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Abstract

Speech Relation Extraction (SpeechRE) aims
to extract relation triplets from speech data.
However, existing studies usually use synthetic
speech to train and evaluate SpeechRE models,
hindering the further development of SpeechRE
due to the disparity between synthetic and real
speech. Meanwhile, the modality gap issue, un-
explored in SpeechRE, limits the performance
of existing models. In this paper, we construct
two real SpeechRE datasets to facilitate sub-
sequent researches and propose a Multi-level
Cross-modal Alignment Model (MCAM) for
SpeechRE. Our model consists of three compo-
nents: 1) a speech encoder, extracting speech
features from the input speech; 2) an align-
ment adapter, mapping these speech features
into a suitable semantic space for the text de-
coder; and 3) a text decoder, autoregressively
generating relation triplets based on the speech
features. During training, we first additionally
introduce a text encoder to serve as a semantic
bridge between the speech encoder and the text
decoder, and then train the alignment adapter
to align the output features of speech and text
encoders at multiple levels. In this way, we can
effectively train the alignment adapter to bridge
the modality gap between the speech encoder
and the text decoder. Experimental results
and in-depth analysis on our datasets strongly
demonstrate the efficacy of our method. Our
source code is available at https://github.
com/DeepLearnXMU/SpeechRE-MCAM.

1 Introduction

Relation Extraction (RE) aims to extract structured
knowledge from unstructured data in the form of
relation triplet. Since such structured knowledge
can benefit various downstream applications, many
efforts have been devoted to this task. However,
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most studies (Wang et al., 2020; Eberts and Ulges,
2020; Cabot et al., 2021) in this regard focus on
extracting relation triplets from plain text (i.e. Tex-
tRE), which severely limits the application scope of
RE. In addition to text, a large amount of speech is
continuously produced in our daily lives, including
news reports, meetings, and dialogues, etc. Similar
to text, these speeches often contain rich and valu-
able structured knowledge that can not only enrich
existing knowledge graphs but also benefit various
speech-related tasks. Therefore, how to effectively
extract relation triples from speech is an crucial
research topic, yet it remains under-explored.

Wu et al. (2022) are the first to explore the
Speech Relation Extraction (SpeechRE) task. They
first construct two benchmark datasets for this task
by converting the input text from TextRE datasets
into speech using a text-to-speech (TTS) system.
However, this synthetic speech ususlly fails to ac-
curately evaluate the model’s performance in real-
world scenarios. Meanwhile, due to the limited
performance of the TTS system, the synthesized
speech usually contains much noise, especially for
longer input text. It leads to the SpeechRE model,
trained on such synthetic speech, often demonstrat-
ing a subpar performance on real speech.

Meanwhile, Wu et al. (2022) propose a baseline
model for SpeechRE, where a CNN-based length
adapter is used to connect a speech encoder with
a text decoder (See Figure 1(a)). Since the speech
encoder and text decoder are pre-trained on corpora
of different modalities, a significant modality gap
exists between them, thus limiting the performance
of this model. Moreover, SpeechRE models are
usually required to comprehensively understand the
input speech at multiple levels to effectively extract
relation triplets from it. Particularly, the SpeechRE
model first recognizes entities in the input speech
based on its token/entity-level information, and
then predict the relations between these entities
according to its overall semantics at the sentenc
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level. Thus, it is essential to bridge the modality
gap between the speech encoder and text decoder
at multiple levels for better SpeechRE model.

Although the modality gap issue has been widely
studied in other speech-related tasks (Xu et al.,
2021; Han et al., 2021; Ye et al., 2022), it has not
yet been explored in the context of SpeechRE. In
this paper, we first conduct a preliminary study to
investigate the efficacy of advanced cross-modal
alignment methods in other tasks for SpeechRE.
We observe that token-level and sentence-level
alignment methods can enhance the entity recog-
nition and relation extraction performance of the
SpeechRE model, respectively. Meanwhile, we no-
tice some obvious problems with these methods: 1)
the CTC-based token-level alignment method tends
to overfit high-frequency tokens, leading to the col-
lapse of speech features. 2) the compression-then-
alignment-based sentence-level alignment method
loses considerable fine-grained information in the
input speech, significantly limiting the model’s en-
tity recognition capability.

Based on the above analysis, we propose a Multi-
level Cross-modal Alignment Model (MCAM) for
SpeechRE, which consists of a speech encoder, an
alignment adapter, and a text decoder. We first use
the speech encoder to extract speech features from
the input speech. Then, we employ the alignment
adapter to map the speech features into a suitable
semantic space for the text decoder. Finally, the
text decoder is utilized to autoregressively generate
relation triplets based on these speech features.

The alignment adapter is designed to bridge the
modality gap between our speech encoder and text
decoder from multiple levels. To do this, during
training, we introduce an additional text encoder to
extract the text features from the input text, which
will be removed during inference. Then, we train
the alignment adapter to align the feature sequences
produced by the speech and text encoders at three
levels: 1) Token-level Alignment. We first con-
catenate the text features in the current batch to
create a token feature matrix, and then use it to
calculate alignment scores from speech features
to token features. Lastly, we compute a CTC loss
based on these scores and achieve the token-level
alignment by minimizing the loss. Since a to-
ken has distinct features in various contexts, our
method can effectively avoid the overfitting issue
for high-frequency tokens. 2) Entity-level Align-
ment. Here, we construct a mixed feature sequence
by replacing the text features of entities in the text

Figure 1: Illustration of the baseline (Wu et al., 2022)
and its variants, where S = Speech, T = Text, L= Length,
and Em = Embedding.

feature sequence with their corresponding speech
features. Then, we minimize the KL divergence be-
tween the output distributions generated by the text
decoder based on the original text feature sequence
and the mixed one. 3) Sentence-level Alignment.
We first separately compress the speech and text
feature sequences into R global feature vectors us-
ing R relation-specific learnable vectors, serving as
their soft prompts. Then, we use a contrastive loss
to align the final representations of soft prompts
from different modalities. Through the soft prompt
strategy, we can prevent the loss of fine-grained
information during the compression process.

To evaluate the performance of SpeechRE mod-
els in real-world scenarios and facilitate future
studies, we annotate two real SpeechRE datasets:
CoNLL04 and ReTACRED. Experimental results
on the two datasets show that our model consis-
tently outperforms all baselines. Extensive ablation
studies further demonstrate the effectiveness of var-
ious components in our model. Notably, we con-
duct extensive analysis experiments on our dataset
with the aim of inspiring subsequent research.

2 Preliminary Study

In this section, we investigate the effectiveness of
advanced cross-modal alignment methods from
other speech-related tasks for SpeechRE. Here,
we consider two alignment methods: CTC-based
token-level alignment (See Figure 1(b)) (Xu et al.,
2021; Zhang et al., 2023d) and compression-then-
alignment-based sentence-level alignment (See Fig-
ure 1(c)) (Han et al., 2021; Wang et al., 2022). For
the former, a CTC loss is employed to monoton-
ically align speech features with the embedding
vectors of their corresponding tokens. Meanwhile,
these speech features are projected into the em-
bedding space of the text encoder and serve as its
input. For the latter, an attention-based semantic
compressor is utilized to compress the feature se-
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Model
CONLL04

ER RP RTE

LNA-ED (Wu et al., 2022) 18.87 55.66 10.41
+ Token-level alignment 21.53 55.90 11.38
+ Sentence-level alignment 12.75 58.44 8.08

Table 1: Performance of the baseline (LNA-ED) and its
variations on the CONLL04 test set.

Datasets CoNLL04 ReTACRED
#Relation 5 40

#Instance
train 922 33,477
dev 231 9,350
test 288 5,805

#Triplet
train 1,283 58,465
dev 343 19,584
test 422 13,418

#Speech AvgLen. 17.5 20.1
#Speaker 4 8

Table 2: Dataset statistics, where Speech AvgLen. =
Speech Average Length (in seconds).

quences generated by the speech and text encoders
into K global feature vectors, separately. Then, a
contrastive loss is used to align the global feature
vectors of different modalities and input them into
the text decoder to generate relation triples.

In Table 1, we present the performance of these
methods on the CoNLL04 test set, revealing sev-
eral intriguing phenomena: (1) The token-level
alignment enhances the model’s entity extraction
capability, but has a limited effect on its relation
extraction performance. As shown in Figure 2, we
analyse tokens generated by CTC greedy decod-
ing (the nearest tokens to speech features). We find
that the CTC loss tends to overfit high-frequency to-
kens, leading to the collapse of speech features and
limiting the efficacy of this token-level alignment.
(2) The sentence-level alignment effectively im-
proves the model’s performance in relation extrac-
tion, while significantly degrading its entity extrac-
tion capability. The primary reason is a significant
loss of fine-grained information during compres-
sion, which is crucial for entity recognition.

These results suggest that naively applying cross-
modal alignment methods from other tasks to
SpeechRE is suboptimal. Therefore, we customize
a more effective cross-modal alignment method for
SpeechRE, which avoids the defects of the above
methods and inherits their advantages.

3 SpeechRE Datasets

In this section, we provide a detailed description to
the construction process of our SpeechRE datasets.

Figure 2: Token frequencies in the CONLL04 training
set and those generated by CTC greedy decoding on
the CONLL04 test set. Here, we sort tokens based on
their frequencies in the CONLL04 training set and only
report the top 100 most frequent tokens.

Given a TextRE instance (x, y), where x and y re-
spectively denote the input text and output relation
triplets, we create a SpeechRE instance (s, x, y)
by converting x into its corresponding speech s
in a human-read manner. Specifically, we invite
12 native English speakers to transform the input
texts in the CoNLL04 (Roth and Yih, 2004) and
ReTACRED (Stoica et al., 2021) datasets into flu-
ent and clear speeches, thus obtaining two bench-
mark datasets for SpeechRE. We totally annotate
7,246 instances over one month and each speaker
is responsible for annotating 242 instances per day
(about 2 hours) to prevent fatigue. The statistics of
these two datasets are presented in Table 2.

To ensure the quality of speeches, we employ the
Whisper (Radford et al., 2023) model to transcribe
each speech into text, and then compare the result-
ing text with its true input text. Meanwhile, we
hire a professional English speaker to sample and
check the annotated instances for further quality
control. Notably, for the ReTACRED dataset, we
only annotate its test set while retaining the training
and validation sets synthesized by Wu et al. (2022).
Using this dataset, we can effectively evaluate the
model’s robustness to the noise in synthetic data.

4 Our Model

In this section, we give a detailed description to
the proposed MCAM. In terms of architecture, our
model (MCAM) includes three modules: a speech
encoder, an alignment adapter, and a text decoder.
We first use the speech encoder to extract speech
features from the input speech. Then, we employ
the alignment adapter to map these speech fea-
tures into an suitable semantic space, rendering
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them more compatible with the text decoder. Fi-
nally, the text decoder autoregressively generates
linearized relation triplets based on the speech fea-
tures. Notably, the above model inference process
corresponds to the blue arrows in Figure 3.

During training, we introduce a text encoder to
serve as a semantic bridge between the speech en-
coder and text decoder, which is removed during
model inference. Then, the alignment adapter is
trained to align the output features of the speech
and text encoders at three levels. In this way, the
trained alignment adapter can effectively bridge the
modality gap between the speech encoder and text
decoder. In the following sections, we first individ-
ually detail each component involved in our model
training (See Sections 3.1−3.3). Additionally, we
introduce our model training in Section 3.4.

4.1 Speech Encoder & Text Encoder

Following Wu et al. (2022), we use the pre-trained
wav2vec2.0 (Baevski et al., 2020) as our speech
encoder to extract speech features Hs∈Rls×d from
the input speech s, where ls and d denote the num-
ber and dimension of speech features, respectively.
Meanwhile, we adopt the BART encoder (Lewis
et al., 2019) as our text encoder to generate text
features Ht∈Rlt×d for the input text x, where lt
represents the number of tokens in the input text.

4.2 Alignment Adapter

Our alignment adapter is designed to map speech
features produced by the speech encoder to a suit-
able semantic space for the text decoder, effectively
alleviating the modality gap issue between them.
To do this, we train the alignment adapter to align
the feature sequences (Hs and Ht) generated by
the speech and text encoders at three levels:

Token-Level Alignment. Here, we aim to mono-
tonically align the speech and text features at the
token level. Considering that the length ls of the
speech feature Hs is often relatively long, we em-
ploy two 1D convolution layers with a stride of 2
to shrink its length by a factor of 4, thus obtaining
the new speech features: Hs=CNN(Hs). Mean-
while, we concatenate the text features in the cur-
rent batch b to construct a token feature matrix W=
[H1

t ; · · · ;H|b|
t ], where each element corresponds

to a token feature. Next, we compute the align-
ment scores A from speech features to token fea-
tures: A=HsW

T, and calculate a CTC loss LCTC

based on A. Finally, we achieve the token-level

Figure 3: The overall architecture of our model. Here
the blue arrows show the inference process of our model.

alignment by minimizing LCTC. In contrast, pre-
vious CTC-based token-level alignment methods
(Xu et al., 2021; Zhang et al., 2023d) often use the
static token embedding matrix as W to compute
alignment scores A, making them prone to over-
fitting high-frequency tokens. Since a token has
distinct features in different contexts, our method
exploits such dynamic feature to effectively avoid
above overfitting issue. Meanwhile, our method
inherits the advantages of contrastive learning by
using our token feature matrix W.

Entity-Level Alignment. It is designed to en-
hance cross-modal alignment for tokens within en-
tities, thus improving the accuracy of our model in
generating entity. To effectively achieve this, we
first need to obtain the speech features of entity
tokens, which poses a challenge. Previous studies
usually use external tools (Fang et al., 2022) or
Optimal Transport (OT) (Zhou et al., 2023) to de-
termine the speech features corresponding to each
token from the speech feature sequence (Hs). How-
ever, these methods often suffer from issues such
as error propagation, high complexity, and insta-
bility. Here, we propose a simple and effective
method to attain the above goal. Considering the
monotonicity and locality of the alignment from
the text sequence to the speech sequence, we use a
window-based attention mechanism to obtain the
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speech feature h
(s)
i of each entity token:

h
(s)
i = softmax

(
Ht[i]H

T
s [s : e]

)
Hs[s : e], (1)

where i is the index of the current entity token in
the input text (Ht), [s=i∗( lslt )−w : e=i∗( lslt )+w]
refers to the local window corresponding to the
entity token in the input speech (Hs), the window
size w is set as 2∗ ls

lt
on both the left and right sides.

Then, we replace the text features of entity to-
kens in Ht with their speech features to obtain a
mixed feature sequence Hm. Lastly, we calculate
a KL divergence loss L(t→m)

KL between the output
distributions generated by the text decoder for Ht

and Hm (See Equation 5). By minmizing L(t→m)
KL ,

we can accomplish the entity-level alignment.

Sentence-Level Alignment. To this end, we first
introduce a semantic compression layer that con-
sists of a single attention layer and R relation-
specific learnable query vectors Q∈RR×d. Its ob-
jective is to compress the speech features Hs and
text features Ht into R global feature vectors:

Gt/s =Attention
(
Q,Ht/s,Ht/s

)
∈ RR×d. (2)

However, this compression process often accompa-
nies a significant loss of fine-grained information,
as demonstrated in our preliminary study. To avoid
this issue, we regard Gs and Gt as soft prompts
of Hs and Ht, denoted as Ĥs=[Gs;Hs] and Ĥt

=[Gt;Ht]. Following this, we use a semantic pro-
jection layer to map Ĥt and Ĥs into a shared se-
mantic space, generating new speech and text fea-
tures H̃s and H̃t. Lastly, we perform the sentence-
level alignment from R different (relation-specific)
perspectives by minimizing the contrastive loss
LCL between the above soft prompts:

LCL = −
R∑

i=1

log
ecos(H̃t[i],H̃s[i])/τ

∑R
j=1 e

cos(H̃t[i],H̃s[j])/τ
, (3)

where the first R elements of H̃t and H̃s refer to
the final features of their respective soft prompts,
and temperature τ is set as 0.1 empirically. Intu-
itively, the relation binary classification loss can be
applied to these soft prompts to further improve the
model performance. However, this improvement is
marginal in our experiments, so we did not do this.

Notably, we utilize the top N layers of the BART
encoder as our semantic projection layer, and its re-
maining layers as our text encoder. In this way, we

can further alleviate the above modality gap issue,
while preventing the introduction of new parame-
ters that could disrupt the compatibility between
the text encoder and decoder.

4.3 Text Decoder
Following prior studies (Cabot et al., 2021; Wu
et al., 2022), we treat SpeechRE as a sequence
generation task and utilize the BART decoder as
our text decoder. The text decoder focuses on au-
toregressively generating linearized relation triplets
based on the speech or text features.

Back to Figure 3, through the alignment adapter,
we obtain three feature sequences: H̃s, H̃t, and
H̃m. Subsequently, we feed them into the text de-
coder to derive their respective output distributions:
p(y|H̃s), p(y|H̃t) and p(y|H̃m). Finally, we em-
ploy cross-entropy as our task loss:

LCE =L(t)
CE + L(m)

CE + L(s)
CE,

L(t/m/s)
CE =−

|y|∑

i=1

log p(yi|y<i, H̃t/m/s).
(4)

Moreover, we introduce two KL divergences loss
for our model training:

LKL = L(t→m)
KL + L(t→s)

KL ,

L(t→m/s)
KL = KL(p(y|H̃m/s) | sg(p(y|H̃t))),

(5)

where sg(·) is the stop-gradient operator, L(t→m)
KL

is used to achieve our entity-level alignment, and
L(t→s)
KL represents the knowledge distillation loss

from TexRE (p(y|H̃t)) to SpeechRE (p(y|H̃s)).

4.4 Model Training
To effectively train our model, we use two hyper-
parameters (α and β) to balance the above losses,
deriving the final training objective of our model:

L = LCE + LKL + αLCL + βLCTC. (6)

Since our model is insensitive to the weights of
LCE and LKL, we simply set their weights as 1.

To alleviate the data scarcity issue in SpeechRE,
previous study (Wu et al., 2022) resorts to pseudo-
labeling methods, where TextRE models are used
to generate relation triples for the transcript text
in ASR dataset, thus creating SpeechRE instances.
However, the issue of error propagation limits the
effectiveness of such methods. Hence, we directly
utilize the ASR task to pre-train our model on the
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ASR dataset, while incorporating our multi-level
alignment method into this process. To do this,
we convert ASR instances (s, x) into SpeechRE in-
stances (s, x, y=x) by treating its transcript text
x as both the input and output text. Consider-
ing the lack of entity annotations in the transcript
text x, we implement the entity-level alignment
on a randomly-selected 30% of the tokens within
x. Through the pre-training stage, we effectively
improve the accuracy of our model in recognizing
entities due to the correlation between the ASR
and entity recognition task. Then, we fine-tune our
model on our SpeechRE datasets.

To efficiently train our model without compro-
mising performance, we follow Li et al. (2021) to
freeze the FFN layers in the speech encoder, text
encoder and text decoder during the above pre-
training and fine-tuning stages. Meanwhile, we
freeze the entire text encoder and decoder during
the pre-training stage.

5 Experiment

5.1 Datasets & Evaluation Metrics

We conduct experiments on our two SpeechRE
datasets (CoNLL04 and ReTACRED) and a Mixed-
CoNLL04 dataset whose training and alidation sets
are synthetic and test set is real (as in ReTACRED).
To pre-train our model, we use the English portion
of the MuST-C v2.0 (Di Gangi et al., 2019) En-Zh
corpus as our pre-training ASR dataset. We adopt
the micro-F1 score as a metric to assess the per-
formance of models in entity recognition, relation
prediction, and relation triplet extraction. For any
entity, relation, or triplet to be considered correct,
they must exactly match their counterpart in tags.

5.2 Settings

We implement our model based on Fairseq (Ott
et al., 2019) and PyTorch (Paszke et al., 2019). To
optimize our model, we use the Adam (Kingma
and Ba, 2015) optimizer with parameters (0.99,
0.98), while setting the clip norm to 10. We pre-
train our model for 32K update steps on the ASR
dataset and fine-tune it for 16K update steps on
SpeechRE datasets. Meanwhile, we set the early
stopping to 20 update steps during the fine-tuning
stage and apply a learning rate of 1e-4 for both
training stages, monitored by a tri-stage scheduler.
We select the best checkpoint on the validation set
for testing. All experiments are conducted on 4
NVIDIA Tesla-V100 GPUs.

α\β 0.1 0.2 0.3 0.4 0.5

0.2 21.67 22.06 20.95 20.75 20.21
0.4 22.01 22.57 21.24 21.05 20.51
0.6 22.35 22.81 21.79 21.42 20.70
0.8 22.67 23.20 22.11 21.74 21.03
1.0 22.43 22.02 21.76 21.55 21.19

Table 3: The performance of our model with different
values of α and β in relation triplet extraction on the
CONLL04 validation set.

5.3 Baselines

We compare our model with the following three
categories of competitive baselines:

TextRE Models. These models aim to jointly
extract entities and relations from the input text.
Following Wu et al. (2022), we consider TP-Linker
(Wang et al., 2020) , Spert (Eberts and Ulges, 2020),
and REBEL (Cabot et al., 2021) for comparison.

Pipeline SpeechRE Models. These models first
use an ASR module to transcribe the input speech
into text, and then feed the resulting text into a Tex-
tRE module for extracting relation triplets. Wu et al.
(2022) employ the pre-trained wav2vec-large as the
ASR module and the above three TextRE models
as the TextRE module to construct three pipeline
models for SpeechRE: TP-Linkerpipe, Spertpipe,
REBELpipe. Moreover, we further fine-tune the
ASR module of these models on SpeechRE datasets
to improve their performance. These pipeline mod-
els possess the same speech encoder and text de-
coder as our model, ensuring a fairer comparison.

End2End SpeechRE Models. These models are
designed to directly extract relation triplets from
the input speech, and our model also falls into this
category. In this regard, the sole existing work
is LNA-ED (Wu et al., 2022), which also serves
as our base model. It uses a simple CNN-based
length adapter to connect a pre-trained speech
encoder (wav2vec2.0) with a pre-trained text de-
coder (BART decoder). Moreover, we compare our
model with some representative cross-modal align-
ment models in other speech-related tasks: SATE
(Xu et al., 2021), Chimera (Han et al., 2021), MSP-
ST (Zhang et al., 2023d), and CMOT (Zhou et al.,
2023), all of which usually align the speech and
text features at the token or sentence level.

5.4 Hyper-parameter Settings

Effect of Hyper-parameters α and β The hyper-
parameters α and β in Equation 6 play a crucial
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Model
CONLL04 ReTACRED Mixed-CoNLL04

ER RP RTE ER RP RTE ER RP RTE

TextRE
TP-Linker (Wang et al., 2020) 78.63 83.49 58.56 50.46 51.83 20.39 78.63 83.49 58.56
Spert (Eberts and Ulges, 2020) 76.38 81.83 63.45 60.26 63.48 21.46 76.38 81.83 63.45
REBEL (Cabot et al., 2021) 85.36 89.86 71.46 60.09 65.15 25.15 85.36 89.86 71.46

SpeechRE
(Pipline)

TP-Linkerpipe (Wu et al., 2022) 35.21 78.21 9.76 30.27 50.01 6.59 33.63 76.57 8.21
Spertpipe (Wu et al., 2022) 30.43 75.95 11.88 34.36 57.17 6.89 29.32 73.61 10.73
REBELpipe (Wu et al., 2022) 37.06 83.35 14.01 32.07 51.97 6.49 36.42 81.64 12.08

SpeechRE
(End2End)

LNA-ED (Wu et al., 2022) 18.87 55.66 10.41 17.21 43.37 3.20 13.11 52.55 6.08
SATE (Xu et al., 2021) 21.53 55.90 11.38 16.01 46.97 3.02 14.87 53.06 6.74
Chimera (Han et al., 2021) 12.75 58.44 8.08 16.01 46.97 3.02 8.77 56.91 4.96
MSP-ST (Zhang et al., 2023d) 26.60 70.33 13.15 19.03 48.97 4.07 19.31 67.70 8.32
CMOT (Zhou et al., 2023) 28.24 70.95 14.02 20.77 49.41 4.65 20.49 67.84 9.05

MCAM (ours) 40.13 77.89 22.07 35.34 58.96 8.07 31.16 73.55 16.25

Table 4: The model performance on the test sets of CONLL04, ReTACRED, and Mixed-CoNLL04. Here, ER =
Entity Recognition, RP = Relation Prediction, and RTE = Relation Triplet Extraction

Figure 4: The performance of our model with different
layer number N of semantic projection layer on the
CONLL04 validation set.

role in balancing our multiple loss terms during
model training. To investigate their influence on
our model, we conduct experiments with different
values of α and β on the CONLL04 validation
set. As illustrated in Table 3, our model achieves
the best performance in relation triplet extraction
when α and β are set to 0.8 and 0.2, respectively.
Meanwhile, we also observe that the performance
of our model is not significantly affected by the
values of α and β. Hence, we adopt α=0.8 and
β=0.2 for all experiments.

Effect of Hyper-parameter N Our semantic
projection layer aims to map the speech and text
features into a shared semantic space, thereby
further mitigating the modality gap between the
speech encoder and text decoder. Meanwhile, all of
its parameters are updated during our entire train-
ing process. Here, we will explore the impact of the
layer number N of the projection layer on the over-

all performance (RTE) of our model. As illustrated
in Figure 4, our model reaches its best performance
when N is set to 3. Meanwhile, we notice that our
model exhibits inferior performance when a larger
value is assigned to N . The main reason for this is
that the limited SpeechRE data poses a challenge in
effectively training the model with a large number
of parameters. Furthermore, our model is insensi-
tive to N and consistently outperforms all pipeline
and end2end SpeechRE models at all values of N .

5.5 Main Results

The experimental results on the three datasets we
consider are shown in Table 4. After carefully ana-
lyzing these results, we draw several conclusions:

First, our model consistently outperforms all end-
to-end SpeechRE models across all metrics (See
Bottom rows). This indicates that our MCAM
can bridge the modality gap between the speech
encoder and text decoder more effectively than the
cross-modal alignment methods in other speech-
related tasks. Particularly, compared to our base
model LNA-ED, our model achieves the improve-
ments of 21.26/22.23/11.66 points, 18.13/15.59/
4.87 points, and 18.05/21.00/10.17 points on the
above three datasets, respectively. These results
further demonstrate the effectiveness of our model.

Second, we note that end-to-end SpeechRE mod-
els exhibit better performance on CONLL04 than
on Mixed-CoNLL04. It implies that SpeechRE
models trained on synthetic data often under-
perform in real-world scenarios. However, our
model continues to outperform all end-to-end mod-
els on both Mixed-CoNLL04 and ReTACRED,
which demonstrates the robustness of our model
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to noise in synthetic speech. Since annotating real
SpeechRE data is costly, it is worthwhile to further
explore the utilization of synthetic data for training
a robust SpeechRE model in real-world scenarios.

Third, our model exceeds all pipeline SpeechRE
models in relation triplet extraction on all datasets.
This be attributed to the error propagation issue,
which makes it more challenging for pipeline mod-
els to generate complete relation triplets accurately.
Although incorporating stronger (larger) ASR mod-
ules into the pipeline model may alleviate this issue,
it can also lead to larger inference latency. Hence,
we leave the development of a strong pipeline
model with low inference latency for future study.

Lastly, we observe that end-to-end SpeechRE
models usually perform better in relation predic-
tion than in entity recognition. Thus, enhancing the
entity recognition ability of the SpeechRE model
is crucial for further improving its overall perfor-
mance. As in previous studies, we also discover
that there is still significant room for improvement
in the performance of the SpeechRE model com-
pared to the TextRE models.

5.6 Ablation Studies
We further conduct extensive ablation studies by
removing different components from our model to
comprehend their different impacts. We compare
our model with the following variants in Table 5.

(1) w/o. Token-level alignment. In this variant,
we neglect the token-level alignment and remove
the loss LCTC from entire training objective. As
shown in Line 1, this change leads to a significant
performance drop across all metrics. Meanwhile,
we note that the token-level alignment primarily en-
hances the overall performance (RTE) of the model
by improving its entity extraction capability (ER).

(2) w/o. Entity-level alignment. When we dis-
card the entity-level alignment and remove its corre-
sponding loss L(t→m)

KL from our training objectives,
the entity extraction performance of our model suf-
fers a significant decline (See Line 2). It suggests
that our entity-level alignment can indeed improve
the accuracy of our model in generating entity.

(3) w/o. Sentence-level alignment. This variant
removes the two components responsible for the
sentence-level alignment from our model: the se-
mantic compression layer and the contrastive loss
LCL. As reported in Line 3, the model perfor-
mance exhibits a more significant decrease of 3.44
points in relation prediction, compared to that in en-
tity recognition and relation triplet extraction. This

Model
CONLL04

ER RP RTE

Ours 40.13 77.89 22.07

1 w/o. Token-level alignment 36.61 76.57 19.47
2 w/o. Entity-level alignment 36.09 76.83 19.14
3 w/o. Sentence-level alignment 38.75 74.94 19.56
4 w/o. Semantic projection layer 38.01 76.08 19.77
5 w/o. Pre-training 33.62 74.68 17.96
6 w/o. Alignment in pre-training 35.75 76.16 19.07

Table 5: Ablation results on the CONLL04 test set.

confirms that the sentence-level alignment mainly
contributes to enhancing the relation extraction ca-
pability of our model.

(4) w/o. Semantic Projection Layer. Our seman-
tic projection layer aims to project the speech and
text features into a shared semantic space, thereby
further mitigating the modality gap issue between
the speech encoder and text decoder. To prove its
effectiveness, we remove it from our model, result-
ing in a decline in our model performance across all
metrics (See Line 4). This indicates that semantic
projection layer is necessary for our model.

(5) w/o. Pre-training. Here, we directly fine-
tune our model on SpeechRE datasets without pre-
training on ASR data. As shown in Line 5, this vari-
ant is significantly inferior to our model, suggesting
that our pre-training method is more suitable for
SpeechRE than prior pseudo-labeling methods.

(6) w/o. Alignment in pre-training. In this case,
we pre-train our model on the ASR dataset without
using our cross-modal alignments, which also leads
to a significant performance decline across all met-
rics (See Line 6). It indicates that our cross-modal
alignments play a crucial role in the effectiveness
of our pre-training method.
Please see Appendix A for more further analyses.

6 Related Work

Relation extraction (RE) is a fundamental task
in information extraction, which aims to extract
structured knowledge from unstructured data in
the form of relation triplet (Song et al., 2019; Han
et al., 2020; Wu et al., 2022; Zhang et al., 2022,
2023b,a,c; Yue et al., 2024). In this regard, domi-
nant studies mainly focus on extracting relation
triplets from plain text (Cabot et al., 2021; Lu
et al., 2022; Wang et al., 2023). However, in addi-
tion to text, plenty of speech data is continuously
produced in our daily lives. These speech data
often contain rich and valuable structured knowl-
edge. Therefore, it is meaningful to extract relation
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triplets from speech data. To do this, Wu et al.
(2022) are the first to explore this task. Nonethe-
less, they mainly use synthetic data to train and
evaluate SpeechRE models, hindering the further
development of SpeechRE due to the disparity be-
tween synthetic and real speeches. Moreover, their
proposed baseline model fails to effectively align
the two modalities of speech and text, resulting in
poor performance.

In other speech-related tasks, such as Speech
Translation (ST) and Automatic Speech Recog-
nition (ASR), researchers have proposed many
modality alignment methods (Tang et al., 2021;
Han et al., 2021; Xu et al., 2021; Wang et al., 2022;
Zhang et al., 2023d; Zhao et al., 2024). For exam-
ple, Tang et al. (2021) propose an attention-based
regularization to pull the representations from dif-
ferent modalities closer. Han et al. (2021) introduce
a shared semantic projection module to map speech
and text features into a common semantic space
and align them via contrastive learning. Wang et al.
(2022) mix up the feature sequences of different
modalities, and then take both the unimodal speech
sequence and multimodal mixed sequence as inputs
to the translation model in parallel, where their out-
put predictions are regularized with a self-learning
framework. Zhang et al. (2023d) first employ a
CTC loss to align speech features and token em-
beddings, and use contrastive loss to align speech
and text features at the sentence level. Although
these methods have achieved improvements in their
respective tasks, they often only consider the align-
ment between speech and text features at the token
or sentence level.

In this work, we first create two real SpeechRE
datasets to facilitate future studies. Consi the
SpeechRE model is usually required to compre-
hensively understand the input speech from multi-
ple levels, we propose a Multi-level Cross-modal
Alignment Model (MCAM) for SpeechRE. It
aligns the speech and text features at the token,
entity, and sentence levels for better SpeechRE.

7 Conclusion and Future Work

In this paper, we first annotate two real SpeechRE
datasets to facilitate future research in the field of
SpeechRE. Then, we propose a new SpeechRE
model MCAM, which consists of a speech encoder,
an alignment adapter, and a text decoder. The align-
ment adapter aims to project the speech features,
extracted by the speech encoder from the input

speech, into a suitable semantic space for the text
decoder, enabling it to effectively generate relation
triplets based on these speech features. By doing so,
we successfully bridge the modality gap between
the speech encoder and text decoder. To efficiently
train our adapter, we introduce an additional text
encoder and train the adapter to align the output
features of the speech and text encoders at three
levels. Experiments on our two SpeechRE datasets
demonstrate the effectiveness of our model.

In future, we plan to apply our model to other
speech-related tasks, such as ST and ASR, so as to
verify its generality. Moreover, exploring methods
to train a zero-shot SpeechRE model using only
vast ASR and TextRE data is an interesting future
research direction.
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Limitations

The limitations of our method mainly include fol-
lowing two aspects: 1) Our model does not fully
exploit the intrinsic information contained in in-
put speech, such as emotion inflections and pauses,
which could be beneficial to our task. 2) During the
pre-training stage, we do not use the existing large
amount of TextRE data, which may effectively en-
hance the overall performance of our model.
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Model
CONLL04

ER RP RTE

1 REBEL 85.36 89.86 71.46
2 MCAM (ours) 40.13 77.89 22.07

Speaker-Independent SpeechRE

3 MCAM (ours) 32.05 73.77 16.54
4 w/o. All alignments 28.27 70.90 13.16

Speech-Enhanced TextRE

5 MCAM (ours) 88.57 90.16 74.12
6 w/o. All alignments 86.90 89.45 72.08

Zero-Shot SpeechRE

7 MCAM (ours) 17.69 51.40 6.21
8 w/o. All alignments 13.79 48.12 2.65

Table 6: Ablation results on the CONLL04 test set.

Appendix

A Further Analysis

In this section, we focus on exploring some inter-
esting research directions in the SpeechRE domain,
while validating the effectiveness of our model in
these directions. We present the experimental re-
sults in Table 6.

Speaker-Independent SpeechRE. The robust-
ness of SpeechRE models to the speaker of the
input speech directly affects their practicality in
real-world scenarios. Therefore, we re-partitioned
the CONLL04 dataset to ensure that the speakers
in the training set, validation set, and test set are
entirely distinct. Subsequently, we evaluate our
model on this new dataset (See Line 3-4). Al-
though the speaker difference degrade the perfor-
mance of our model, our cross-modal alignment
method can effectively alleviate this degradation
and improve the model’s robustness to speakers.
The probable reason is that our alignment method
can assist the model to learn speaker-independent
speech features.

Speech-Enhanced TextRE. Many studies (Sun
et al., 2021; Zheng et al., 2023; Wu et al., 2023;
Hu et al., 2023) have explored the use of images to
enhance TexRE. Similar to image, speech also con-
tains rich multimodal information that can be used
to enhance TextRE. Here, we provide features gen-
erated by both the text and speech encoder to the
text decoder during the fine-tuning stage. As shown
in Line 5, speech features can indeed improve the
performance of TextRE. Meanwhile, removing our
cross-modal alignment method leads to a decline in
the model performance across all metrics (See Line

6). This suggests that our method can help the Tex-
tRE model learn beneficial multimodal information
for relation extraction from speech.

Zero-Shot SpeechRE. Given that SpeechRE
data is scarce and expensive to obtain, it holds prac-
tical significance to train an end-to-end SpeechRE
model using only ASR and TextRE data. In this
case, we first pre-train our model on the ASR
dataset using the ASR task along with our cross-
modal alignment method. Then, we solely fine-
tune the text decoder on the TextRE dataset and
freeze the other components in our model. As
shown in Line 7, the SpeechRE model trained un-
der this setting achieves a lower performance. The
primary reasons for this is the modality gap be-
tween the speech encoder and text decoder, as well
as the length differences between the speech and
text feature sequences. Through the ablation study
in Line 8, we find that our cross-modal alignment
methods can alleviate such modality gap.
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