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Abstract

Proving mathematical theorems using
computer-verifiable Formal Languages (FL)
like Lean significantly impacts mathematical
reasoning. One approach to formal theorem
proving involves generating complete proofs
using Large Language Models (LLMs)
based on Natural Language (NL) proofs.
However, due to the scarcity of aligned NL
and FL theorem-proving data, most modern
LLMs exhibit suboptimal performance. This
scarcity results in a paucity of methodologies
for training LLMs and techniques to fully
utilize their capabilities in composing formal
proofs. To address these challenges, this paper
proposes TheoremLlama, an end-to-end
framework that trains a general-purpose LLM
to be a Lean4 expert. TheoremLlama includes
NL-FL dataset generation and bootstrapping
method to obtain aligned dataset, curriculum
learning and block training techniques to
train the model, and iterative proof writing
method to write Lean4 proofs that work
together synergistically. Using the dataset
generation method in TheoremLlama, we
provide Open Bootstrapped Theorems (OBT),
an NL-FL aligned and bootstrapped dataset.
Our novel NL-FL bootstrapping method,
where NL proofs are integrated into Lean4
code for training datasets, leverages the
NL reasoning ability of LLMs for formal
reasoning. The TheoremLlama framework
achieves cumulative accuracies of 36.48% and
33.61% on MiniF2F-Valid and Test datasets
respectively, surpassing the GPT-4 baseline
of 22.95% and 25.41%. Our code, model
checkpoints, and the generated dataset is
published in GitHub

1 Introduction

The ability to perform logical reasoning has always
been regarded as a cornerstone of human intelli-
gence and a fundamental goal of machine learning

*First authors

systems (Newell and Simon, 1956). Among these
tasks, mathematical reasoning is considered crucial
for evaluating the capabilities of Large Language
Models (LLMs). However, in modern mathemat-
ics, verifying the correctness of theorem proofs
written in natural language is challenging, com-
plicating the assessment of LLMs’ mathematical
reasoning in advanced topics. Additionally, the
rapid development of modern mathematics and the
increasing complexity of proofs pose significant
barriers to reviewing their correctness. This has
led to erroneous proofs that require considerable
effort to be identified by the mathematical com-
munity, as exemplified by the process of proving
Fermat’s Last Theorem (Taylor and Wiles, 1995).
To address these issues, formal mathematical lan-
guages such as Lean (De Moura et al., 2015; Moura
and Ullrich, 2021), Isabelle (Paulson, 1994), and
HOL Light (Harrison, 2009) have been developed.
These languages allow computers to automatically
verify proofs, providing a clear standard for evaluat-
ing mathematical theorem proofs and significantly
impacting both the mathematical and computer sci-
ence communities.

However, writing mathematical proofs in Formal
Language (FL) requires significant expertise and
effort. Additionally, formal proofs involve much
repetitive and tedious work (Jiang et al., 2022a),
which is not customary for mathematicians who
are more familiar with high-level proofs. Conse-
quently, there has been significant demand for au-
tomated theorem-proving using FL, leading to a
considerable number of works on this task (Polu
and Sutskever, 2020; Polu et al., 2022; Jiang et al.,
2021, 2022b,a; Yang et al., 2024). However, most
of these works rely on searching methods in an infi-
nite space of possible tactics to complete the proof,
resulting in unaffordable computational costs (e.g.,
Polu et al. (2022) uses 2,000 A100 GPU hours
for training) in finishing complex proofs and not
fully leveraging NL reasoning ability of LLMs. Re-
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Figure 1: TheoremLlama Framework: (a) NL-FL Aligned Data Generation: We first extract Lean4 data from
Mathlib4. Subsequently, we fine-tune a T5 encoder to search for the best examples to guide the informalization of
the extracted data. Then, we apply Gemini-1.5 to informalize extracted theorems with retrieved examples. Finally,
we perform NL-FL Bootstraping to integrate natural language reasoning into Lean4 codes. Using this generation
method, we have the OBT dataset. (b) Lean4 Prover Training: We use block training to enhance the in-context
ability and the curriculum data sorting to let LLM learn from easy to hard data. These techniques can make LLM
better learn unfamiliar Lean4 theorem proving tasks. (c) Iterative Proof Writing: We iteratively use the correct
proofs from the same dataset of the previous iterations as in-context examples to enhance the proof-writing ability
of the LLM.

cent advancements in LLMs, especially in reason-
ing (Wei et al., 2022) and coding (Roziere et al.,
2023), have prompted researchers to explore us-
ing them to write formal proofs guided by natural
language (Wu et al., 2022; Jiang et al., 2022a).

In this paper, we focus on enabling general-
purpose LLMs to write formal Lean4 proofs guided
by natural language (NL) proofs. We have cho-
sen Lean4 because it has recently garnered con-
siderable attention from the mathematical commu-
nity (Tao et al., 2023; Tao, 2023; Avigad et al.,
2020), whereas Lean3 and Isabelle are older for-
mal languages. Despite the potential demonstrated
by previous works (Wu et al., 2022; Jiang et al.,
2022a) in similar tasks using Isabelle, the few-shot
performance of LLMs in Lean4 remains relatively
unsatisfactory in Lean 4 (details in Appendix A).
This is because Lean4 is a more concise FL that dif-
fers significantly from NL, making the direct trans-
fer of reasoning abilities from NL to Lean4 infeasi-
ble. The situation is exacerbated by the inclusion
of confusing Lean3 code in the LLMs’ pre-training
data (details in Appendix A). More importantly,
there is a significant lack of NL-FL aligned data,
making the training of LLMs to write Lean4 proofs
an overlooked and challenging task. Additionally,
Jiang et al. (2022a) indicates that there remains a
large potential for researchers to fully utilize LLMs
in writing formal proofs.

To address these challenges, we propose The-
oremLlama, an end-to-end framework that trans-
forms a general-purpose LLM into a Lean4 expert.
The framework overview is presented in Fig. 1. Our

framework comprises three major components that
work synergistically:

(a) NL-FL Aligned Data Generation: This com-
ponent tackles the data scarcity problem. During
generation, we identified Mathlib4, a pure Lean4
repository containing 100k proofs of important
mathematical theorems. We informalize Mathlib4
(i.e., write natural language theorem statements
and proofs based on Lean4 code) using a Gemini-
1.5 with retrieved examples from a fine-tuned T5
encoder. Subsequently, we bootstrap the NL-FL
aligned data by integrating the natural language
proofs into Lean4 code via comments. This process
of embedding natural language reasoning within
the formal language code helps the LLM better
understand the theorems and leverages its natural
language reasoning ability to perform formal rea-
soning. Following this generation and bootstrap-
ping method, we create the Open Bootstrapped
Theorems (OBT) dataset.

(b) Lean4 Prover Training: This component in-
troduces training methods that are currently under-
studied in the field. It includes block training tech-
niques to improve the LLM’s in-context learning
ability and curriculum data sorting tactics to ensure
a smoother training process. Using this method, we
fine-tune Llama3-8B-Instruct to be a Lean4 expert
with the OBT dataset.

(c) Iterative Proof Writing: This component en-
hances the LLM’s ability to write formal proofs
by using previously generated correct proofs as
in-context examples to further improve its formal
reasoning capabilities.
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We summarize our contributions in this paper
as follows: (1) We propose TheoremLlama, an
end-to-end framework that transforms a general-
purpose LLM into a formal proving expert. The-
oremLlama spans from NL-FL aligned dataset
generation to Lean4 prover training techniques and
iterative proof writing for Lean4 prover. It amends
the significant data scarcity problem by contribut-
ing to the OBT dataset. Additionally, it contains
LLM training and proof writing methods that have
largely been overlooked in Lean4 theorem proving.
(2) Our major innovative point is the NL-FL boot-
strapping method, which integrates informal proofs
into Lean4 code. this method enhances the LLMs’
abilities by using training data to transfer their infor-
mal reasoning capabilities to Lean4 proof writing.
(3) We conduct extensive experiments using The-
oremLlama, which achieves 36.48% and 33.61%
accuracy rate on MiniF2F-Valid and Test, largely
suppressing GPT-4 baseline (25.41% and 22.95%
separately). Additionally, we perform a thorough
ablation study to prove the effectiveness of major
components in dataset generation and training.

Furthermore, we open-source the OBT dataset,
model checkpoints, and codes to support further
research in the community. Under a reasonable
GPU footprint for TheoremLlama (the fine-tuning
only takes about 32 hours for an 8 GPU A6000 ma-
chine) our work will significantly lower barriers to
academic researchers in corresponding fields of ob-
taining considerably well-behaved Lean4 prover.

2 Methodology

In this section, we present the details of Theo-
remLlama, including generation methods for the
OBT dataset. The key idea for our framework is
to enable LLMs to perform well in the unfamil-
iar Lean4 theorem proving task under the circum-
stances of limited or even confusing data during its
pre-training. We introduce the Dataset Generation
method in Section 2.1, illustrate the training tech-
niques for Lean4 prover training using the OBT
dataset in Section 2.2, and propose an Iterative
Proof Writing method LLM prover in Section 2.3.
The task that this methodology works on can be de-
fined as: "Training the general purpose LLM to be
an expert in Lean4 whole-proof generation under
the guidance of Natural Language Proofs."

2.1 NL-FL Aligned Data Generation

This section describes the Natural Language (NL)
- Formal Language (FL) Aligned Dataset Genera-
tion method. As previously discussed, we chose
Lean4 as the formal language for our study. The
dataset generation aims to enhance the LLM’s abil-
ity in Theorem proving from the dataset point-of-
view. To the best of our knowledge, no open-source
Lean4 NL-FL aligned dataset exceeds 1k records,
our dataset generation provides Open Bootstrapped
Theorems (OBT) dataset containing 106,852 NL-
FL aligned and bootstrapped theorems.

2.1.1 Lean4 Proof Extration
Although there is no NL-FL aligned dataset, for
Lean4, there is Mathlib4, a repository containing
100k high-quality, human-crafted proofs. It is a
general repository that contains the most important
definitions and theorems from basic mathematics,
including logic, set theory, number theory, and alge-
bra; to advanced topics like topology, differential
geometry, and real/complex analysis. Mathlib4
offers the LLM a high-quality, and comprehen-
sive foundation for dataset generation tasks. Previ-
ous works have used such a dataset for tree-search
prover training (Yang et al., 2024; Polu et al., 2022).
We directly extract Mathlib4’s theorems from the
LeanDojo (Yang et al., 2024) repository for further
dataset generation.

2.1.2 Informalization with Example Retrival
To the best of our knowledge, the potential for
using Mathlib4 as a dataset for training LLMs to
generate formal proofs based on natural language
guidance is an understudied field. This is due
to Mathlib4 does not contain corresponding nat-
ural language statements for most of the theorems.
However, with the development of modern LLMs,
we propose a way to generate the NL-FL aligned
dataset for Mathlib4. This method, which writes
informal proofs from formal proofs, is called for-
malization

Due to the mix of Lean4 and Lean3 data on
the internet, LLMs pre-trained on web-scale data
only have limited ability to recognize Lean4 proofs
and may be interfered by perplexing Lean3 data
(Appendix A.) Therefore, it is important to have
high-quality in-context examples for informaliza-
tion. Inspired by the idea of contrastive loss (Izac-
ard et al., 2021). We develop the example retrieval
method to extract such high-quality examples. The
first step for our example retrieval is using the Nat-
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ural Language annotated MiniF2F dataset (Jiang
et al., 2022a) to fine-tune the ByT5-Tacgen model
provided by Yang et al. (2024), which trained on
pure Lean4 data, has a relative good understanding
of both NL and FL data.

Specifically, we fine-tune the ByT5 encoder to
align the cosine similarity of the theorem statement
of natural language and Lean4 code. The sentence-
level encoding is obtained by mean pooling of ev-
ery token’s encoding. To prevent the model from
producing trivial results, we add in-batch negative
sampling in the loss function. Thus, the loss for
fine-tuning ByT5 is:

L =1− cos(xNL,xFL)+

1

2
(cos(x

(−)
NL,xFL) + cos(xNL,x

(−)
FL ))

where xNL/FL represents sentence encoding; x(−)

means not aligned NL/FL statement in the same
batch as the negative sample.

Subsequently, we use this encoder to encode the
Lean4 theorem statement in Mathlib4 and the in-
formal theorem statement in a tiny NL-FL aligned
dataset (less than 100 theorem proofs, provide by
Yang et al. (2024)). We select a few examples with
the highest similarity and use these as in-context
examples to query Gemini-1.5 (Reid et al., 2024) to
obtain informalized theorem statements and proofs
for the theorems in Mathlib4.

After informalization, we conduct a primary-
level data quality check. Wu et al. (2022) found
that most of the informalization made by LLMs
generally makes sense so our quality check ma-
jorly focuses on removing abnormal behavior of
LLMs, including repeated generation, overlength
generation, and other erroneous data. We iteratively
query the Gemnin-1.5 with failed examples, and
ultimately, we obtain an NL-FL aligned dataset con-
sisting of 106,852 theorems, a much larger dataset
than any currently open-sourced NL-FL aligned
dataset for Lean4.

2.1.3 NL-FL Bootstrapping
We find that due to the significant differences
between performing natural language reasoning
and Lean4 theorem proving, externally NL-guided
training data is not sufficient to enable LLMs to
develop strong Lean4 theorem-proving abilities. It
is common for the LLMs to lose track of the proof
and repeatedly generate the final Lean4 tactic. In-
spired by findings in LLM coder (Song et al., 2024),
where NL comments of code task description can

largely improve the performance of LLM coders.
We propose the novel NL-FL Bootstrapping. This
is a simple but effective method to enhance the
LLMs’ Lean4 proof writing ability by integrating
natural language reasoning into Lean4 proofs in
Mathlib4.

We achieve such an integration by providing
Gemini with NL and FL of the theorem and ask-
ing it to document the natural language proof to
the Lean4 code through comment. We ensure the
correctness of the bootstrapped data by running a
check algorithm that removes all comments in the
generated code and makes sure it is the same as the
original code.

This bootstrapping approach aims to lower the
barrier between complex and unfamiliar-to-LLM
Lean4 formal language reasoning and natural lan-
guage reasoning. We find that most modern LLMs
possess relatively strong natural language reason-
ing abilities but lack familiarity with formal rea-
soning. This method helps LLMs transfer their
natural language reasoning skills to Lean4 theo-
rem proving by bootstrapping the dataset, prompt-
ing the LLM to perform both formal and informal
reasoning simultaneously. LLMs trained with the
bootstrapped dataset will learn to better utilize the
NL steps to guide Lean4 proof writing. Follow-
ing above generation and bootstrapping method,
we have the Open Bootstrapped Theorems (OBT)
dataset for training LLMs.

2.2 LLM Prover Training

Training LLMs to generate whole proof based on
natural language guidance is an under-explored
field of study due to the lack of datasets. There are
only a few studies that discuss the training method
of the LLM for such a task. This section proposes
two instruction fine-tuning techniques to train the
LLMs for formal reasoning tasks, namely Block
Training and Curriculum Data Sorting.

2.2.1 Block Training
The Block Training method aims to incorporate
the in-context learning ability during training. For
standard instruction fine-tuning in formal theorem
proving, we use natural language as the input and
the corresponding Lean4 with bootstrapped NL rea-
soning as the target output to fine-tune the LLM. In
the Block Training, we view the tokenized training
dataset as a ring of text. We take full advantage
of the context length of LLM by filling it with ex-
amples of previous records. Formally, the original

11956



training data for i-th record is:

{"Instruction": NLi, "Target": FLi}
where NLi is the natural language of i-th record
and FLi is its corresponding bootstrapped Lean4
code. After Block Training, the i-th data record is:

{"Instruction": “NLi−k, FLi−k; · · ·FLi−1;NL′′
i ,

"Target": “FL′′
i }

where k is the number of examples that just fill
the context length.

Using the block training method, we enhance
the LLM’s in-context learning ability for Lean4,
providing a better understanding of examples when
writing proofs.

2.2.2 Curriculum Data Sorting

Because modern LLMs have limited exposure to
writing Lean4 proofs with NL guidance during
pre-training, they are unfamiliar with this task.
This issue is evident as LLMs with a significant
difference in parameters show only slight perfor-
mance differences in these tasks (details in Sec-
tion 3.3). Inspired by previous work in Curriculum
Learning (Polu and Sutskever, 2020; Soviany et al.,
2022), we propose a training data sorting technique
named Curriculum Data Sorting to enable LLMs
to learn this unfamiliar task from easy to difficult.

Specifically, we reorganize the generated train-
ing dataset by difficulty level. We measure the
difficulty of a Lean4 proof by the steps it takes to
solve all goals and sort the training data records
with easier data at the beginning and harder data
at the end. This sorting method allows the LLM
to first learn to solve trivial and easy problems be-
fore tackling complex proofs. It largely stabilizes
the loss curve of training and improves the perfor-
mance of the LLM prover.

2.2.3 Instruction Fine-tuning

Using Blocked Training and Curriculum Data Sort-
ing on the OBT dataset, we perform the Instruc-
tion Fine-tuning on Llama3-8B-Instruct using SFT
trainer in an autoregressive manner. The given in-
struction is a natural language statement and proof
of a theorem, along with a Lean4 theorem state-
ment, and use examples in the dataset filling con-
text windows. The target output is the Lean4 proof
bootstrapped with natural language explanations.
This process trains the LLM to leverage its natural
language reasoning ability to write Lean4 proofs.

2.3 Iterative Proof Writing

Jiang et al. (2022a) have demonstrated that the
potential of LLMs in formal reasoning is largely
undervalued. Typically, LLMs possess relevant
knowledge but lack appropriate methods to extract
this knowledge in Lean4 form. To further harness
the LLM’s ability to prove Lean4 theorems, in-
spired by Wang et al. (2023), we propose the Itera-
tive Proof Writing strategy. This method involves
initially having the prover finish as many theorems
in a dataset as possible. Then, use the Lean-verified
correct proofs written by the current prover as ad-
ditional examples for proof writing in the next it-
eration. The iteration stops when the maximum
number of steps is reached or no additional theo-
rems can be proved with the given examples. This
step is effective because there are potential distribu-
tion shifts between the generated and the real-world
natural language statement and proof, using exam-
ples from the same dataset, such differences can be
largely mitigated.

3 Experiments

We conduct extensive experiments on the MiniF2F-
Lean4 dataset (Zheng et al., 2021) to test the effec-
tiveness of TheoremLlama framework on formal
reasoning with NL guidance. We also conduct
ablation studies (Section 3.4) and case studies (Sec-
tion 3.7) to further validate the TheoremLlama.

3.1 Experiment Setup

3.1.1 Dataset and Task
In this work, we evaluate the TheoremLlama
Lean4 formal reasoning ability on MiniF2F-Test
and Validation dataset (Zheng et al., 2021) and
NL theorem statement and proofs provided by
Jiang et al. (2022a). We contribute the Lean4 ver-
sion of MiniF2F-Test based on (Yang et al., 2024).
MiniF2F is a standard testing dataset for evaluat-
ing the performance of formal provers. Both the
test and validation datasets contain Lean4 state-
ments of 244 problems. The range of problems
varies from high-school competition questions to
undergraduate-level theorem proofs. Specifically,
MiniF2F comprises a total of 488 problems from
three sources: (1) 260 problems sampled from the
MATH dataset (Hendrycks et al., 2021); (2) 160
problems from high-school mathematical compe-
titions (including AMC, AIME, and IMO); (3) 68
manually crafted problems at the same difficulty
level as (2). We are unable to use the Mathlib
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Method Model size MiniF2F-Valid MiniF2F-Test Average

Tree-search Methods
Expert Iteration 774M 28.5% 25.9% 27.2%

ReProver 229M - 25.00% -

Unfinetuned LLM
GPT-4-Turbo > 1T 25.41% 22.95% 24.18%

Gemini-1.5-pro - 29.92% 27.87% 28.90%
Llama3-Instruct 8B 25.41% 20.08% 22.75%

Math Expert LLM
Llemma 31B 21.03% 22.13% 21.58%

DeepSeek-Math 7B 25.80% 24.60% 25.20%

TheoremLlama 8B 36.48% 33.61% 35.04%

Table 1: Main experimental results. Each LLMs result takes 128 rounds of generation, TheoremLlama are
cumulative results for multiple iterations of proofs

dataset for comparison because some baselines
does not open-source their train-test split of such
dataset.

Our task is to query LLM to generate the com-
plete Lean4 proofs for the mathematical problems
in MiniF2F based on their Lean4 statement and NL
statement and proof together using no more than 16
in-context examples. All the imports are manually
set to lighten the workload of LLM.

3.1.2 Baseline
Due to the lack of previous studies that use LLMs
to generate complete proofs for Lean4; and most
of the existing works working on Reinforcement
Learning (RL) or searching methods, there are
no universally approved baselines for compari-
son. Many existing works are focusing on Is-
abelle (Jiang et al., 2022a,b; Wu et al., 2022), a
language that is largely different from Lean4, mak-
ing direct comparison infeasible (Yang et al., 2024).
Many Lean-based methods concentrate on online
iteration with Lean (Lample et al., 2022; Polu et al.,
2022).

Therefore, our baseline selection focuses on tree-
based methods without RL and few-shot LLM
proof writing. The baselines we use include: (1)
Expert Iteration (Polu et al., 2022): A tree search
method based on GPT-f (Polu and Sutskever, 2020)
that applies expert iteration to enhance the perfor-
mance1; (2) ReProver (Yang et al., 2024): The
Lean4 tree-search baseline that builds on ByT5
to search for tactics based on current formal state
and goal. (3) Few-shot LLMs: This baseline fo-
cuses on directly querying LLMs to get the full
proof of a formal theorem in a few-shot manner.
In particular, we choose GPT-4-Turbo (Achiam

1Since full training of such methods uses closed source
model and full training of such models takes more than 2,000
A100 GPU hours, for a fair comparison, we use θ1 result as
baseline

et al., 2023)2, Gemini-1.5 (Reid et al., 2024), and
Llama3-8B-Instruct (AI@Meta, 2024). This base-
line is set to compare the TheoremLlama’s ability
to perform formal reasoning effectively. (4) Mathe-
matical LLMs: This baseline uses LLMs that are
specifically trained in massive math-related corpus
to perform whole proof generation. In particular,
we choose: Llemma (Azerbayev et al., 2023b), and
DeepSeek-Math-7B (Shao et al., 2024) as the base-
lines. This aims to demonstrate under fine-tuned
general-purpose LLMs can outperform math expert
model under some cricumstances.

Following the results from (Yang et al., 2024;
Polu et al., 2022), we adopt pass@1 for all tree-
search methods to ensure a consistent comparison
under a similar GPU footprint during evaluation.
The variation in the number of parameters for tree-
search models also stems from our aim to maintain
comparable computational costs. Specifically, our
primary consideration for selecting baselines was
to ensure the inference cost remains on the same
scale, with an inference cost of 1.5 A6000 GPU
days.

3.2 Implementation Details

The OBT dataset is generated using Gemini-
1.5 (Reid et al., 2024) for writing the natural lan-
guage of the theorems and performing NL-FL boot-
strapping. We use Gemnin-1.5 because it can
give more human-like proofs and a better abil-
ity in NL-FL combination, details can be found
in Appendix D. The OBT dataset contains NL-
FL aligned and bootstrapped 106,852 theorems,
the data record format is in Appendix E. We per-
form Instruction Fine-tuning on Llama3-Instruct-
8B (AI@Meta, 2024) with 1,000 warm-up steps
and a learning rate of 1E-5. Training takes approx-

2From (Bambhaniya et al., 2024), we infer the parameter
size of GPT-4 Trubo to be larger than 1T
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Method MiniF2F-Valid MiniF2F-Test

TheoremLlama 34.84% 31.15%
w/o NL Guidance 24.18% 17.21%
w/o Bootstrapping 26.23% 26.23%
w/o Block Training 27.87% 23.36%

w/o Curriculum Data Sorting 29.51% 25.83%

Table 2: Ablation study result

imately 32 hours on an 8 GPU A6000 machine.
During the evaluation, we perform a uniform 128
generation for LLM’s whole-proof generation. The
initial examples for in-context learning are obtained
from the proved theorem list of Yang et al. (2024).
Depending on the context length, we use 10-16 ex-
amples for all LLM queries. We stop at the second
round of iterative proof writing.

For few-shot LLM baselines, we use GPT-4-
Turbo-0409 and Gemini-1.5-preview-0409 to per-
form formal reasoning. Since both models are re-
leased after Mathlib4, so they can have such data in
their training set, which makes a fair comparison.

3.3 Results

We present the main experimental results in
Tab.1. From the table, we can observe that Theo-
remLlama achieves a cumulative accuracy rate
of 36.48% on MiniF2F-Valid and 33.61% on
MiniF2F-Test, suppressing all the baselines.

It is also notable that the result of un-finetuned
Llama3-8B-Instruct and GPT-4 have a similar accu-
racy rate on both the Test and Valid set despite the
great difference in model size, this demonstrates
most modern LLMs are under-trained on Lean4
reasoning. Surprisingly, Gemini has the best perfor-
mance among all the baselines rather than GPT-4;
this demonstrates its superior ability to understand
formal language and gives indirect evidence that
Gemini is a better choice of LLM to perform Infor-
malization and Bootstrapping.

For the tree-search method, the large search
space limits the choice of model in relatively small
size and they only achieve an average 27.2% ac-
curacy rate, which is relatively low, demonstrating
the limitation of such a method.

For the math-expert models, we can spot that
TheoremLlama also significantly outperforms
them. This shows that large math-related code and
text pertaining itself does not naturally provide the
formal reasoning ability. This also demonstrates
the effectiveness of our fine-tuning to transform a
general-purpose model into a Lean4 expert.

3.4 Ablation Studies

Due to the low GPU footprint of TheoremLlama,
we are able to perform a comprehensive ablation
study to test the effectiveness of each component
in the framework, namely, NL guidance, NL-FL
bootstrapping, block training, and curriculum data
sorting. In the ablation studies, we use the result
of the first iteration with the default example list
from Yang et al. (2024). The results are demon-
strated in Tab. 2. From the table, we can find that
the removal of any component of our framework
will lead to a significant performance drop com-
pared to the full framework result, which proves
that modules we propose are not trivial combina-
tions, but work synergically to enhance the perfor-
mance.

In the removal of NL Guidance, we perform the
experiment under the setting without NL in train-
ing data but use the NL examples and NL guidance
in the testing data. The accuracy rate dropped sig-
nificantly, and the fine-tuned model does not out-
perform the untrained model. This indicates that
merely more exposure to Lean4 proof code does
not improve the ability of LLM in formal reasoning.
When we remove the NL-FL bootstrapping, the per-
formance drops because the LLM often loses track
of the proof and keeps on generating the same tac-
tic. With bootstrapping, the performance is much
better due to the NL guidance.

The ablation study also shows that removing
block training results in a performance drop, which
we attribute to the distribution shift between train-
ing and testing data. Without block training, the
training data lacks information about in-context
examples, while the testing phase includes this in-
context knowledge for the LLM to learn. Addition-
ally, removing curriculum data sorting also leads
to a performance decline. Curriculum data sorting
provides a smoother training process by ensuring
that lengthy and difficult examples do not appear
early on and disrupt learning.

Despite performance drop when removing the
individual component, with other components, our
method still outperforms un-finetuned Llama3 ex-
cept for without the NL guidance. It supports the
effectiveness of other components from another
perspective.

3.5 Iterative Proof Writing study

This section gives a closer look into the behavior
of different rounds of iterative proof writing as
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Method MiniF2F-Valid MiniF2F-Test

Round 1 34.84% 31.15%
Round 2 36.48% 33.61%

Table 3: Different rounds of iterative proof writing

Figure 2: Histogram for all combinations of NL state-
ment in example list and FL statement in Mathlib4

demonstrated in the Tab.3. From the table, we can
see that when using the example from the same
dataset for proof writing, there is a 2% accuracy
increment in pass rate. This shows that our iterative
proof writing method can reduce the distribution
gap between testing data and examples to some
extent.

3.6 Effectiveness of Example Retrieval

This section studies the effectiveness of our fine-
tuned T5 for example retrieval using graphical
methods. We encode all the formal theorem state-
ments in Mathlib4 and the natural language theo-
rem statement in the example list following Sec-
tion 2.1.2. We then compare the cosine similarity of
all possible combinations of the formal and natural
language theorem statement set.

From the two peaks in the histogram at cos sim-
ilarities of 1.0 and 0.0 in Fig. 2, we can see that
our example selection model is certain about its
prediction. Plus a low testing loss that we observed
when training the model, means its performance
is relatively good. We can say our retriever can
largely distinguish similar and different informal
statements in the example list and formal state-
ments in Mathlib4.

3.7 Case study

We analyze the behavior of TheoremLlama by ex-
amining the proofs generated by the theorem prover
from MiniF2F-Test in Lean4. Since MiniF2F-Test
is a dataset that does not have publicly available
proof, it is highly unlikely it will be included in the
training dataset of any LLM. For more case studies,

kindly refer to Appendix B.
NL Statement: Let a and b be two real numbers
such that a2 + b2 = 1. Show that ab+ (a− b) ≤ 1

NL Proof: We have that (a − b − 1)2 ≥ 0. By
expanding, we have: 0 ≤ a2 − ab − a − ab +
b2 + b − a + b + 1. Since a2 + b2 = 1, we get
0 ≤ 2−2ab−2a+2b. As a result, ab+(a−b) ≤ 1.
Generated Proof:
theorem algebra_sqineq_unitcircatbpamblt1
(a b: R)
(h0 : a^2 + b^2 = 1) :
a * b + (a - b) ≤ 1 := by
-- We have that (a - b - 1)^2 ≥ 0.
have h1 : 0 ≤ (a - b - 1) ^ 2 := sq_nonneg _
-- By expanding, we have:
-- 0 ≤ a^2 -ab-a-ab+b^2 +b-a+b+1.
linarith [h0, sub_add_cancel a b]

From the generated proof, we can see that the
LLMs learn from the data to obtain the condition of
≥ 0 in Lean and use the correct condition expres-
sion. Also, it learns to use the lean tactic linarith
to expand the inequality to obtain correct proof,
which shows the Lean4 ability that LLM obtained
in fine-tuning. This example also demonstrates
the effectiveness of using external and in-code NL
proof to guide LLM in writing Lean4 proofs, which
qualitatively validate the NL guidance and NL-FL
bootstrapping method.

4 Related work

4.1 Formal Reasoning

Formal mathematical languages express mathemati-
cal statements in first-order logic. Such verification
systems for mathematics are also known as Inter-
active Theorem Provers (ITPs). There are many
ITP languages such as Isabelle (Paulson, 1994),
Lean (De Moura et al., 2015; Moura and Ullrich,
2021), Coq (Coq, 1996), Metamath (Megill and
Wheeler, 2019), and HOL Light (Harrison, 2009).
The formal languages embed mathematical defini-
tions and theorems onto a concrete logical founda-
tion in their kernels. Following Polu et al. (2022),
we work on Lean because Lean proves are typically
more concise and relatively understudied.

Many works focus on automatically complet-
ing formal reasoning using machine learning-based
methods. Some use more traditional methods like
K Nearest Neighbor (KNN) (Gauthier et al., 2021)
or Graph Neural Network (GNN) (Yang and Deng,
2019). Others take advantage of the recent devel-
opment of deep transformer-based methods that
treat theorems as plain texts. Among them, Expert
Iteration (Polu et al., 2022) and ReProver (Yang
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et al., 2024) focus on training existing LLMs to
generate tactics and perform a tree search to com-
plete the proofs. Other methods focus on exploring
the few-shot capability, allowing LLMs to directly
generate the whole proof based on the guidance
of natural language (Wu et al., 2022; Jiang et al.,
2022a). Although there are some attempts to con-
struct aligned datasets for theorem proofing (Azer-
bayev et al., 2023a; Ying et al., 2024), there is still
no large-scale NL-FL aligned dataset. This leads
to the fact that there are currently no universally
recognized methods for training LLMs to generate
whole proof directly.

4.2 Dataset Generation

Modern machine learning methods typically re-
quire massive datasets to learn an application. How-
ever, it is impractical to have high-quality data for
every corner case, prompting researchers to explore
dataset generation. By combining existing incom-
plete data with the rich knowledge in LLMs, dataset
generation can leverage this knowledge to produce
a complete dataset suitable for model training. Ini-
tial attempts have achieved this through fine-tuned
generative models (Anaby-Tavor et al., 2020; Chen
et al., 2020). Other researchers explore zero-shot
or few-shot performance for modern LLMs by di-
rectly querying the LLMs to obtain the intended
dataset (Meng et al., 2022; Gao et al., 2022; Wang
et al., 2023). In this work, we take advantage of
these ideas for dataset generation to obtain the OBT
dataset.

5 Conclusion

This paper proposes TheoremLlama, an end-to-
end framework for transforming a general-purpose
LLM into a Lean4 expert, along with the Open
Bootstrapped Theorems (OBT) dataset, a NL-FL
aligned, bootstrapped dataset for training an LLM
Lean4 prover. This work largely addresses the sig-
nificant data scarcity problem by introducing the
NL-FL Aligned Dataset Generation method, which
is used to create the OBT dataset. Subsequently,
we demonstrate block training and curriculum data
sorting techniques to enhance LLM training. Fur-
thermore, we present the Iterative Proof Writing
tactic to better utilize the LLM’s capability in the-
orem proving. The major innovation of this work
is the NL-FL bootstrapping method, which enables
the LLM to better transfer its natural language rea-
soning ability to Lean4 proof writing through gen-

erated data. We also conduct comprehensive exper-
iments to evaluate the effectiveness of Theorem-
Llama, where our framework successfully proves
36.48% and 33.61% of the theorems in MiniF2F-
Valid and Test, respectively, surpassing the GPT-4
and Gemini-1.5 baselines. We will open-source all
the datasets to facilitate further development in the
field.

6 Discussion

Although large-scale pre-train provides LLMs with
strong abilities in most general tasks, there are
many corner cases that lack data for any machine
learning methods to be effective. Formal reason-
ing is one of the most significant examples. From
a border perspective, TheoremLlama sheds light
on a general framework to further apply modern
LLMs to such corner cases. It contains methods
to leverage existing incomplete data, techniques to
better train LLMs for unfamiliar tasks, and strate-
gies to enhance LLM’s performance in application.
Thus, the contribution of this paper is not limited
to the field of formal reasoning but gives a general
framework for the further usage of LLMs in corner
cases.
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Limitations

Despite the promising results of TheoremLlama,
there are still some limitations in our work that can
be addressed in future research. First, even with nat-
ural language proofs to guide Lean4 proof writing,
all existing formal provers, including Theorem-
Llama, struggle with solving difficult IMO-level
problems. We conclude that LLMs currently lack
the ability to understand the intricate technical as-
pects of human proofs. Integrating the "kindles" in
human-written proofs into LLMs is an overlooked
area in current research. Secondly, due to the com-
plexity of the Lean4 kernel, this paper does not
explore the potential of RL methods for enabling
LLMs to write formal proofs through online inter-
action with Lean, nor does it incorporate feedback
from Lean to refine incorrect proofs. This requires
deeper integration of Lean and Python. Thirdly,
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although formal language provides a concrete foun-
dation for verifying the correctness of mathemat-
ical proofs, there are potential risks that a natural
language-guided Lean4 prover may automatically
correct some errors in natural language. This could
lead to errors in natural language being considered
correct and cause wrong natural language proofs to
be subsequently propagated within the mathemati-
cal community.
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A Confusing Lean3 Data in LLM
Pre-train

While studying how to directly generate Lean4
formal proofs using LLMs, we found that most
LLMs have a serious problem with hallucination.
The most significant issue is that, even with clear
prompt instructions, the LLMs tend to write Lean3
proofs that are incompatible with Lean4.

The results for GPT-4 are shown in Tab. 6 and 7.
From these tables, we can observe that even with
clear instructions to use Lean4 for writing proofs,
the LLM still uses Lean3 syntax for all imports
and proofs. The imports are from Lean3 repos-
itories or sometimes do not exist, and the proof
segments, indicated by "begin" and "end," are also
from Lean3. This issue also occurs with Llama-3-
8B-Instruct and Gemini-1.5-Pro, but less frequently.
We attribute this behavior to the massive amount of
Lean3 data used in the pre-training of these LLMs.
This causes LLMs to fail in fully utilizing their
knowledge in formal reasoning, as many generated
formal proofs are incorrect in format.

Alternatively, TheoremLlama uses extensive
Lean4 data during instruction fine-tuning to sig-
nificantly reduce this problem, as detailed in Sec-
tion 3.7 and Appendix B.

B Case Study

This section provides additional case studies to
further evaluate the performance of TheoremL-
lama in proving Lean4 theorems with NL guidance.
Here, we select most examples from MiniF2F-
Valid to avoid revealing too much proof informa-
tion about MiniF2F-Test and contaminating the
dataset. We present the examples in Tab. 8, 9, 10,
11, and 12.

From case 1 in Tab. 8, we can see that the LLMs
learn how to perform complex reductions stated in
Lean4 code based on the natural language. The
"calc" section demonstrates the LLM’s ability to
correctly reduce algebraic formulas based on con-
ditions that are not explicitly stated in the natural
language proof.

Case 2 in Tab. 9 demonstrates that under the
TheoremLlama framework, the LLM learns how
to add sub-goals for proving in the correct Lean4
form from natural language proof. This is not ob-
served in any of the correct proofs in the untrained
model.

From cases 3, 4, and 5 in Tab. 10, 11, and 12, we
can see the ability of our LLM to perform step-by-

1k 10k full OBT ( 100k)

MiniF2F-Test 29.01% 30.74% 31.15%

Table 4: Various dataset size

step reasoning in both natural language and formal
language in relatively complex proofs, demonstrat-
ing the effectiveness of NL-FL bootstrapping.

C Various dataset size training

This section presents the results of training the
model on different scales of the OBT dataset.
Specifically, we randomly sampled 1k and 10k
subsets from the OBT dataset, and the results are
shown in Tab. 4.

From the table, we observe that the performance
improvement does not align with typical human
behavior in text writing, resulting in the perfor-
mance increase not following the expected scaling
law. This phenomenon is also observed in dataset
generation works such as Wang et al. (2023).

D Different LLM’s behavior in
Informalization

This section details why we use Gemini-1.5 as the
LLM for informalization and NL-FL cootstrapping
rather than the commonly used OpenAI GPT fam-
ily models through examples. We demonstrate an
example of informalization in Table 13. From the
table, we can see that the GPT-4-generated proof
is more like an explanation of the Lean4 code,
while the Gemini-1.5-generated proof resembles
the wording commonly used in mathematics. This
demonstrates that Gemini-1.5 has a better ability to
understand Lean4 code for informalization. This is
also indirectly supported by Gemini’s superior per-
formance in writing Lean4 proofs for the MiniF2F
dataset, as shown in Table 1.

E OBT dataset record

The data record in OBT contains the following
components:

1. Name: the name of the theorem, following
the name of dataset extracted in Yang et al.
(2024)

2. Statement: Lean4 statement of the theorem

3. Proof: Lean4 theorem statement together
with the proof, directly extracted from Math-
lib4
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4. File_path: The git repository for the given
data record (for OBT dataset, it should be
Mathlib4)

5. Commit: The exact commit number of the
theorem

6. Generated_informal_statement_and_proof:
The generated theorem informal theorem
statement and proof

7. Commented_proof: The NL-FL boot-
strapped Lean4 code.

the example of an OBT dtaset record is presented
at Tab. 14

F More bootstrapping method analysis

This section studies the differences between vari-
ous data bootstrapping methods. Our NL-FL Boot-
strapping method is inspired by in-code comments,
which can help the LLM transfer its ability from
natural language to formal language. To demon-
strate the effectiveness of this approach, we experi-
mented with another bootstrapping method, namely
Head Bootstrapping. This method involves adding
natural language reasoning as comments before the
formal language in the training data, allowing the
model to learn this behavior and potentially encour-
aging deeper reasoning. We tested this approach
using blocked training and a curriculum-learning
strategy. The Head Bootstrapping method achieved
a result of 25.46%, while our NL-FL Bootstrap-
ping method reached 31.15%. This comparison
demonstrates the effectiveness of our bootstrap-
ping method over other dataset bootstrapping tech-
niques.

G Applying TheoremLlama framework
to other models

To evaluate the generality of the TheoremLlama
framework, we apply the dataset generated, to-
gether with curriculum learning technique and
block training method to fine-tune other models.
In particular, we choose DeepSeek-Math-7B (Shao
et al., 2024) as the base model for training, the
result demonstrated in Tab.5.

From the table, we can see that after applying
our method to the math expert, the Lean4 perfor-
mance of the model has been greatly increased.
This proves TheoremLlama can be effective in
a wide range of models rather than could be only
applied to Llama.

Method MiniF2F-Valid MiniF2F-Test

DeepSeek-Math-7B 25.80% 24.60%
TheoremLlama + DeepSeek-Math 38.52% 35.66%

Table 5: Applying TheoremLlama method to DeepSeek-
Math

H Analyze the impact of NL-FL
Bootstrapping

This section provides a example towards the NL-FL
Bootstrapping.

Generated theorem proof without Bootstrapping:

theorem amc12b_2002_p2
(x : Z)
(h0 : x = 4) :
(3 * x - 2) * (4 * x + 1) - (3 * x - 2) * (4 *

x) + 1 = 11 := by
subst x
ring

Generated theorem proof with Bootstrapping:

theorem algebra_sqineq_unitcircatbpamblt1
(a b: R)
(h0 : a^2 + b^2 = 1) :
a * b + (a - b) ≤ 1 := by
-- We have that (a - b - 1)^2 ≥ 0.
have h1 : 0 ≤ (a - b - 1) ^ 2 := sq_nonneg _
-- By expanding, we have:
-- 0 ≤ a^2 -ab-a-ab+b^2 +b-a+b+1.
linarith [h0, sub_add_cancel a b]

We can clearly find out that the generated re-
sult without bootstrapping tends not to use nat-
ural language to guide the generation of proof,
which makes it fail to solve the problem alge-
bra_sqineq_unitcircatbpamblt1. Thus, both abla-
tion studies in Section 2 and case studies can pro-
vide the effectiveness of the bootstrapping method.

I OBT dataset quality analysis

This section analyzes the quality of the OBT
dataset. Due to the large volume of data, it is
infeasible to analyze every record to verify if it
has been informalized correctly. Therefore, we
randomly sampled 40 records and evaluated them
manually. Among these, 29 are correct, 4 are par-
tially correct, and 7 contain critical mistakes that
render the proof mathematically incorrect. The
major mistake the LLM makes is confusing some
complex mathematical concepts, such as mixing
the general Lebesgue measure with the probability
measure. There are also misunderstandings in vital
parts of formal reasoning, for instance, mistakenly
using normal sequence convergence in natural lan-
guage reasoning while the formal language uses the
Cauchy sequence to prove sequence convergence.
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J Term List

Since formal theorem proving is a relatively new
field, there is many fundamental terms that are hard
to remember. Thus, we provide a table explaining
some important terms in this paper that are not
fully elaborated in Tab.15 for researchers who are
not that familiar with that field to read our paper
smoother.

K License

Our dataset will be distributed under the CC BY 2.0
license, code will be distributed under the MIT li-
cense. The dataset extracted from LeanDojo (Yang
et al., 2024) is under CC BY 2.0. The original
Mathlib4 and Lean is under Apache 2.0 license.
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Prompt You are a Lean4 expert who can write good Lean4 code based on natural
language mathematical theorem and proof
<Examples>
### Natural language version of theorem and proof: <NL of
amc12a_2019_p21>
### Lean4 version of theorem statement: <Lean4 statement of
amc12a_2019_p21>

theorem amc12a_2019_p21 (z : C) (h0 : z = (1 + Complex.I) / Real.sqrt 2) :
((Σ k : Z in Finset.Icc 1 12, z ^ k ^ 2) * (Σ k : Z in Finset.Icc 1 12,

1 / z ^ k ^ 2)) = 36 :=

### Lean4 version of theorem and proof:

Generated
Result

To translate the given natural language explanation of the theorem into a Lean4
proof, we must first define the necessary elements accurately in Lean4 syntax.
This includes the expression for z, the computation of powers and their modulo
reductions, and ultimately the statement of the sums and their product. Lean4
provides a robust framework for handling complex numbers and integer arith-
metic, which we will use here.

import data.complex.basic
import data.finset.basic
import data.nat.basic

open complex

-- Define the main theorem
theorem amc12a_2019_p21 :

let z := (1 + I) / sqrt 2 in
let s := Σ k in finset.range 12, (z ^ (k+1) ^ 2) in
let t := Σ k in finset.range 12, (1 / (z ^ (k+1) ^ 2)) in
s * t = 36 :=

begin
. . . -- Details omitted

end

Table 6: GPT-4 writing Lean4 proof Example 1
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Prompt You are a Lean4 expert who can write good Lean4 code based on natural
language mathematical theorem and proof
<Examples>
Natural language version of theorem and proof:
mathd_numbertheory_543: Find the number of distinct positive divisors of
(30)4 excluding 1 and (30)4. Show that it is 123.

(304) = (21 · 31 · 51)4 = 24 · 34 · 54

Since t(304) = (4 + 1)3 = 125, taking out 1 and (304) leaves 125− 2 = 123
positive divisors.
### Lean4 version of theorem statement:

theorem mathd_numbertheory_543 : (Σ k in Nat.divisors (30 ^ 4), 1) - 2
= 123 :=

### Lean4 version of theorem and proof:

Generated
Result

To formalize and prove the given theorem in Lean4, we need to use Lean’s
mathematical libraries, particularly those related to natural numbers and their
properties, such as divisor functions. The theorem involves computing the total
number of divisors of 304, excluding 1 and 304 itself.

import data.nat.prime
import algebra.big_operators

open_locale big_operators

-- Define the theorem stating that the number of divisors of 30^4,
excluding 1 and 30^4, is 123.

theorem mathd_numbertheory_543 :
(Σ k in nat.divisors (30^4), 1) - 2 = 123 :=

begin
. . . -- Details omitted

end

Table 7: GPT-4 writing Lean4 proof Example 2
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NL Statement If f(x) =
1

x+ 2
, what is f(f(1))? Show that it is

3

7
.

NL Proof We see that f(1) =
1

1 + 2
=

1

3
. Therefore, f(f(1)) = f

(
1

3

)
=

1
1
3 + 2

=

1
7
3

=
3

7
.

Generated Proof
theorem mathd_algebra_270

(f : R → R)
(h0 : ∀ x, x ̸= -2 -> f x = 1 / (x + 2)) :
f (f 1) = 3/7 := by
-- We see that f 1 = 1 / (1 + 2) = 1 / 3
have h1 : f 1 = 1 / 3 := by norm_num [h0]
-- Thus f (f 1) = f (1 / 3) = 1 / (1 / 3 + 2) = 1 / (7 / 3) = 3 / 7
calc
f (f 1) = f (1 / 3) := by rw [h1]
_ = 1 / (1 / 3 + 2) := by norm_num [h0]
_ = 1 / (7 / 3) := by norm_num
_ = 3 / 7 := by norm_num

Table 8: Additional Case Study 1

NL Statement If |x− 2| = p, where x < 2, then x− p =
(A) − 2 (B)2 (C)2− 2p (D)2p− 2 (E)|2p− 2|
Show that it is (C)2− 2p.

NL Proof When x < 2, x− 2 is negative so |x− 2| = 2− x = p and x = 2− p. Thus
x− p = (2− p)− p = 2− 2p. Leading to answer (C)2− 2p

Generated Proof
theorem amc12_2000_p5 (x p : R) (h0 : x < 2) (h1 : abs (x - 2) = p) : x -

p = 2 - 2 * p := by
-- If x < 2, then x - 2 is negative, so |x - 2| = 2 - x = p.
-- Thus, x = 2 - p.
suffices abs (x - 2) = -(x - 2) by
rw [h1] at this
linarith

-- Therefore, x - p = (2 - p) - p = 2 - 2p.
apply abs_of_neg
linarith

Table 9: Additional Case Study 2
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NL Statement Suppose that g(x) = f−1(x). If g(−15) = 0, g(0) = 3, g(3) = 9 and
g(9) = 20, what is f(f(9))? Show that it is 0.

NL Proof Since f and g are inverses and g(3) = 9, we have f(9) = 3, so f(f(9)) = f(3).
Similarly, g(0) = 3, so f(3) = 0.

Generated Proof
theorem mathd_algebra_451

(σ : Equiv R R)
(h0 : σ.2 (-15) = 0)
(h1 : σ.2 0 = 3)
(h2 : σ.2 3 = 9)
(h3 : σ.2 9 = 20) : σ.1 (σ.1 9) = 0 := by

-- Since f and g are inverses and g(3) = 9, we have f(9) = 3, so f(f(9))
= f(3).

simp only [Equiv.invFun_as_coe, eq_comm] at h0 h1 h2 h3
-- Similarly, g(0) = 3, so f(3) = 0.
simp only [Equiv.toFun_as_coe]
rw [← Equiv.apply_eq_iff_eq_symm_apply σ] at h2
rw [← Equiv.apply_eq_iff_eq_symm_apply σ] at h1
have h4 := (Equiv.apply_eq_iff_eq σ).mpr h2
rw [h1] at h4
exact h4

Table 10: Additional Case Study 3

NL Statement For what real value of k is 13−
√
131

4 a root of 2x2− 13x+k? Show that it is 19
4 .

NL Proof We could substitute (13 −
√
131)/4 for x in the equation, but the quadratic

formula suggests a quicker approach. Substituting 2, −13, and k into the
quadratic formula gives

−(−13)±
√
(−13)2 − 4(2)(k)

2(2)
=

13±
√
169− 8k

4
.

Setting (13+
√
169− 8k)/4 and (13−

√
169− 8k)/4 equal to (13−

√
131)/4,

we find no solution in the first case and 169 − 8k = 131 in the second case.
Solving yields k = (169− 131)/8 = 38/8 = 19

4 .

Generated Proof
theorem mathd_algebra_116 (k x : R) (h0 : x = (13 - Real.sqrt 131) / 4)

(h1 : 2 * x ^ 2 - 13 * x + k = 0) : k = 19 / 4 := by
-- Proof: We are given that (13 - $\sqrt{131}$) / 4 is a root of the

quadratic 2²x - 13x + k = 0
-- and want to show that k = 19/4.
rw [h0] at h1 -- Substitute (13 - $\sqrt{131}$) / 4 for x in the

quadratic equation.
-- We now have a equation that is reducible to k = 19/4.
rw [eq_comm.mp (add_eq_zero_iff_neg_eq.mp h1)] -- Rearrange the equation

obtained from the previous step.
norm_num -- Normalize the numeric expressions.
rw [pow_two] -- Expand the square term.
rw [mul_sub] -- Expand by distributivity.
rw [sub_mul, sub_mul] -- Expand by distributivity.
rw [Real.mul_self_sqrt _] -- Simplify $\sqrt{a}$ * $\sqrt{a}$ to a.
ring -- Apply the ring axioms to simplify the expression.
linarith -- Verify that the left and right sides of the equation are

equal, thus proving k = 19/4

Table 11: Additional Case Study 4
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NL Statement If 3a+ b+ c = −3, a+3b+ c = 9, a+ b+3c = 19, then find abc. Show that
it is -56.

NL Proof Summing all three equations yields that 5a + 5b + 5c = −3 + 9 + 19 = 25.
Thus, a + b + c = 5. Subtracting this from each of the given equations, we
obtain that 2a = −8, 2b = 4, 2c = 14. Thus, a = −4, b = 2, c = 7, and their
product is abc = −4× 2× 7 = −56.

Generated Proof
theorem mathd_algebra_338

(a b c : R)
(h0 : 3 * a + b + c = -3)
(h1 : a + 3 * b + c = 9)
(h2 : a + b + 3 * c = 19) :
a * b * c = -56 := by
-- This theorem shows that if 3a + b + c = -3, a+3b+c = 9, a+b+3c = 19,
-- then a * b * c = -56.
have h3 : a + b + c = 5 := by linarith
-- From the first equation, 3a + b + c = -3, we have a + b + c = 5.
have h4 : 2 * a = -8 := by linarith
-- From the first equation, 3a + b + c = -3, we also have 2 * a = -8.
have h5 : 2 * b = 4 := by linarith
-- From the second equation, a+3b+c = 9, we have 2 * b = 4.
have h6 : 2 * c = 14 := by linarith
-- From the third equation, a+b+3c = 19, we have 2 * c = 14.
have h7 : a = -4 := by linarith
-- From h4 and h3, we have a = -4.
have h8 : b = 2 := by linarith
-- From h5 and h3, we have b = 2.
have h9 : c = 7 := by linarith
-- From h6 and h3, we have c = 7.
simp_all only [mul_neg, neg_mul, mul_assoc, neg_add, add_assoc,

add_left_comm, sub_eq_add_neg,
sub_neg_eq_add, eq_self_iff_true, true_and]

ring_nf
-- Finally, we can conclude that a * b * c = -4 * 2 * 7 = -56.
-- QED.

Table 12: Additional Case Study 5
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Prompt You are a mathematician who can write natural language proof based on Lean4
proof
<Examples>
Lean4 version of theorem statement and proof:

theorem integral_eq_sub_of_hasDerivAt (hderiv : ∀ x ∈ uIcc a b, HasDerivAt
f (f' x) x)
(hint : IntervalIntegrable f' volume a b) :

∫
y in a..b, f' y = f b -

f a :=
integral_eq_sub_of_hasDeriv_right (HasDerivAt.continuousOn hderiv)

(fun _x hx => (hderiv _ (mem_Icc_of_Ioo hx)).hasDerivWithinAt) hint

Natural language version of theorem statement and proof:

Gemini
Result

Statement: Let f : R → R be a function that is differentiable on the interval
[a, b]. We want to show that

∫ b
a f ′(x) dx = f(b)− f(a).

Proof: Since f is differentiable on [a, b], it is continuous on [a, b]. By the
Fundamental Theorem of Calculus, Part 1, we know that if F is an antiderivative
of f ′ on [a, b], then

∫ x
a f ′(t) dt = F (x)−F (a) for any x ∈ [a, b]. In particular,

if we take x = b, we get
∫ b
a f ′(t) dt = F (b)−F (a). Since F is an antiderivative

of f ′, we can choose F to be f itself. Therefore, we have F (x) = f(x) and
the equation becomes

∫ b
a f ′(t) dt = f(b) − f(a). Thus, we have shown that∫ b

a f ′(x) dx = f(b)− f(a), which completes the proof.

GPT Re-
sult

Statement: Given a function f defined on an interval [a, b], and f ′, its derivative,
prove that the integral of f ′ from a to b equals f(b)− f(a).
Proof: Assume that for every point x in the closed interval [a, b], the
function f has a derivative f ′(x) at x, denoted by HasDerivAt f(f ′(x))x.
Also, assume that f ′ is integrable over the interval from a to b, denoted by
IntervalIntegrable f ′ volume a b.
To prove the theorem, we utilize the Fundamental Theorem of Calculus, which
states that if a function g is continuous on [a, b] and has an antiderivative F

over that interval, then
∫ b
a g(x) dx = F (b) − F (a). In this case, f ′ acts as

g, and its antiderivative is f by the definition of a derivative. The condition
HasDerivAt f(f ′(x))x implies that f ′ is continuous on [a, b] due to the contin-
uous nature of derivatives under normal circumstances.
1. Continuity of f ′: The hypothesis ∀x ∈ [a, b],HasDerivAt f(f ′(x))x as-
sures that f ′ is continuous on [a, b]. This is because the derivative at a point
implies local continuity at that point.
2. Integral of f ′: Since f ′ is continuous over [a, b] and integrable (as given
by IntervalIntegrable f ′ volume a b), we apply the Fundamental Theorem of
Calculus. Hence,

∫ b
a f ′(y) dy = f(b)− f(a).

This concludes the proof. The integral of the derivative f ′ from a to b results in
the net change in the function f over the interval, which is f(b)− f(a).

Table 13: Comparison of Gemini-1.5 and GPT-4 generated NL proofs
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Name intervalIntegral.integral_eq_sub_of_hasDerivAt

Statement
theorem integral_eq_sub_of_hasDerivAt (hderiv : ∀ x ∈ uIcc a b, HasDerivAt

f (f' x) x)
(hint : IntervalIntegrable f' volume a b) :

∫
y in a..b, f' y = f b -

f a :=

Proof
theorem integral_eq_sub_of_hasDerivAt (hderiv : ∀ x ∈ uIcc a b, HasDerivAt

f (f' x) x)
(hint : IntervalIntegrable f' volume a b) :

∫
y in a..b, f' y = f b -

f a :=
integral_eq_sub_of_hasDeriv_right (HasDerivAt.continuousOn hderiv)
(fun _x hx => (hderiv _ (mem_Icc_of_Ioo hx)).hasDerivWithinAt) hint

File_path https://github.com/leanprover-community/mathlib4

Commit 3ce43c18f614b76e161f911b75a3e1ef641620ff

Generated_
infor-
mal_
state-
ment_
and_
proof

Let f : R → R be a function that is differentiable on the interval [a, b]. Use the
Fundamental Theorem of Calculus to show that

∫ b

a
f ′(x)dx = f(b)− f(a).

Proof: Since f is differentiable on [a, b], it is continuous on [a, b]. By the Sec-
ond Fundamental Theorem of Calculus, we have d

dx

∫ x
a f ′(t)dt = f ′(x) ∀x ∈

[a, b]. Integrating both sides of this equation with respect to x from a to b,
we get

∫ b
a

d
dx

∫ x
a f ′(t)dtdx =

∫ b
a f ′(x)dx. But the left-hand side of this equa-

tion is equal to
∫ b
a f ′(x)dx, so we have

∫ b
a f ′(x)dx =

∫ b
a f ′(x)dx. Subtracting∫ b

a f ′(x)dx from both sides of this equation, we get 0 = f(b)−f(a). Therefore,
f(b)− f(a) = 0, which proves the desired result.

Commented_proof:
theorem integral_eq_sub_of_hasDerivAt (hderiv : ∀ x ∈ uIcc a b, HasDerivAt

f (f' x) x)
(hint : IntervalIntegrable f' volume a b) :

∫
y in a..b, f' y = f b -

f a :=
-- This theorem states that the integral of the derivative of a
function over an interval
-- is equal to the difference of the function values at the endpoints
of the interval.
-- This is a fundamental theorem of calculus.
integral_eq_sub_of_hasDeriv_right (HasDerivAt.continuousOn hderiv)
-- This part of the proof uses the second fundamental theorem of
calculus, which states that
-- the derivative of the integral of a function is equal to the
function itself.
(fun _x hx => (hderiv _ (mem_Icc_of_Ioo hx)).hasDerivWithinAt) hint
-- This part of the proof uses the fact that the derivative of a
function is continuous on
-- the interval where it is differentiable.

Table 14: Example of one record of OBT dataset
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Term Explaination

Lean4 & Lean Lean is a modern, functional programming language that is
designed for formalizing mathematics proof and performing
auto verification. It allows users to write proofs as code, and its
auto-verification ensures current written proofs are correct by
verifying each logical step. Lean4 is the latest version of Lean

Mathlib & Math-
lib4

Mathlib is a large open-source library built on Lean. It con-
tains comprehensive collection of theorems, definitions and
proofs across most major areas of mathematics, including al-
gebra, calculus and topology. Mathlib is originally build on
Lean3 (De Moura et al., 2015), and Mathlib4 is the Lean4
version of Mathlib.

MiniF2F It is a benchmark designed for evaluating automated theorem
proving systems in formal mathematics. It contains a collection
of mathematical problems sourced from various high-school
to university-level mathematical problems. It was proposed in
Zheng et al. (2021). The NL statement and proof of MiniF2F
is provided by Jiang et al. (2022a). The MiniF2F-Valid is
provided in Yang et al. (2024) and we provide the MiniF2F-
Test.

ByT5-Tacgen This is a tree-search Lean model provided by Yang et al. (2024),
which is used to retrieve the most relevant tactic based on the
current Lean status and unfinished goals. It is based on fine-
tuning By-T5 using Mahtlib data

Table 15: Term list
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