NER problems focused
on leveraging Wikipedia anchors (Mengge et al.,
2020; Cao et al., 2019). In particular, Liu et al.
(2021) (NER-BERT) combined these anchors and
DBpedia Ontology to create NER dataset contain-
ing 3.64M entities from 315 entity types. BERT
was then pre-trained on this dataset, leading to im-
proved few-shot performance. We demonstrate in
Section 4.1 that our LLM-annotation procedure
outperforms such an approach.

Subsequent work has focused on pre-training
generative LLMs on a large number of existing
human-annotated NER datasets to achieve strong
zero-shot capabilities (Wang et al., 2023b; Sainz
et al., 2023). These works differ from ours in terms
of type of data used, model employed, and objec-
tive (zero-shot vs. few-shot).

Recently, Zhou et al. (2023) proposed Universal-
NER, an LLM with 7B and 13B parameters, also
pre-trained on data annotated by GPT-3.5. Our

2 NuNER and NuNerZero are available on Huggingface

11830

https://huggingface.co/collections/numind/nuner-token-classification-and-ner-backbones-65e1f6e14639e2a465af823b
https://huggingface.co/collections/numind/nunerzero-zero-shot-ner-662b59803b9b438ff56e49e2


work primarily differ in the model and training pro-
cedure: we found a way to train an encoder model
with only 125M parameters on such data, making
it substantially cheaper to use. In Section 6, we
show that NuNER and UniversalNER have similar
transfer-learning abilities when provided with more
than a few training examples per entity types.

Even more recently, Zaratiana et al. (2023) pro-
posed GLiNER, which uses UniversalNER’s data
to pre-train a small encoder model. Our work
was done concurrently and independently from
this work. The principal distinction is in the ar-
chitecture used: GLiNER merges the text and con-
cept encoders, whereas in our approach, they re-
main independent (see Figure 5). While GLiNER’s
integrated approach likely enhances performance,
our decision to keep the encoders separate enables
NuNER to function as a concept-agnostic language
representation model. This gives the possibility
to pre-compute text embeddings for a variety of
applications such as information retrieval. This
also makes NuNER a viable drop-in substitute for
BERT or RoBERTa in standard NER methodolo-
gies.

3 NuNER

The creation of NuNER is a two-step process:
dataset creation and model training.

3.1 Dataset Creation

We begin with a random sample of C4 (Raffel et al.,
2020), an English web crawl corpus that contains
text from a wide range of sources, including blog
posts, news articles, and social media messages.
We selected this dataset for its domain diversity.

We want to annotate this dataset with entities
spanning a large and diverse set of types in order
for our model to generalize to all kind of NER prob-
lems. To achieve this we opt for an unconstrained
approach: we allow the LLM to extract any entity it
identifies, and give it the freedom to assign any type
it deems appropriate for each entity. This includes
annotating with concepts more akin to topics than
entity types (e.g., “wellness"). We refer to these
entity types/topics as concepts. To resolve poten-
tial ambiguities, we also ask the LLM to provide
descriptions for the concepts it identifies. How-
ever, we ultimately disregarded these descriptions
as we found that they do not improve NuNER’s
performance. Our prompt is shown in Figure 2.

Note that we do not ask to return the position

The goal is to create a dataset for entity recognition.
Label as many entities, concepts, and ideas as possible
in the input text. Invent new entity types that may not
exist in traditional NER Tasks such as more abstract
concepts and ideas. Make sure the entity concept is
not part of speech but something more meaningful.
Avoid finding meaningless entities.
Output format (separate entities with new line):
entity from the text <> entity concept <> descrip-
tion of entity group/concept
Input:
[INPUT SENTENCE]

Figure 2: Prompt used to annotate NuNER’s pre-
training data.

of the entity in the text as LLMs are not good at
counting. To train NuNER, we have to retrieve this
position through an exact string match, which can
lead to annotation errors in rare cases.

We use gpt-3.5-turbo-0301 with this prompt to
annotate 1.35M sentences, costing less than 500$.
Figure 3 shows one of these annotated sentences.
We then apply a simple filter to remove sentences
containing an annotation with the concept “con-
cept", as we consider this too uninformative, and
obtain a final dataset of 1M annotated sentences.

“Steven Means has signed a one-year contract ex-
tension with the Falcons after making four starts in
2018."

ENTITY CONCEPT DESCRIPTION

Steven Means NFL player professional athlete

Falcons NFL team professional sports team

2018 year unit of time

Figure 3: Sentence from C4 annotated with GPT-3.5.

We find that GPT-3.5 performs quite well in this
task. From a manual review of 100 examples, we
estimate that, in more than 95% of cases, the con-
cept associated with the extracted entity is com-
pletely sensible, as shown in Figure 3. In fewer that
5% of cases, the extraction and associated concept
are questionable, such as “cosmos seeds" identi-
fied as “plant variety" when it is actually a seed.
However, many entities are missed. For instance,
in the example of Figure 3, the LLM could have
also identified “person". In a sense, this method
has high precision but low recall. In Section 3.2,
we propose a contrastive learning procedure that
mitigates the impact of these false negatives.

The resulting dataset comprises a total of 4.38M
entity annotations, distributed across 200k unique
concepts. These concepts cover a wide range of
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domains, as illustrated in Figure 6. The diversity
of concepts in this dataset is far greater than what
can be found in human-annotated NER datasets.

We observe a high imbalance in concept frequen-
cies. Common concepts such as “person", “loca-
tion", or “organization" each appears in more than
1% of the extracted entities, while over 100k con-
cepts are seen only once in the dataset. This heavy-
tailed distribution of concept frequencies is shown
in Figure 4. We further investigate the importance
of concept diversity in Section 5.2.

Figure 4: Frequency of each concept assigned by GPT-
3.5, sorted from most to least common. We observe a
heavy-tailed distribution.

3.2 Model Training
We want to pre-train a language representation
model using our annotated dataset, which con-
tains 200k concepts and exhibits a high concept-
imbalance. Additionally, some concepts are similar
to each other, such as “company" and “company
name". Moreover, many potential entities in a sen-
tence are not extracted. Due to these factors, train-
ing a conventional token classifier that only takes
the text as input and returns a distribution over the
entire set of concepts is not practical. We instead
propose a training method based on the contrastive
learning framework (Chen et al., 2020).

Our training network, depicted in Figure 5, con-
sists of two separate sub-networks: The first is
NuNER — which encodes the input text as a se-
quence of vectors. The second encodes a concept
name as a unique vector. The text vectors are
matrix-multiplied with the concept vector to ob-
tain logits, then divided by temperature and passed
through a logistic sigmoid to yield probabilities.
During training, this setup encourages each token
embedding to align with the concept embedding if
the token instantiates the concept, and to become
opposite otherwise.

Figure 5: NuNER’s pre-training procedure. The text
and concept encoder are separated. Their embeddings
are compared to obtain probabilities.

For each training batch, we collect all the con-
cepts exemplified in the batch and construct a bi-
nary array of dimensions #sentences × #tokens ×
#concepts_in_batch. This array indicates the pres-
ence (1) or absence (0) of each concept present
in the batch for every token in each sentence. We
then use the binary cross-entropy loss to fit the
network’s probabilities to these target arrays.

Since we do not account for concepts not present
in the batch, and because our dataset misses some
concepts in some sentences, the probabilities gener-
ated by such a training network would need calibra-
tion for use in a zero-shot setting. However, in our
case, this miscalibration is not a significant issue
as we are only interested in using the text encoder
NuNER.

3.3 Training Details
We use RoBERTa-base (Liu et al., 2019) for both
the text encoder and the concept encoder. Our
model is trained for 10 epochs on the full 1M sen-
tence dataset where 90% of sentences are used
for training and 10% for validation. We choose
a learning rate lr = 0.00003, batch size= 48,
and temperature before the sigmoid τ = 5. We
use AdamW optimizer (Kingma and Ba, 2015)
with β1 = 0.9, β2 = 0.999, ϵ = 10−6, weight
decay=0.01, and a linear scheduler with a warm-up
for the first 10% of the training steps. The bottom
6 layers of the text encoder are frozen as we found
it leads to better training stability. After training,
we discard the concept encoder and keep the text
encoder NuNER.

4 Transfer Learning Performance

NuNER is designed to be fine-tuned to downstream
NER problems in a data-efficient way. We are
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Figure 6: Feature map of the 50k most common concepts extracted by gpt-3.5-turbo-0301. Embeddings are obtained
from the concept encoder (as depicted in Figure 5). UMAP(McInnes and Healy, 2018) is used to obtain 2D positions
and 3D RGB color values. Disk size is proportional to log(concept frequency).

mostly interested in the transfer learning perfor-
mance of NuNER in an extended few-shot regime,
typically from 1 to 100 annotations per entity types.
We focus on this range because we believe it repre-
sents the level of annotation effort practitioners are
willing to undertake without resorting to external
annotation solutions, such as crowdsourcing.

4.1 Few-Shot with Frozen Foundation

This first experiment aims to demonstrate the bene-
fits of further pre-training an MLM encoder on
our LLM-annotated dataset. Also, we want to
compare NuNER’s pre-training with an alternative
large-scale NER dataset. To this end, we compare
NuNER with its base model, RoBERTa-base, as
well as RoBERTa-base pre-trained on the dataset
of NER-BERT (Liu et al., 2021), see Section 2.

We pre-train RoBERTa on NER-BERT data by
replicating the training process of Liu et al. (2021),
with the exception that we freeze the bottom half of
the network — as when training NuNER — since
we find it improves the final performance.

In order to compare these three foundation mod-
els, we transform them into token classifiers by
attaching a linear layer on top of their final token
representations. The entity types returned by the
classifiers are mutually exclusive, and a special
“None" class is used to indicate the absence of en-
tities. To simplify the few-shot training procedure
— and because our focus is on the relative perfor-
mance of the models — we train only the top layer

while keeping the representation network frozen.
We use four datasets from different domains:

OntoNotes 5.0 (Weischedel et al., 2013), BioNLP
2004 (Collier et al., 2004), MIT Restaurant (Liu
et al., 2013), and MIT Movie (Liu et al., 2013).
Performance is measured using the macro-averaged
F1-Score of token classifications.

We adopt the k ∼ 2k mining procedure of (Ding
et al., 2021) to obtain training examples that con-
tain between k and 2k annotations per entity type.
We measure performance averaged over 10 training
sets for each value of k ∈ {1, 2, 4, 8, 16, 32, 64}.
The reported performance for a given k is the aver-
age across all four datasets.

Performance is reported in Figure 7. As
expected, NuNER largely outperforms pure
RoBERTa. More surprisingly, NuNER outperforms
RoBERTa trained on NER-BERT data by a large
margin on all training sizes. We see this behavior
in all four datasets, although the effect is stronger
in some than others. This result demonstrates the
benefits of pre-training using NuNER’s dataset.

4.2 Few-Shot with TadNER on Few-NERD

We evaluate NuNER on Few-NERD (Ding et al.,
2021), a challenging and widely recognized bench-
mark for few-shot NER.

Few-NERD is comprised of 188k Wikipedia sen-
tences that are human-annotated from a set of 8
coarse-grained and 66 fine-grained entity types. In
this benchmark, the solution is allowed to undergo
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MODEL 5-WAY 1 ∼ 2 10-WAY 1 ∼ 2 5-WAY 5 ∼ 10 10-WAY 5 ∼ 10 AVG

TADNER | INTRA 60.78±0.32 55.44±0.08 67.94±0.17 60.87±0.22 61.26
NUNER-BERT | INTRA 62.48±0.28 57.63±0.38 69.16±0.28 62.99±0.27 63.07

TADNER | INTER 64.83±0.14 64.06±0.19 72.12±0.12 69.94±0.15 67.74
NUNER-BERT | INTER 67.37±0.31 66.54±0.40 73.50±0.09 71.04±0.14 69.61

Table 1: Few-NERD performance using TadNER (Li et al., 2023) and a modified TadNER using NuNER-BERT as
the backbone.

MODEL 1 4 16 64

ROBERTA 24.5 44.7 58.1 65.4
ROBERTA W. NER-BERT 32.3 50.9 61.9 67.6

NUNER 39.4 59.6 67.8 71.5

Figure 7: Transfer learning performance of NuNER,
RoBERTa, and RoBERTa pre-trained on NER-BERT
data as function of k. NuNER substantially outperforms
both models for all training sizes. Full table and dataset-
wise results are shown in Table 4 and Figure 13 in the
appendix.

pre-training on a large subset of Few-NERD be-
fore being evaluated using 5,000 few-shot train-test
splits. In the INTRA setting, the entities seen dur-
ing pre-training and evaluation belong to different
coarse-grained types, while in the INTER setting,
the entities share the same coarse-grained types.

The current state-of-the-art on Few-NERD is
TadNER (Li et al., 2023), an advanced framework
that employs a span-detection network and a type-
classification network, using BERT for both net-
works. We adapt TadNER by replacing BERT with
NuNER based on the same BERT. Furthermore,
since NuNER is designed to have all its entity-
related knowledge in its last layer, we modify Tad-
NER to only use this last layer instead of averaging
over the last four layers.

Results are presented in Table 1. We observe that
NuNER outperforms TadNER in all settings and
training sizes, establishing it as the new SOTA for
this benchmark. This further hints at the benefits
of using NuNER’s pre-training procedure.

Figure 8: Effect of text diversity on NuNER’s perfor-
mance. Wikipedia and C4 lead to similar performance
when they are both annotated by the LLM. Results table
is shown in Table 5 in the appendix.

5 Ablation Studies

We aim to understand which factors in the pre-
training procedure most significantly affect the per-
formance of NuNER. To this end, we investigate
the impact of text diversity, concept diversity, pre-
training dataset size, and model size Appendix A.1,
using the same benchmark as in Section 4.1. We
also study NuNER’s multilingual performance in
Appendix A.2.

5.1 Effect of Text Diversity

In Section 4.1, we saw that NuNER’s pre-training
data, based on C4, leads to better performance
than NER-BERT’s pre-training data, based on
Wikipedia. This might simply be because C4 is
more diverse than Wikipedia.

To investigate this, we downsample both datasets
to 50k sentences each, and annotate the Wikipedia
subset with our LLM-annotation procedure. This
way, the only distinguishing factor between these
datasets is their original corpus: C4 vs. Wikipedia.
We then pre-train RoBERTa on these two datasets
and measure the transfer learning performance of
the resulting models.

We see in Figure 8 that the LLM-annotated C4
subset and the LLM-annotated Wikipedia subset
result in very similar model performance. This
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shows that the main reason for the performance
gap is the LLM-annotation procedure rather than
the underlying corpus.

5.2 Effect of Concept Diversity

To understand the effect of concept diversity, we
first take a random sample of 100k annotated ex-
amples from NuNER’s dataset, which includes ap-
proximately 80k unique concepts. We then retain
only the annotations from the top-n most frequent
concepts, simulating an annotation procedure that
excludes rare concepts. We use n = 4, 16, 154,
1.5k, and 80k concepts, corresponding to 12.5%,
25%, 50%, 75%, and 100% of all annotations, re-
spectively (see Figure 4). We pre-train NuNER
on the resulting datasets and measure the transfer
learning performance for k = 8.

Figure 9: Effect of concept diversity on NuNER’s per-
formance. Results table is shown in Table 6 in the
appendix.

Results are shown in Figure 9. As expected,
overall performance increases with concept diver-
sity. However, there are variations across datasets.
BioNLP appears to benefit the most from concept
diversity while it seems to harm OntoNotes past
154 concepts. This difference is likely because
BioNLP contains rarer concepts than OntoNotes.
The performance degradation on OntoNotes may
indicate the difficulty of encoding a large number
of concepts into the 768-dimensional embedding
vector.

Note that, in this experiment, the number of
annotations grows with concept diversity, which
might bring an additional effect. Results of Sec-
tion 5.3 shows that such effect would account here
for less than 1% of F1-score.

5.3 Effect of Dataset Size

We next investigate the effect of the pre-training
dataset size, ranging from 1k examples to 1M ex-
amples. We again pre-train NuNER on each dataset
and measure its transfer learning performance for
k = 8. Results are shown in Figure 10.

Figure 10: Effect of pre-training dataset size on
NuNER’s performance. Results table is shown in Ta-
ble 7 in the appendix.

As expected, the overall performance increases
with data size, and continues to improve slightly
from 300k to 1M examples. Again, we see vari-
ability across datasets, with the performance for
BioNLP decreasing after 100k examples, while
all other datasets experience a monotonic increase.
The reason for this discrepancy is unclear.

6 Comparison with LLMs

Although the comparisons are indicative, we finally
provide for information a comparison of NuNER
with modern generative LLMs. We choose GPT-
3.5 (gpt-3.5-turbo-16k-0613) for its popularity and
longer context, GPT-4 (gpt-4-0613) for its high per-
formance (Zheng et al., 2023), and UniversalNER
(UniversalNER-7B-type) for its specialization in
the NER task. UniversalNER has 56 times more
parameters than NuNER, and GPT-3.5 and GPT-4
are likely to have around 1,000 and 10,000 times
more parameters than NuNER, respectively.

GPT-4 and GPT-3.5 are used via in-context learn-
ing using Spacy’s NER V3 prompt. This advanced
prompt template allows to create a prompt for a
particular NER problem by providing it the set of
entity types and some training examples.

UniversalNER (Zhou et al., 2023) is trained to be
used for zero-shot inferences, conducted through a
conversation in which one sequentially prompt the
model to identify each entity type. To adapt this
model for a few-shot setting, we need to fine-tune
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it. We use the original training settings of Uni-
versalNER but modify them to enhance few-shot
learning performance, as detailed in Appendix A.4.
For NuNER, we simply attach a two-layer fully-
connected network regularized via dropout, and
fine-tune the entire network for 30 epochs, costing
less than 5$ in total.

Because of the high costs of GPT-4, we devi-
ate from the extended few-shot learning protocol
of Section 4.1. We only use the MIT Restaurant
and BioNLP datasets, and downsample test sets to
1,000 examples. Also, we create training sets with
a specific number of words belonging to a given
entity type, that we call kw, instead of using the
k ∼ 2k entity-based mining method. We conduct
several runs for each training-size (using the same
training sets for all models) and average results,
except for GPT-4 where we only perform one run.
Results are presented in Figure 11.

Figure 11: Comparison of NuNER with LLMs. Dashed
curves indicate in-context learning and solid curves in-
dicate fine-tuning. Results tables are shown in Table 11
and Table 12 in the appendix.

We find that GPT-3.5 and GPT-4 already perform
well in the zero-shot regime, and show rapid im-
provement when examples are added to the prompt.
However, for larger training sets, the performance
of GPT-3.5 quickly plateaus, and it ends up being
outperformed by both UniversalNER and NuNER
when kw > 8. The same thing might happen with
GPT-4 but we cannot conclude with such noisy and
incomplete results. UniversalNER starts lower than
both GPT-3.5 and GPT-4, but steadily catches on
to eventually surpass GPT-3.5.

NuNER begins at a lower performance level than
GPTs as it is not intended to be a zero-shot model.
However, it matches UniversalNER’s performance
and eventually surpasses GPT-3.5. It remains un-
clear whether it would also surpass GPT-4. Never-
theless, when using GPT-4 with k = 8, inferring

one test example costs around 0.1$, while NuNER
achieves similar performance while costing less
than 0.0001$ per example, allowing for industrial
use.

To compare NuNER and UniversalNER in a
more standard and reproducible manner, we con-
duct an additional experiment using the k ∼ 2k set-
ting on all four datasets mentioned in Section 4.1.
In this experiment, we use the full test sets and
measure entity-level micro F1-score, averaged over
these datasets. We perform 3 runs for each k. We
see in Table 2 that NuNER and UniversalNER have
similar performance.

MODEL 8 ∼ 16 64 ∼ 128

UNIVERSALNER 57.89± 4.34 71.02± 1.53
NUNER 58.75± 0.93 70.30± 0.35

Table 2: NuNER vs. UniversalNER few-shot entity-
level F1-score in the k ∼ 2k setting showing similar
performance. Dataset-wise tables can be found in Ta-
ble 9 and in Table 10 in the appendix.

The fact that NuNER surpasses GPT-3.5 and
possibly also GPT-4 is likely attributable to the
limitations of in-context learning. The situation
might differ with proper, albeit challenging, few-
shot fine-tuning for these LLMs. More surprising
to us is that NuNER achieves performance com-
parable to UniversalNER despite being 56 times
smaller and trained on similar data. This could
be due to an inherent advantage of encoders over
generative models for this task. Alternatively, it
might be related to NuNER’s pre-training proce-
dure, which encourages human concepts to emerge
in the last layers of the network, being easily acces-
sible during few-shot training. Further experiments
would be needed to explore this aspect.

7 Conclusion

Modern large language models are opening new
possibilities for addressing traditional NLP tasks.
We have introduced a procedure that uses these
LLMs to create a compact, yet data-efficient, NER-
specific foundation model. We foresee an increas-
ing trend in the development of such task-specific
foundation models, which will facilitate the cre-
ation of high-quality custom NLP models with-
out requiring intensive human or computational
resources.
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Limitations

This paper presents the NuNER model which was
created to be an efficient feature extractor for the
Named Entity Recognition problems. In this work,
we only studied the Few-shot learning capabilities
of the model, without experimenting with the po-
tential Zero-shot modifications of NuNER.
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A Appendix

A.1 Effect of Model Size
We investigated the influence of model size. We
pre-train a version of NuNER using RoBERTa large
(355M parameters) and compare it to the original
NuNER (155M parameters). We see in Figure 12
an overall increase of the F1-score of a few percent.
This increase is more pronounced for smaller train-
ing sets (k < 10) than for larger ones. Combined
with the positive impacts of concept diversity and
dataset size, this result suggests that scaling up both
models and data would lead to further performance
improvements.

A.2 Multilingual NuNER
We also decided to see the transferability of our
approach to multilingual NER problems. The mul-
tilingual version of NuNER is based on the Mul-
tilingual BERT, pre-trained on 104 different lan-
guages. To further train multilingual NuNER, we
created a new multilingual dataset. Specifically,
for each selected language, we sampled 16000 text
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Figure 12: Effect of model size on NuNER’s perfor-
mance. Results table shown in Table 8 in the appendix.

k MBERT NUNER

1 10.84 27.71
2 19.19 39.55
4 31.60 49.77
8 43.84 56.58

16 52.69 61.16
32 58.65 65.38
64 62.20 67.68

Table 3: NuNER vs multilingual BERT on MultiNERD
dataset

fragments from the multilingual C4 dataset (Raf-
fel et al., 2020) and labeled them, using the same
prompt in English but explicitly mentioning to out-
put the results in the language of the current frag-
ment. We chose to label texts in English, French,
Spanish, Portuguese, Dutch, Italian, Polish, and
Russian.

For the model evaluation, we used the same pro-
tocol as described in Section 4.1, while evaluat-
ing the MultiNERD dataset (Tedeschi and Navigli,
2022). For the given k, the results are averaged
over all evaluated languages. The results are found
in Table 3.

As we can see, multilingual NuNER confidently
outperforms multilingual BERT for all k, even
for the bigger k the gap between models stays re-
spectable, despite mBERT also being pre-trained
on the evaluated languages.

A.3 Comparison with LLMs - Details

In the experiment of Figure 11 we only conduct
one training run for GPT-4 for cost reasons. For
all the other models we conduct 16 training runs
for kw = 1, 8 training runs for kw = 2, 4 training
runs for kw = 4, 2 training runs for kw = 8, and a
unique training run for higher training sizes. These
choices were made to reduce GPT-3.5 costs and to
for the training data to be kept consistent across all

models for each training size.

A.4 UniversalNER Training Details
We create UniversalNER’s training data following
Zhou et al. (2023)’s procedure: We use the dataset-
specific instruction tuning template and populate
it to extract all entity types. We don’t need to add
any negative sampling here since all possible entity
types are queried, therefore having an empty list
when no entities of a given type are present in the
example.

We fine-tune UniversalNER using authors’ fine-
tuning code, only changing the number of training
epochs and the number of gradient accumulation
steps to obtain better few-shot results. After experi-
menting with external datasets, we found that using
20 epochs for kw = 8 and k = 8, 15 epochs for
kw = 16 and kw = 32, and 10 epoch for kw = 64
and k = 64 worked well. We used these values and,
for kw = 8 and k = 8, also reduced the number of
gradient accumulation steps to 4. We didn’t train
UniversalNER on kw < 8 as regularization was
difficult to tune.

We also tried adopting LORA (Hu et al., 2022)
for fine-tuning UniversalNER. Although, this
methodology was more stable thanks to its implied
regularization, it consistently led to worse results
than full fine-tuning and required more time to con-
verge.

We believe our heuristics allow to train Univer-
salNER pretty well in a few-shot setting, and are
enough to make a rough comparison with NuNER.
However, we should note that fine-tuning such
large model on such small amount of data is not
easy, and there are certainly better automatic ma-
chine learning procedures for this model.

A.5 Extra Tables and Figures
In this section we present the tables that were par-
tially cut or just illustrated as plots in the body of
the paper. We also show dataset-wise results that
were shown as averages in the body of the paper.
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Figure 13: Dataset-wise results of Figure 7. Transfer learning performance of NuNER, RoBERTa, and RoBERTa
pre-trained on NER-BERT data as function of k. NuNER substantially outperforms both models for all training
sizes. We see similar behaviors for every dataset.

k ROBERTA ROBERTA W. NER-BERT NUNER

1 24.46 32.32 39.37
2 35.30 42.33 51.46
4 44.65 50.94 59.60
8 52.56 57.42 64.78

16 58.12 61.85 67.84
32 62.00 64.96 69.98
64 65.42 67.61 71.53

Table 4: Results table of Figure 7. Transfer learning
performance of NuNER, RoBERTa, and RoBERTa pre-
trained on NER-BERT data as function of k. NuNER
substantially outperforms both models for all training
sizes.

k ANCH-AN. WIKI LLM-AN. WIKI LLM-AN. C4

1 32.52 38.23 38.64
2 41.86 49.99 50.55
4 50.35 57.32 57.82
8 57.40 62.76 63.26

16 61.82 66.39 66.76
32 64.81 68.85 69.18
64 67.46 70.74 70.93

Table 5: Results table of Figure 8. Effect of text diversity
on NuNER’s performance. Wikipedia and C4 lead to
similar performance when they are both annotated by
the LLM.

k 4 16 154 1500 80K
12.5% 25% 50% 75% 100%

1 32.78 36.95 39.56 39.45 38.83
2 44.40 47.33 49.75 50.53 50.69
4 52.57 54.75 56.60 57.58 57.97
8 59.35 60.66 61.84 62.78 63.43

16 63.74 65.05 65.49 66.38 66.83
32 66.76 67.67 67.96 68.92 69.27
64 69.31 70.02 70.03 70.76 71.04

Table 6: Results table of Figure 9. Effect of concept
diversity on NuNER’s performance.

k 1K 3K 30K 100K 300K 1M

1 32.8 35.6 38.3 38.9 39.3 39.4
2 45.5 48.0 50.2 50.8 51.6 51.5
4 54.0 56.2 57.6 58.1 59.1 59.6
8 60.3 61.9 63.0 63.5 64.5 64.8

16 64.3 65.4 66.6 66.9 67.7 67.8
32 66.5 67.8 69.0 69.3 69.8 70.0
64 68.3 69.4 70.7 71.1 71.6 71.5

Table 7: Full results table of Figure 10 for all training
sizes. Effect of pre-training dataset size on NuNER’s
performance.
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k NUNER NUNER-LARGE

1 39.37 42.02
2 51.46 53.70
4 59.60 61.33
8 64.78 65.97

16 67.84 68.79
32 69.98 70.63
64 71.53 71.99

Table 8: Full results table of Figure 12 for all training
sizes. Effect of model size on NuNER’s performance.

DATASET NUNER UNIVERSALNER

BIONLP 43.84± 2.18 41.79± 17.08
MIT MOVIE 58.69± 1.16 61.57± 2.26

MIT RESTAURANT 62.66± 2.28 63.4± 1.69
ONTONOTES 69.82± 1.64 64.8± 1.17

AVERAGE 58.75± 0.93 57.89± 4.34

Table 9: Dataset-wise results of Table 2 for k = 8.

DATASET NUNER UNIVERSALNER

BIONLP 61.18± 1.15 59.94± 6.03
MIT MOVIE 65.56± 0.29 69.50± 0.57

MIT RESTAURANT 73.66± 0.65 75.84± 0.97
ONTONOTES 80.81± 0.41 78.78± 0.26

AVERAGE 70.30± 0.35 71.02± 1.53

Table 10: Dataset-wise results of Table 2 for k = 64

kw GPT-3.5 GPT-4 UNIVERSALNER NUNER

0 51.70 69.54 28.35 -
1 77.26 79.66 - 55.88
2 78.83 81.48 - 65.76
4 80.01 84.54 - 75.76
8 81.00 85.35 76.56 78.13

16 82.00 - 80.30 82.07
32 81.34 - 82.36 82.27
64 - - 83.40 84.02

Table 11: Results table of Figure 11 for MIT Restaurant.
Comparison of NuNER with LLMs. F1-macro token
classification metric.

kw GPT-3.5 GPT-4 UNIVERSALNER NUNER

0 63.48 61.09 60.23 -
1 67.62 70.82 - 46.37
2 70.70 77.10 - 55.95
4 70.22 76.32 - 58.16
8 70.86 78.80 69.52 69.09

16 68.88 - 76.09 76.93
32 69.12 - 80.09 78.96
64 - - 80.96 81.48

Table 12: Results table of Figure 11 for BioNLP. Com-
parison of NuNER with LLMs. F1-macro token classifi-
cation metric.
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