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Abstract
Natural Language Feedback (NLF) is an in-
creasingly popular mechanism for aligning
Large Language Models (LLMs) to human pref-
erences. Despite the diversity of the informa-
tion it can convey, NLF methods are often hand-
designed and arbitrary, with little systematic
grounding. At the same time, research in learn-
ing sciences has long established several effec-
tive feedback models. In this opinion piece,
we compile ideas from pedagogy to introduce
FELT, a feedback framework for LLMs that
outlines various characteristics of the feedback
space, and a feedback content taxonomy based
on these variables, providing a general mapping
of the feedback space. In addition to stream-
lining NLF designs, FELT also brings out new,
unexplored directions for research in NLF. We
make our taxonomy available to the community,
providing guides and examples for mapping our
categorizations to future research.

1 Introduction

The last few years introduced a new paradigm for
finetuning Large Language Models (LLMs): learn-
ing from human feedback (Ziegler et al., 2020;
Stiennon et al., 2020; Bai et al., 2022a; OpenAI,
2023; Rafailov et al., 2023; Gheshlaghi Azar et al.,
2024; Fisch et al., 2024) to augment their capa-
bilities beyond their pretraining (Christiano et al.,
2017; Wu et al., 2021; Menick et al., 2022). This
alignment has yielded less toxic and harmful mod-
els (Bai et al., 2022b; Korbak et al., 2023) that are
preferred by users (Ouyang et al., 2024; Bai et al.,
2022b).

Whether learning from feedback is done by di-
rectly learning from human preferences (Rafailov
et al., 2023; Gheshlaghi Azar et al., 2024; Hong
et al., 2024; Meng et al., 2024; Saeidi et al., 2024;
Fisch et al., 2024), or with Reinforcement Learn-
ing from Feedback (RLF) using human-curated
(RLHF; Ouyang et al., 2024; Bai et al., 2022a; Ra-
mamurthy et al., 2023) or AI-generated (RLAIF;

Figure 1: Connecting feedback research in NLP to foun-
dations of feedback in the Learning Sciences.

Bai et al., 2022b; Saunders et al., 2022; Madaan
et al., 2023) feedback, all variants have been shown
to be successful in several metrics — from encour-
aging honest behaviors, to reducing toxicity, to
being preferred by evaluators (Ouyang et al., 2024).
Other approaches, such as imitation learning (Li
et al., 2017; Kreutzer et al., 2018; Hancock et al.,
2019; Scheurer et al., 2022), and feedback model-
ing (Weston, 2016; Li et al., 2017; Hancock et al.,
2019; Xu et al., 2023; Liu et al., 2023) have had
similar success. Feedback has thus emerged as an
important source of information for model improve-
ment and evaluation, directing them toward desired
objectives and behaviors (Fernandes et al., 2023).

Despite the observed benefits of learning from
feedback, a systematic study of what constitutes
helpful feedback has so far remained absent. For
example, RLF requires a Reward Model (RM) to
be trained on numerical or ranking-based feedback
data (Rafailov et al., 2023) — a format limited in
the amount of information it conveys (Wu et al.,
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2023). To counteract this limitation, works have be-
gun exploring Natural Language Feedback (NLF;
Weston, 2016; Madaan et al., 2023; Wu et al., 2023).
However, these works rely on “intuitive guesses”
about what constitutes useful feedback — leading
different works to explore distinct conceptualiza-
tions of NLF, preventing a systematic comparison.

To establish a more concrete foundation for
learning from feedback, we survey comprehen-
sive studies of feedback from the field of learning
sciences, which investigate feedback as an essen-
tial component of instruction and learning. We
unify feedback approaches for NLP into a common
framework, grounded on our surveyed pedagogical
foundations (as summarized in Figure 1). To this
end, we first present the most relevant feedback-
related models from the learning sciences (§3). Tak-
ing inspiration from these pedagogical models, we
create a novel framework, FELT, that expansively
maps the various features of the LLM feedback
space to pedagogical foundations (§4), and iden-
tify both dimensions studied by previous works as
well as several important aspects of feedback that
remain underexplored. We then focus on the least
explored one, feedback content, and introduce a
novel comprehensive taxonomy systematizing both
the content and the delivery of natural language
feedback (§4.2), shining a light on the underspec-
ification of current approaches to feedback, and
suggesting promising areas of future research.

Contributions We (i) present a survey of ped-
agogical feedback formulations and models; (ii)
organize the variables that influence feedback (and
its processing) into a schematic framework, specif-
ically adapted for LLMs; (iii) propose a general
and extensive taxonomy of feedback content; and
(iv) propose areas of future research based on gaps
between our taxonomy and the current landscape
of LLM research on feedback.

2 Feedback in NLP

In this section, we survey current conceptualiza-
tions and applications of feedback in NLP, before
exploring the feedback models and perspectives
developed in the domain of learning science (§3).

2.1 Current State of Feedback in NLP

The value of feedback is derived from the implicit
knowledge it represents about human values and
expectations, that would otherwise be extremely
difficult to specify (Christiano et al., 2017). Feed-

back can assume different forms: numerical ratings,
rankings, preferences, demonstrations, and textual
information (either using a template or free-form
text — structured and unstructured feedback, re-
spectively). RLF methodologies usually collect
either a numeric rating or a ranking for classify-
ing the quality of an initial answer (often encour-
aging properties such as helpfulness and honesty
while mitigating harmfulness; Askell et al., 2021).
RLF may also leverage demonstrations to finetune
LLMs in a supervised fashion before the RLF stage
to reduce the search space (Ouyang et al., 2024; Bai
et al., 2022b). RLF methods address the intractable
problem of designing an appropriate loss function
for training models to exhibit behaviors with no
closed-form solution (Askell et al., 2021). Recent
works have also started to incorporate feedback in a
prompt-based manner (Schick et al., 2023; Madaan
et al., 2023; Paul et al., 2024; Chen et al., 2024; Lin
et al., 2024; Zhao et al., 2024).

Informativeness of Feedback However, the ex-
tent to which feedback formulations transmit their
goal states remains unclear. For example, Instruct-
GPT (Ouyang et al., 2024) is first finetuned on
demonstration data, and then performs RLHF with
a reward model trained using comparison data (i.e.,
pairs of ranked generations). This feedback is
limited in the information it transmits. Scoring
a demonstration A as “better” than demonstration
B provides little information on the quality of A
nor B,1 nor on how either demonstration can be im-
proved. Taking these limitations into account, RMs
are likely to suffer from some degree of misalign-
ment (Pan et al., 2022; Gao et al., 2023; Song et al.,
2023). Recent works have started to acknowledge
the limited information in these feedback formula-
tions, recognizing them as unsuited for capturing
critical information, such as different types of er-
rors (Golovneva et al., 2023; Wu et al., 2023).

2.2 Natural Language Feedback for LLMs
The most commonly used feedback formulations,
scalar and ranking feedback, are thus limited in the
information they convey, motivating new methods
that leverage natural language for more expressive
feedback formulations (Fernandes et al., 2023).

How should feedback be provided to LLMs?
Certain works augment the model through data
augmentation (Shi et al., 2024), external corrective

1We note such a format also obfuscates any bias and dis-
agreement that occurred in reaching such a judgment.
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feedback (Tandon et al., 2022; Madaan et al., 2022;
Shinn et al., 2023) or natural language patches
(Murty et al., 2022). Another line of work in-
troduces a secondary model, that either refines
an original LLM’s answer (Scheurer et al., 2022;
Welleck et al., 2023; Tandon et al., 2022), critiques
it (Saunders et al., 2022; Paul et al., 2024) iter-
atively self-improves (Schick et al., 2023; Chen
et al., 2024; Madaan et al., 2023; Yuan et al., 2024)
or otherwise constrains the initial response of a
model (Stephan et al., 2024). Beyond increasing
the complexity of feedback using natural language,
several of these approaches also target intermedi-
ate generations with their feedback, not the final
outcome produced by the model, thereby increas-
ing the number of feedback opportunities through
multiple iterations (Lightman et al., 2024).

What information should feedback content con-
vey? Shi et al. (2024) distinguish textual feed-
back depending on whether the feedback is for-
mally provided to the model’s answer, or, remains
in the dialog setting, where the user mentions they
disliked the reply they received. SELF-REFINE
(Madaan et al., 2023) argues that the quality of
the generated feedback is critical, though they
only compare their “actionable and specific” LLM-
generated feedback against “generic feedback” and
no feedback at all. Wu et al. (2023) propose the in-
troduction of finer-grained feedback — and of three
different error types: factual incorrectness, irrele-
vance, and information incompleteness. Despite its
impressive performance, the feedback exploration
in this work is limited at only three specific types,
and only uses preference rankings. Finally, Weston
(2016) conducted the most thorough exploration
of NLF to date, with 10 different dialogue-based
supervision modes, which represent different inter-
action and feedback types. However, these often
overlap information-wise, limiting its conclusions.

What is missing? Various works conceptualize
feedback in completely different ways. No work
has taken up a true mapping of the feedback space,
identified the different types of information that
can be encoded in NLF, and allowed for an explo-
ration of different feedback components and their
effectiveness. To address this, we look to the learn-
ing sciences, which studies feedback as an integral
component of human learning. We survey their
different conceptualizations of feedback (§3), and
unify them under a new framework, FELT, adapted
specifically for LLMs (§4).

3 Feedback in Learning Sciences

To construct a comprehensive, theory-grounded
model of feedback that addresses the limited ex-
ploration of NLF in NLP, we build off the work
of Lipnevich and Panadero (2021), who conducted
a systematic review of 15 relevant and influential
works on feedback models research in education.
We provide a brief overview of the key points of
each of these works and use them to subsequently
propose a framework for the feedback ecosystem
(§4) and a taxonomy for feedback content (§4.2).

3.1 What is feedback?
Many works agree that feedback is, or contains,
information provided to a learner. While studies
may disagree on the breadth or specificity required
for feedback, and other limitations, a definition
(adopted throughout this paper) emerges from their
consensus:2 feedback is any task-relevant informa-
tion given to a learner (content), by any possible
feedback-generating agent (source).

3.2 What constitutes effective feedback?
Kluger and DeNisi (1996) showed feedback was
detrimental to a learner’s performance in 38% of
analyzed cases. Three main requirements for help-
ful feedback emerge from previous work: appli-
cability, learner regulation, and personalization.
These requirements are directly related to feedback
content, which we explore in §4.2 for LLMs.3

Applicability Feedback should be actionable, al-
lowing the learner to achieve a desired target per-
formance. Sadler (1989) suggests that feedback
needs to identify a target performance, compare the
learner’s current performance to it, and engage in
actions to reduce that difference. Similarly, Hattie
and Timperley (2007) indicate that effective feed-
back needs to answer three questions: where the
learner is going (the goal), how they can get there,
and where to go next. Other works extend these
definitions of effective feedback by including ele-
ments such as motivational and metacognitive as-
pects (Nicol and Macfarlane-Dick, 2006) or aspects
of teaching (e.g., lesson design; Evans, 2013).

Learner Regulation Effective feedback produces
a positive response in the learner. Kluger and

2For an overview of all the different definitions of feedback
discussed, please see Appendix C.

3Looking forth, Applicability corresponds to dimensions
of applicability of instructions, learner regulation to purpose,
and personalization is a product of the combination of all di-
mensions, allowing a fine-grained customization of feedback.
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DeNisi (1996) argue that, in response to feedback,
a learner’s attention will be directed to one of three
levels: how to solve the task, the task as a whole,
or meta-task processes (processes the learner per-
forms while doing the task). Other works note
that effective feedback also enhances self-regulated
learning behaviors (Nicol and Macfarlane-Dick,
2006; Evans, 2013). Narciss and Huth (2004);
Narciss (2008) extend this definition by arguing
that feedback can have three distinct types of im-
pact: influence on the learner’s cognitive abilities,
their metacognitive skills, or their motivation and
self-regulation. Lipnevich et al. (2016) defend that
when a student receives feedback, they produce
cognitive and affective responses, judging the task,
their level of control, and the feedback. This pro-
duces a behavioral reaction, influencing their per-
formance and learning. Similarly, Panadero and
Lipnevich (2022) state that feedback impacts both
the students’ performance and learning as well as
their affective processes and self-regulation.

Personalization Different types of feedback are
best suited for different learner characteristics (Ma-
son and Bruning, 2001). The learner’s individual
characteristics will also directly impact how they
process feedback (Lipnevich et al., 2016).

3.3 What are the characteristics of feedback?

A large body of research has attempted to system-
atically categorize feedback based on its content,
how it is given (timing, source), and the variables
influencing it (task, learner). Works that systemati-
cally categorize feedback can be broadly divided
into two groups: taxonomies focusing only on the
content of feedback, and taxonomies taking into
account the whole ecosystem.4

Content Works in this category focus on the char-
acteristics of the content only. Kulhavy and Stock
(1989), for example, model feedback through a ver-
ification component, which is a simple discrete clas-
sification of the answer as correct or incorrect, and
an elaboration component, which contains all other
information. Other works (Hattie and Timperley,
2007; Panadero and Lipnevich, 2022) suggest three
categories for classifying feedback: (i) addressing
the learner’s performance goal, (ii) addressing the
learner’s current performance, and (iii) addressing
the next steps the learner should undertake. Our
feedback content taxonomy draws primarily from

4Appendix C presents a more thorough definition of pro-
posed feedback categories in the learning sciences.

the analysis and adaptation of these works to the
NLP domain. Additionally, several categorizations
include feedback about mistakes, from which we
derive the Error component of FELT (§4).

Ecosystem Other works suggest a more com-
prehensive categorization of feedback including
the whole feedback ecosystem. For example, sev-
eral works propose different feedback categories
that consider characteristics of the learner (student
proficiency, prior knowledge) and the task (dif-
ficulty) (Mason and Bruning, 2001; Narciss and
Huth, 2004; Narciss, 2008). We further explore
this categorization in §3.3.2.

3.3.1 How is feedback given?
Apart from its content and ecosystem, feedback is
also characterized by how it is given. Two main
components have emerged in the literature:

Source Feedback can be given by different
sources (e.g., teachers, peers, or even the learner
themself). In their systematic review, Lipnevich
and Panadero (2021) found that seven out of the
15 considered models view the source as an im-
portant characteristic of feedback. An additional
three works distinguish feedback generated by an
external source from self-feedback.

Timing Previous work has differentiated be-
tween immediate and delayed feedback. While
early work (Bangert-Drowns et al., 1991) found
delayed feedback to be more effective, more recent
works (Mason and Bruning, 2001) argue that the op-
timal timing of feedback depends on learner charac-
teristics. For example, Hattie and Timperley (2007)
state that the most beneficial timing depends mainly
on the complexity of the task. Complex tasks bene-
fit from delayed feedback as they allow the learner
to properly process the task. Other works (Narciss,
2008) focus mainly on the learner characteristics,
arguing that as long as the learner possesses the
metacognitive skills required to spot and address
mistakes, feedback should be delayed.
We incorporate both feedback source and timing in
our framework presented in §4.5

3.3.2 What variables influence feedback?
Feedback cannot only be categorized according to
its content and the way it is given, but is also char-
acterized by the ecosystem surrounding it. Many
authors mention the challenge of determining the

5Other points of contention exist, such as feedback va-
lence, but we consider valence as an element of the feedback’s
content, and as such discuss it only in §4.2.
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optimal feedback type in isolation. Instead, charac-
teristics of the task and learner must be taken into
account when giving feedback. We discuss their
pedagogical definitions in this section, and subse-
quently adapt both Task and Learner specifically
to LLMs in our framework, FELT (§4).

Task The task’s characteristics influence the op-
timal timing of feedback (§3.3.1) as well as its
content. Mason and Bruning (2001) take into ac-
count the complexity of the task when choosing the
most suitable feedback for a given setting and Nar-
ciss and Huth (2004); Narciss (2008) incorporate
the task and the instructional content and goals into
the instructional factors that affect feedback. The
nature of the task (e.g., closed vs. open-answer)
also influences feedback content and processing
(Lipnevich and Panadero, 2021).

Learner Mason and Bruning (2001) consider stu-
dent achievement and prior knowledge as important
factors impacting feedback optimality. Nicol and
Macfarlane-Dick (2006) expand prior knowledge
and proficiency into domain knowledge and strat-
egy knowledge (along with motivational beliefs),
updated upon each attempt through both internal
and external feedback. Narciss and Huth (2004);
Narciss (2008) flesh out the learner characteristics
further, including learning goals and motivation.
Lipnevich et al. (2016) identify “personality, gen-
eral cognitive ability, receptivity to feedback, prior
knowledge, and motivation” as key learner charac-
teristics that impact feedback processing.

Other works focus on the learner’s feedback pro-
cessing mechanisms. Kluger and DeNisi (1996)
propose three processing levels: details about how
to solve the task, the task itself as a whole, and
meta-task processes. In contrast, Hattie and Tim-
perley (2007) present four levels of feedback pro-
cessing: (1) task level, how well the tasks are un-
derstood and performed, (2) process level, the pro-
cess needed to achieve the task level understanding
and performance, (3) self-regulation level, the self-
monitoring and the direction and regulation of the
learner’s actions, and (4) self level, personal eval-
uations about the learner as a whole (which are
usually uninformative about the task and can be
very hard to change, e.g., the quality of being “a
good student”). Current LLMs do not seem ca-
pable of more metacognitive levels of feedback
processing.

Figure 2: FELT, the feedback ecosystem adapted for
LLMs. The feedback’s characteristics, the errors, the
task, and the learner all influence both the feedback
and its subsequent processing by the learner. Various
interactions occur between the task, the learner, and
the feedback, such as the task complexity and prior
knowledge of the learner affecting the timing of the
feedback. Appendix A presents a more comprehensive
overview of the interactions present in the framework.

4 FELT: Unifying The Two Worlds

In the pedagogical research surveyed in the pre-
vious section (§3), feedback emerges as both a
complex ecosystem, and a rich, but systematized,
information source. In this section, we consolidate
different pedagogical feedback models, and con-
ceptualize a novel feedback framework adapted for
LLMs, FELT (Feedback, Errors, Learner, Task),
displayed in Figure 2. We briefly analyze each
of its components, and dedicate a specific section
(§4.2) to the formalization of feedback content.

4.1 The Big Picture

By consolidating the dimensions presented in Sec-
tion 3, we developed FELT, which incorporates the
content and delivery of feedback, as well as the rest
of the ecosystem: the task, learner, and errors.

Task The task reflects the work assigned to the
LLM. It has three attributes: complexity (i.e., dif-
ficulty level), instructions6 given, and the task’s
answer type — which we reduce to being closed-
answer (where there is a single correct answer or
a finite set of them) or open-ended. When ported
to LLMs, the task component can be reduced to
data, as the training data will reflect the distribution
of tasks that must be learned. Unsurprisingly, the
impact of alignment data on model behavior is an
active area of research in the NLP community (Fan

6Instructions can pertain to a description of the task, to
specific criteria the model must satisfy, or to further directions,
e.g., how much the model must adhere to any given feedback.
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et al., 2019; Ethayarajh et al., 2022; Wang et al.,
2023; Taori et al., 2023; Guo et al., 2023; Lambert
et al., 2023; Köpf et al., 2023; Bai et al., 2022a).

Learner The learner in FELT represents the
LLM itself, represented by two components: prior
knowledge (which is dependent on the task), and
the feedback processing mechanism.7Prior knowl-
edge is captured by the model’s size, pretraining
data and pretraining method. Model size is sug-
gested to be linked to the model’s ability to effec-
tively leverage feedback (Scheurer et al., 2022; Bai
et al., 2022b). The pretraining data, as well as how
the model was trained, similarly encode its initial
ability to tackle a given task. The feedback process-
ing mechanism reflects the method used to transmit
feedback to the model, naturally influencing how
the feedback is subsequently processed. For exam-
ple, training objectives necessarily influence how
models process and incorporate feedback. Fernan-
des et al. (2023) identify three common feedback
integration mechanisms: feedback-based imitation
learning, joint-feedback modeling, and reinforce-
ment learning (which can be generally extended
to include other recent training methods, such as
DPO, Rafailov et al., 2023). In addition, we also
consider feedback provided using in-context learn-
ing (ICL; Brown et al., 2020; Madaan et al., 2022;
Zhao et al., 2024). Much like the Task, the Learner
(i.e., the models and algorithms used for learning
from feedback) is an active area of NLP research.

Errors Feedback may relay information on
where the learner is failing, which requires under-
standing the possible error modes for a given task,
and which ones the learner is likely in. For exam-
ple, guessing and committing systematic reasoning
mistakes reflect differing degrees of understanding.
Moreover, not all errors should be treated the same.
Wu et al. (2023) find that assigning distinct reward
models to specific error modes (e.g., conciseness,
factuality, relevance) improved performance over
using a single RM, clarifying the importance of
modeling the error space – another active area of
research (Golovneva et al., 2023; Paul et al., 2024;

7Several pedagogical dimensions for human feedback pro-
cessing, discussed in §3, are not currently applicable to LLMs
— such as the learner’s regulation, the learner’s affective pro-
cesses and multiple motivations (e.g., both succeeding at the
task and being seen as competent, which can be a deterrent to
success if the learner believes they might fail), the learner’s
perception of their control over the task, autonomous recep-
tivity to feedback, and higher levels of feedback processing,
including meta-task and self level learning — and as such do
not have a direct representation in FELT’s current form.

Murugesan et al., 2023; Mishra et al., 2024).

Feedback Pedagogy distinguishes three impor-
tant variables for feedback: content, source, and
timing. The content captures both the type and the
format of the information provided in a feedback
message, two aspects we will explore fully in Sec-
tion 4.2. The source of feedback typically identifies
whether the feedback stems from an authority fig-
ure or a peer. In the context of LLMs, the source
could be either a human or a separate AI model
and receiving this information might lead LLMs
to behave differently. However, current prevailing
LLM architectures can only perceive the source of
information by having it conveyed as text input to
the model, reducing it to a dimension of content.

Timing specifies whether feedback is provided
immediately or after a delay. Certain types of
prompting can be formulated as variations in tim-
ing. For example, Metacognitive reasoning (Wang
and Zhao, 2024) prompts the model to answer a
question, critically evaluate its answer, possibly re-
vise it, and assess its confidence in it. In contrast,
Chain-of-Thought (CoT; Wei et al., 2024) does not
elicit any post-answer reasoning. Coupled with
feedback learning methods such as RLF or DPO,
this “padding” between the answer and the reward
signal might affect which prompting strategy leads
to the best performance. Delayed feedback also has
the potential for deriving multiple model updates
from a single initial data point. From an answer
and a reflection generated by an LLM (i.e., an at-
tempt to identify and correct errors on that answer),
and a piece of feedback, a model can learn not only
whether the answer is correct, but also whether its
reflection is adequate — applicable both in ICL
and traditional training (e.g., RLF, DPO) settings.

4.2 Zooming in on Feedback Content

Of the four dimensions in FELT, feedback emerges
as the least systematized, particularly when it is
given through text or natural language. As briefly
mention in Section 3.3 and detailed in Appendix C,
several works have sought out to characterize feed-
back focusing only on its content. We draw from
this research to define a novel taxonomy for feed-
back content, for which all dimensions can be con-
trolled for and adjusted by the feedback provider.

Defining feedback content We distill four non-
overlapping areas from categorizations of feedback
in pedagogy research (§3):

1. Learner status. Situates the learner’s per-
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formance. May indicate what the learner got
right, what mistakes the learner made, or both.

2. Goal. Demonstrates the target performance
for the task by providing either the correct
answer or an example solution.

3. Procedural. Provides instructions for the
learner to follow on a subsequent attempt.
These recommendations can be specific to the
task, be general problem-solving and metacog-
nitive instructions, or both.

4. Peripheral. Supplementary information not
directly related to the above three areas. Pe-
ripheral feedback can include the clarification
of the task (without any instructions), or the
elaboration of concepts relevant to the task.

Modulating feedback content Once the deci-
sion of what content to include or omit in the feed-
back has been taken, how the feedback will be
given must also be decided. As such, by adapting
pedagogical models as well as incorporating en-
tirely new axes exclusive to LLMs, we propose 10
dimensions that capture the form feedback takes,
and that can be controlled by the feedback giver:

1. Granularity : measure of detail with which
the feedback addresses the original answer.8

2. Applicability of instructions : outlines if the
feedback contains instructions, and how appli-
cable those instructions are for the learner and
their current approach to solving the task.

3. Answer coverage : registers how much of the
learner’s answer is reflected in the given feed-
back. The feedback could be independent of
the answer, relate only to parts of the answer
(e.g., focusing on a particular mistake), or take
the complete answer into consideration.

4. Target coverage : indicates how much of the
target performance is being considered when
generating the feedback. Goal and Procedural
types of feedback will both have at least some
degree of target coverage.

5. Criteria : denotes which criteria the answer
is being evaluated on: global evaluation, spe-
cific dimensions (e.g., fluency, engagement,
etc.), or, alternatively, no dimensions (the an-
swer is not being evaluated).

8For an open-answer example task, feedback might range
from global meta-feedback, to task-specific, to paragraph-
level, to sentence-level, to word-level, to token-level feedback.
Appendix B provides several examples.

6. Information novelty : indicates the degree to
which learner already had access to the in-
formation in the feedback, ranging from all
information being previously known, to some
information being unknown to the learner, to
all information being novel for the learner.

7. Purpose : measures whether the feedback is
being given to improve the learner’s perfor-
mance or to clarify the task.9

8. Style : captures the type of language used to
transmit the feedback to the learner, which can
range from simple, direct sentences to verbose
and terminology-heavy language.

9. Valence : indicates whether the feedback is
positive (signaling achievement) or negative
(signaling need for improvement).

10. Mode : captures whether the feedback is uni-
or multimodal.10

The ability to modulate these ten dimensions en-
ables practitioners to specifically craft feedback for
their use cases and learning frameworks. More-
over, our feedback taxonomy is general and trans-
ferable across domains. While tasks can vary sig-
nificantly in both type (e.g., coding, mathematics,
story telling, common sense) and necessary skills
(e.g., reasoning, planning, retrieval), the same type
of feedback applies to all of them.

5 Realizing the Promise of Feedback

FELT provides a springboard for exploring the
entire feedback ecosystem. To understand what
makes feedback effective for LLMs, we briefly
propose some ideas for future investigation (and
categorize ideas from previous studies) that demon-
strate the important role that each of the different
components of FELT play in this exploration. Fig-
ure 3 presents a visual summary of the proposals
presented in this section.
Task. Feedback might influence model perfor-
mance differently depending on the goal formula-
tion for the LLM (e.g., asking the model to extract
entities from text v.s. asking the model to identify

9In a pedagogical setting with human learners, other pur-
poses are possible, such as regulating the student’s emotions
and motivation, but we do not consider these for LLMs.

10Multimodal feedback is naturally more suited for multi-
modal tasks. For example, in an instance segmentation task,
the correct (visual) answer could be provided alongside textual
feedback on mistakes and how to correct them.
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Figure 3: Visual summary of several future research directions motivated by FELT, for each of its dimensions
and across several research axes. The textual counterparts of each bubble are highlighted in their respective color
(blue, green, purple, orange) in the main body of Section 5.

their start and end positions). Task-specific pro-
cessing (e.g., LoRA; Hu et al., 2022) would allow
models to adapt to a wider range of tasks.
Learner. To explore the degree to which alignment
extends beyond changing the linguistic style of
AI models (Lin et al., 2024), LLMs can be mod-
eled as different types of learners — whether by (1)
controlling their knowledge capacity, i.e., creating
learners both with and without prior knowledge
through data interventions during pretraining or
finetuning, or external augmentation; and (2) im-
plementing novel update mechanisms that can
capture richer feedback (e.g., TextGrad; Yuksek-
gonul et al., 2024). Uncertainty awareness has
also been show to improve model alignment (Wang
et al., 2024). Exploring the model’s receptiveness
to feedback conditioned on its uncertainty may
enable better understanding of what leads models
to reject their own parametric knowledge.
Errors. After mapping the different error types
a model might make, it becomes possible to im-
plement different penalties for these error types,
which might promote different model behaviors
(Wu et al., 2023). This flexibility will yield a bet-
ter understanding of which degrees of penalization
lead to a given behavior, as well as the degree to
which this penalization should be aligned with the
actual severity that the error merits.
Feedback. By delaying the timing of the feedback
and first asking the model for a reflection, it is
possible to multiply the datapoints the model is
trained on (generating feedback not only on the
correctness of the answer but also on that of the

model’s reflections). This approach has, to the best
of our knowledge, not yet been pursued.

Categorizing Feedback A limitation of prior
works on NLF is the indiscriminate treatment of
different types of feedback (shown in Table 1). The
four types of feedback content — learner status,
goal, procedural, and peripheral — directly ad-
dress this issue, allowing more systematic studies
of feedback. The natural next step is to provide
models with various kinds of feedback and com-
pare the impact of the different types of information
and of its delivery.

Prompt Engineering ICL is an active area of re-
search in NLP, including in model alignment (Lin
et al., 2024; Zhao et al., 2024). Several dimen-
sions of our feedback content taxonomy have been
shown to contribute to either aligning LLMs to
specific desired behaviors, or to increasing its per-
formance in a given task — suggesting both the
utility of these content dimensions, and hinting at
many as of yet unexplored approaches that vary
them in novel ways. Prompts with a high degree of
applicability of instructions and with a focus on

procedural types of information are common, be it
asking for a rationale (Wei et al., 2024; Wang and
Zhao, 2024; Yao et al., 2023), or more task-specific
instructions (Wang and Zhao, 2024; Madaan et al.,
2023). Prompting the model with goal information
is also popular, most frequently done using few-
shot prompting (Brown et al., 2020). Valence is
often introduced either from (explicit or implicit)
human feedback (Shi et al., 2024; Pang et al., 2024)
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Content Type Previous Works

Learner Status
Weston (2016), Tandon et al. (2022), Scheurer et al. (2022), Saunders et al. (2022), Shi et al. (2024),

Welleck et al. (2023), Wu et al. (2023), Shinn et al. (2023), Chen et al. (2024), Paul et al. (2024), Madaan

et al. (2023), Lightman et al. (2024), Yoon et al. (2024)

Goal Weston (2016), Saunders et al. (2022), Shi et al. (2024)

Procedural
Weston (2016), Tandon et al. (2022), Saunders et al. (2022), Shi et al. (2024), Welleck et al. (2023),

Madaan et al. (2023), Murty et al. (2022), Schick et al. (2023)

Peripheral Tandon et al. (2022), Scheurer et al. (2022), Chen et al. (2024), Madaan et al. (2023)

Table 1: Past works using textual or otherwise augmented feedback. Even in the same work, feedback such as
“write a step-by-step reasoning trace before the solution” is often treated as equivalent to “should be contextually
relevant and easy to check.” As made evident by our taxonomy, however, they are markedly different, as the former
provides procedural instructions and the latter peripheral information clarifying the task.

or by criticizing a preliminary answer (Bai et al.,
2022b; Paul et al., 2024; Yao et al., 2023; Yuan
et al., 2024), providing the model with informa-
tion on its learner status. The style , or linguistic
properties, of prompts can lead to significant per-
formance variations (Leidinger et al., 2023). Fi-
nally, while Information Novelty is hard to mea-
sure for LLMs, recent research has investigated
what causes LLMs to be faithful to the novel infor-
mation rather than their encoded knowledge (Long-
pre et al., 2021), an important quality to understand
and predict model behavior (Zhou et al., 2023; Yin
et al., 2023). All these dimensions underlie a wide
range of instruction formulations for LLMs, en-
abling practitioners to taxonomize existing prompt-
ing strategies, and uncover novel approaches based
on different combinations.

Improving Reward Models Textual feedback
can be integrated into the training loop of re-
ward models, whether in a traditional training
pipeline (i.e., RLF) or in inference-time learning
(e.g., Inference-Time Policy Adapters; Lu et al.,
2023). For example, textual feedback about a pol-
icy model’s output could be provided in addition
to its output to the reward model, or, following Wu
et al. (2023), the model can be rewarded according
to a more targeted set of preferences. It is possible
to go further still by varying the granularity of
the feedback, allowing targeted rewards for differ-
ent parts of the model response to be generated.
A similar effect can by achieved by considering a
set of different criteria on which to judge model
performance. RMs themselves can be extended,
by adding adapters for different criteria or using
a Mixture-of-Experts (MoE) to better model these
fine-grained preferences. The exploration of these
dimensions allows for more expressive RMs, and

possibly modeling non-deterministic preferences.

LLMs as Learning and Teaching Agents By
defining the various factors that impact learning
from feedback, FELT allows the creation of a en-
vironments to explore and optimize feedback for
LLMs. Multiple LLM agent learners can be simu-
lated in this environment, each receiving differently
formulated feedback to guide them toward their
goals. This environment could enable the study of
the learning process from initial exposure to data to
more complex interaction with other learner agents.
The mapping provided by FELT similarly enables
the deployment of LLMs as teachers by identifying
the necessary components needed for better feed-
back dataset construction, making feedback more
adapted and personalized for learner models.

6 Conclusion

We survey the most influential feedback models
from the learning sciences, creating a novel frame-
work, FELT, as well as a taxonomy of natural
language feedback (NLF). Both enable the system-
atic exploration of feedback, allowing for objective
conclusions on the impact of a piece of feedback
and the optimization of NLF. Beyond a survey of
the space of natural language feedback, we explore
how both FELT and the fine-grained feedback con-
tent dimensions underlie many existing techniques
in natural language feedback in AI, making specific
recommendations for enhancing feedback formula-
tions for a wide range of proposed topics.

Limitations

FELT, our proposed framework to capture the full
feedback ecosystem, is only theoretically grounded
at the moment. Certain aspects of our taxonomy,
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such as the impact of feedback timing, need to be
empirically assessed for LLMs. Similarly, while
we conjecture that all 10 dimensions of the feed-
back content taxonomy will impact how models
react to feedback, this inference has not yet been
empirically confirmed. However, our grounding of
the LLM feedback space to pedagogical principles
is meant to provide a broad framework for orga-
nizing feedback research, with each component
available for empirical validation by the research
community. Components of our framework that
end up failing empirical validation perhaps indicate
areas where LLMs differ from human learning.

Another limitation of our work is that both ped-
agogical and NLP conceptualizations and results
we discussed in this paper were conducted in En-
glish settings. While we expect FELT and our
feedback content taxonomy to generalize to other
languages, the same feedback content might affect
models differently depending on the language with
which it is given. This dimension must be taken
into account by future work. Finally, any study into
how to make feedback more effective has the po-
tential to contribute to the jailbreaking of LLMs or
other purposefully malicious changes in its behav-
ior. However, we also not that better understanding
the components of feedback that make it effective
will enable researchers to develop models that are
better aligned to their original goals and perhaps
more robust to these types of attacks.
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A Components of the FELT Framework

The FELT framework introduced in Section 4
presents an important overview of all the factors
that influence feedback and are in turn influenced
by it. Figure 2 showcased a schematic overview
of the FELT framework, integrating four distinct
components: Feedback, Errors, Learner, and Task.
In this appendix, we will outline more precisely
each of the components of the FELT Framework,
as well as the interactions between them.

A.1 Task

Typically, the task will be the first element to be
defined.

Answer Type Understanding the answer is fairly
straightforward – a task has a closed-answer if
there is a finite set of correct answers, and an open-
answer otherwise. Notably, tasks can contain both
elements. For example the task "Write a quality 4-
paragraph short-story" has both open- and closed-
answer elements. There is no finite set of answer
of what a quality story is, but whether a story has 4
paragraphs, or not, is a binary closed-answer task.

Complexity The difficulty level of a task is
harder to define as some measure of relativity is
involved. We suggest anchoring this measurement
to the average adult human capabilities. A simple
arithmetic task will thus be considered very easy,
whereas researching and writing a doctoral thesis
would be seen as hard.

Prompt Instructions The task instructions will
be presented to the model at two distinct points
in time: when first assigning the model this task,
and when later providing feedback. With regards
to the former, this element captures the degree to
which the task is explained – is the model explicitly
aware of all criteria it should satisfy? With regards
to the second pass, when feedback is provided,
this dimension pertains instead with the degree of
freedom it gives the LLM – is the model forced to
take the feedback into account, or can it consider
only part of it, or even disregard it altogether if it
deems it useless?

A.2 Learner

Either at the same time the task is defined or imme-
diately after, the model to be tested will be chosen.
The model choice influences two important fea-
tures.

Prior Knowledge The prior knowledge captures
the LLM’s abilities as a direct result of its size,
training data, and training method. These, in turn,
also reflect the model’s purpose (e.g., was it de-
signed to be helpful, harmless, entertaining, etc.).
The prior knowledge thus captures the model’s rep-
resentation of the learner, and in its architecture and
parametric knowledge, it encodes the LLM’s cur-
rent abilities – or its proficiency – both in general
and with regards to the specific task.

Feedback Processing Mechanism Mainly de-
fined by the experimental setup, the mechanism
by which the model process feedback can vary sig-
nificantly, and not all of them are able to leverage
the same level of information. Imitation learning,
for example, can only leverage information which
was positively evaluated. As stated in Section 4, we
identify 4 main processing mechanisms, 3 of which
alter the model’s parametric state – feedback-based
imitation learning, joint-feedback modeling, and
reinforcement learning, as defined in Fernandes
et al. (2023) – and a fourth, non-parametric mode:
in-context learning (Brown et al., 2020).

A.3 Errors

After both the task and learner are in place, the
first pass of the experiment can be run, where the
model will have its first attempt at solving the task.
In this attempt, it is expected that the model will
make some degree of mistakes – which have two
important characteristics.

Error Type There are several possible types of
errors, and their differences are significant. For
example, an error made due to a guess only needs
to provide the learner with the right information
for it be be corrected, whereas a systematic error
(for example, the mixing of British and American
English spellings) will require a different, much
more insistent, intervention. ROSCOE (Golovneva
et al., 2023) proposes a taxonomy of step-by-step
reasoning errors. While task dependent (i.e., there
are grammar errors and arithmetic errors, rather
than fully task independent failure modes), this
taxonomy provides a good starting ground for the
exploration of error types in NLP.

Error Severity Besides the type of error, it is
also important to take the severity of the error into
account. Stating that Marie Curie was a German
philosopher and stating that she won one Nobel
Prize in her lifetime are both factually inaccurate –
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but one is a severe, complete hallucination, while
the other omitted she actually won the Nobel Prize
twice. The more severe the error, the stronger, more
insistent, and more corrective the feedback should
be.

A.4 Feedback

Finally, after the model has finished its first attempt
at the task, producing some number of errors, feed-
back can be provided on this attempt.

Timing One easy to neglect aspect of feedback
that pedagogy has shown to be impactful is timing
– whether the feedback is provided immediately
after a task is attempted or whether there is a de-
lay between the two actions. There are differing
opinions amongst education researchers, but how
to make feedback content more effective through
timing merit research in LLMs. For example, in
line with Mathan and Koedinger (2005) and Nar-
ciss (2008)’s take on timing – delay feedback if
the learner possesses metacognitive abilities that
allow them to identify and possibly correct mis-
takes – we posit feedback will be more effective if,
content-wise, it is preceded by information on the
answer’s correctness and mistakes’ existence and
only after this metacognitive priming is the rest of
the information presented.

Content Section 4.2 explores feedback content
in depth, presenting 10 impactful axes on which
it can vary: length, granularity, applicability of
instructions, answer coverage, criteria, informa-
tion novelty, purpose, style, valence, and mode. It
also presents a set of 9 emergent categories which,
based on pedagogical research, we estimate to be
the most promising one with regards to impact on
revised model generations, and thus most deserving
of further study.

Source Finally, it is also important to consider
the source of feedback, which might be an author-
ity, such as an expert, an average human, another
LLM, a rule-based system, among others. Different
sources will reflect different authority and reliabil-
ity levels.

A.5 Interactions

With a clear understanding of all the components
and sub-components of the FELT framework, we
can explore the influences that exist between them.

Both the task complexity and the learner’s prior
knowledge can impact the ideal feedback timing –

be it delayed when the learner has metacognitive
skills (Narciss, 2008) or enough task proficiency
(Mason and Bruning, 2001) they can identify where
the mistake occurred, or, for example, immediate
if they don’t (Narciss, 2008) or the task difficulty
is low (Mason and Bruning, 2001).

With regards to the feedback content, the type of
task (Butler and Winne, 1995; Kluger and DeNisi,
1996; Mason and Bruning, 2001; Lipnevich et al.,
2016) and both the error type and severity will have
an impact (Narciss and Huth, 2004; Narciss, 2008).
The nature of the task (open or closed answer) will
directly condition the feedback that can be given
in response to the model’s answer, as well as how
difficult it will be to produce it. For example, gener-
ating the correct answer for a multiple choice quiz
or a story writing task will be two very different
endeavors. Similarly, it is impossible to provide
response elaboration feedback on a single multiple
choice question. The error type and severity will
also influence the feedback content, as apart from
directly dictating what mistakes verification and
elaboration feedback can be given, they will also
condition the ideal amount of detail and explana-
tions to address the mistake at the most efficient
level.

Finally, all aspects of feedback will influence the
learner’s feedback processing mechanism (Kulhavy
and Stock, 1989; Sadler, 1989; Bangert-Drowns
et al., 1991; Butler and Winne, 1995; Kluger and
DeNisi, 1996; Narciss and Huth, 2004; Nicol and
Macfarlane-Dick, 2006; Narciss, 2008; Lipnevich
et al., 2016; Carless and Boud, 2018). All three
dimensions of feedback have evident potential to
directly influence how the model processes them.
The instruction’s permissiveness to consider or dis-
card feedback will also impact the learner’s feed-
back processing mechanism. This processing is, of
course, dependent on the specific processing mech-
anism employed, and while some might be indiffer-
ent to some of these components – like imitation
learning, for example, which focuses exclusively
on the feedback content – others will be sensitive to
all, including the task’s prompt instructions – such
as in-context learning.
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B Feedback content examples

To help concretize the 10 dimensions alongside
which feedback content can be modulated, in this
appendix we provide a few examples for each
of these dimensions, with the exception of mode,
which simply presents information in formats be-
yond text (e.g., images, audio, video).

To achieve this, we will consider the scenario
below, considering two different model answers to
better showcase different feedback formulations.
In reality, Model Answer B would likely be a re-
vised version of Model Answer A after feedback
along the lines of that presented in B.6.

Initial Prompt Please provide me with
general information on the European
Parliament Elections that took place on
June 9, 2024.

Model Answer A I cannot provide an
answer as this event takes place after
my training data cutoff date.

Model Answer B More than 20 European
countries voted over 720 seats. The
European People’s Party is expected to
have the most seats out of any party.

B.1 Granularity

Below we present some examples of feed-
back at different levels of granularity for
Model Answer B , with a focus on the procedural

type of information. Many more levels of grnaular-
ity are possible, and it can also be combined (e.g.,
provide very granular feedback on mistakes, and
general feedback on correct parts of the answer).

• General granularity. The answer lacks detail
— you should specify the number of countries,
the number of seats, and other such details.

• Sentence granularity. In the first sentence,
you should specify the number of countries
(27). You can enumerate all 27 to achieve
more clarity. In the second sentence, you
should precise the number of seats won by
that party, as well as other top parties, their
political ideology (left, center, right), whether
they can constitute a majority with other par-
ties of the same ideology, etc.

• Word granularity. Replace the first three
words with 27, the exact number of countries.

After ’European countries’ add, in parenthe-
sis, a list of the 27 countries names. Add a
new sentence detailing the several parties and
their political affiliation. After four words
in the now third sentence, add their acronym
in parentheses and at the end of the sentence
add the exact number of seats they have. Add
a fourth sentence stating whether they can
achieve majority with other parties with the
same political ideology.

B.2 Applicability of instructions
Below we present some examples of feedback at
different levels of instructions’ applicability for
Model Answer B , showcasing three well-defined

points of this spectrum:

• Concrete instructions. Specify the number
of voting countries (27), and enumerate them.
List all the parties with their political ideology.
State whether a majority is possible for the
party with the most votes.

• Metacognitive instructions. Break the re-
quest into several sub-tasks, and enumerate
them. Then, answer each sub-task individ-
ually. Once you are done, check if the ini-
tial question has been fully answered. If not,
address any points not yet covered by your
answer.

• No instructions. Your answer is satisfactory,
but it could be better.

B.3 Answer coverage
Below we present some examples of feed-
back at different levels of answer coverage for
Model Answer B . More combinations are pos-

sible (e.g., covering both mistakes and correct parts
for only a subset of the answer, exploring the order
in which each part of the answer is covered, etc.).

• Full answer. While you provided a concise
overview and identified the leading political
party, you could have provided more detail —
such as the political ideology of the party you
mention, and more concrete details overall
(specify it’s 27 countries, the number of seats
the leading party won out of the 720 total seats,
etc.)

• Successful parts. You provided a concise
overview and identified the leading political
party.
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• Lackluster parts. You could have provided
more detail — such as the political ideology
of the party you mention, and more concrete
details overall (specify it’s 27 countries, the
number of seats the leading party won out of
the 720 total seats, etc.)

B.4 Target coverage
Below we present some examples of feed-
back at different levels of target coverage for
Model Answer B . More combinations can be

done.

• Full target (correct answer). On June 9,
2024, citizens of the 27 European Union coun-
tries voted for the 720 European Parliament
seats. EPP, European People’s Party, is ex-
pected to win the most seats, 189. 361 seats
are needed for a majority, which seems achiev-
able if the three centrist parties come together:
EPP (189 seats), S&D (Progressive Alliance
of Socialists and Democrats; 135 seats) and
Renew (Renew Europe; 79 seats) — achieving
a total of 403 seats.

• Correcting lackluster parts. Rather than
more than 20 countries, it was exactly the
27 member states of the European Union who
voted for these elections. The European Peo-
ple’s Party is expected to win 189 seats. If the
three centrist parties come together (European
People’s Party, Progressive Alliance of Social-
ists and Democrats, Renew Europe), they can
achieve a majority at a total of 403 seats.

• Contrasting satisfactory parts. You could
mention the date just to clarify which elections
you are referring to in your answer. You could
also have added the acronym for the European
People’s Party (EPP).

B.5 Criteria
Below we present some criteria that could
be used to evaluate and provide feedback for
Model Answer B :

• Factuality. The answer is factually correct.

• Impartiality. The answer is impartial and
unbiased, providing information without an
underlying goal or narrative.

• Completeness. The answer is very incom-
plete, mentioning only one party without ex-
ploring the overall distribution of votes nor
the parties’ political affiliations.

• Clarity. The answer is fairly clear and read-
able, but needlessly vague on some section
(not specifying the exact number of European
Union member states, not indicating the num-
ber of seats won by the European People’s
Party).

• Relevance. The answer is relevant to, and in
the domain as, the question.

B.6 Information novelty
An example of feedback containing novel informa-
tion for Model Answer A , which lacks the neces-
sary parametric knowledge to be able to provide an
answer:

• Novel Information. On June 9, 2024, citizens
of the 27 countries that make up the European
Union (Germany, France, Italy, Spain, Poland,
Romania, Netherlands, Belgium, Czech Re-
public, Sweden, Portugal, Greece, Hungary,
Austria, Bulgaria, Denmark, Finland, Slo-
vakia, Ireland, Croatia, Lithuania, Slovenia,
Latvia, Estonia, Cyprus, Luxembourg, Malta),
voted for the 720 European Parliament seats.
EPP, European People’s Party, is expected to
win the most seats, 189. 361 seats are needed
for a majority, which seems achievable if the
three centrist parties come together: EPP (189
seats), S&D (Progressive Alliance of Social-
ists and Democrats; 135 seats) and Renew
(Renew Europe; 79 seats) — achieving a total
of 403 seats.

• Known Information. The European Parlia-
ment Elections took place on June 9, 2024,
and had European countries vote on parties
for the European Parliament.

B.7 Purpose
Below we present two contrasting exam-
ples of feedback with different purposes for
Model Answer B . Many variations are possible.

• Improving performance. Specify the num-
ber of voting countries (27), and enumerate
them. List all the parties with their political
ideology. State whether a majority is possible
for the party with the most votes.

• Clarifying the task (concretely). You should
provide an answer that concisely presents
the most important information at the start
(number of voting countries, parties who won
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the most seats, their political ideology and
whether a majority can be established). Then
in a subsequent paragraph you can list all the
parties, their affiliations, and seat count, and
well as the 27 countries. If you want to pro-
vide an even more complete answer, you can
break down the votes per country and analyze
the trends you find there.

• Clarifying the task (peripherally). To write
a good answer, you should read the question
carefully and ensure your answer either ad-
dresses the question in its entirety or at least
part of the question if it is not feasible to an-
swer it in one go. Make sure to adopt a polite
tone and strive for a clear and understandable
answer. If the question is not clear or not well
formulated, start by asking clarifying ques-
tions before attempting to answer. If you do
not know the answer, honestly admit that.

B.8 Style
Below we present examples of feedback with differ-
ent style for Model Answer B . Many variations
are possible, and we expect the model’s answer to
reflect the style used in some linguistic artifacts
(e.g., if a particularly informal tone was used, we
expect the models’ answer to lean toward lower
formality as well).

• Normal. Please rewrite your answer, but this
time specify the number of voting countries
(27), list all the parties with their political ide-
ology, and state whether a majority is possible
for the party with the most votes.

• Informal. How about you try again, but this
time make sure to say 27 countries explicitly,
list the parties and their affiliations, and say
whether a majority alliance is possible?

• Formal. I am writing to request you reattempt
this task. I would like to inform you to pay
special attention to the following points: en-
sure you state the total number of member
states of the European Union (27), diligently
report the various parties and their political
leaning, and finally, critically discuss the fea-
sibility of a political alliance between the par-
ties with most votes in order to establish a
majority.

• Very polite. If it isn’t too big of a request,
could I trouble you to take some time and

retry? If possible, please try to specifically
mention there are 27 countries in the Euro-
pean Union, consider listing the parliament
parties and their ideologies, and perhaps dis-
cuss whether an alliance for majority is possi-
ble for the parties with the most seats?

• Daring. Ha! That was a pitiful answer. I
bet you can’t write a better one, where you
actually mention important things, like the
fact there are 27 countries in the EU, what the
parties’ names are and where on the political
spectrum they lie, and whether a majority can
be achieved?

B.9 Valence
Below we present examples of feedback with dif-
ferent valence for Model Answer B . Many varia-
tions are possible, including in terms of order and
overall delivery (e.g., “sandwich feedback” (Proc-
hazka et al., 2020), in which feedback with nega-
tive valence is placed between two segments with
positive valence ).

• Neutral. Please rewrite your answer, but this
time specify the number of voting countries
(27), list all the parties with their political ide-
ology, and state whether a majority is possible
for the party with the most votes.

• Positive. Good work providing an initial an-
swer to the question. You correctly identified
the party which got the most votes, as well
as the total number of seats in the European
Union Parliament.

• Negative (no instructions). You omitted a lot
of information that was relevant, making your
answer vague and incomplete.

• Negative (with instructions). You omitted
a lot of information that was relevant, such
as stating the number of seats won by the
European People’s Party, the various parties’
names are and their political leanings, and
discussing how a majority might be achieved
with the parties with most votes.

• Positive and negative. You managed to pro-
vide an initial answer to the question that cor-
rectly identified the party which got the most
votes, and the total number of seats in the
European Union Parliament. However, you
omitted a lot of information that was relevant,
making your answer vague and incomplete.
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C Pedagogical models of feedback

C.1 Defining feedback
Table 2 presents an overview of the various defini-
tions of feedback put forward by several pedagogi-
cal works.

C.2 Categorizing feedback
Kulhavy and Stock (1989) model feedback as hav-
ing two components: the verification component,
fv, which is a simple discrete classification of the
answer as correct or incorrect, and the elaboration
component, fe, consists of three elements:

1. Type, whether the feedback contains infor-
mation derived from the current task (task-
specific), not from the task but from the rele-
vant lesson (instruction-based), or beyond the
relevant lesson, such as new information, ex-
amples or analogies not previously introduced
(extra-instructional),

2. Form, the difference in structure between the
feedback and instruction or task specification
messages, requiring increased processing the
less similar it is11, and

3. Load, the total amount of information in the
feedback - from a single "correct/incorrect"
bit to including the correct answer to even
more informative feedback accompanying it
with an explanation, for example.

Mason and Bruning (2001) propose 8 feedback
categories, arguing different types of feedback are
best suited for different learner characteristics, tak-
ing into account the students’ proficiency and prior
knowledge, as well as the task difficulty. The eight
categories are:

1. No-feedback, which presents a single grade,

2. Knowledge-of-response, which analogously
to the aforementioned verification component,
indicates whether the given answer is correct
or incorrect,

3. Answer-until-correct, an iterative variant of
knowledge-of-response feedback, not allow-
ing the student to progress until they have
provided the correct answer,

4. Knowledge-of-correct-response, which pro-
vides the correct answer,

11The form element does not apply to extra-instructional
type feedback, as there is no structural comparison point pos-
sible

5. Topic-contingent, which provides both
knowledge-of-response feedback and, anal-
ogously to Kulhavy and Stock (1989)’s
instruction-based type of feedback, provides
general information about the topic of the
task, where the learner might locate the
correct answer,

6. Response-contingent, which similarly pro-
vides knowledge-of-response feedback as
well as an explanation of why the answer is
wrong or right (mapping it to Kulhavy and
Stock (1989)’s extra-instructional type of feed-
back),

7. Bug-related, providing knowledge-of-
response feedback and bug-related feedback,
which relies on rule sets to identify procedural
errors, and

8. Attribute-isolation, which provides
knowledge-of-response feedback as well as
information on the essential attributes of the
relevant concept, focusing the learner on its
key components.

Narciss and Huth (2004); Narciss (2008) present
a detailed and comprehensive feedback model, tak-
ing into account many learner and task characteris-
tics. They also present a content-related feedback
classification scheme, with eight categories:

1. Knowledge of performance (KP), analogous to
Mason and Bruning (2001)’s no-feedback and
Kulhavy and Stock (1989)’s verification com-
ponent for a multiple-question task, presents
the learner with an aggregate score (e.g., per-
centage or number of correct answers out of
the total number of questions),

2. Knowledge of result/response (KR), di-
rectly mirrors Mason and Bruning (2001)’s
knowledge-of-response and Kulhavy and
Stock (1989)’s verification component for
each question or task, classifying it as either
correct or incorrect,

3. Knowledge of the correct results (KCR),
equivalent to Mason and Bruning (2001)’s
knowledge-of-correct-response, indicating the
correct answer to the learner,

4. Knowledge about task constraints (KTC),
somewhat similar to Mason and Bruning
(2001)’s topic-contingent feedback, is elab-
oration feedback about the task, containing
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hints, examples or explanations about the type
of task, its rules, sub-tasks, requirements and
other constraints,

5. Knowledge about concepts (KC), containing
some resemblance to Mason and Bruning
(2001)’s attribute-isolation feedback, is elab-
oration feedback on the relevant concepts,
providing hints, examples or explanations on
technical terms, the concept or its context, at-
tributes, or key components,

6. Knowledge about mistakes (KM), which paral-
lels Mason and Bruning (2001)’s bug-related
feedback, provides elaboration feedback con-
taining the number of mistakes, their location,
and hints, examples or explanations on error
types and sources,

7. Knowledge about how to proceed (KH), elab-
oration feedback on the general know-how
of the task, containing hints, examples or ex-
planations on error correction, task-specific
solving strategies or processing steps, guiding
questions and worked-out examples, and

8. Knowledge about metacognition (KMC), elab-
oration feedback going beyond the context of
the current task, and providing hints, exam-
ples, explanations, or guiding questions on
metacognitive strategies.

Hattie and Timperley (2007) present a small typol-
ogy about the information being conveyed about
the learner in the feedback message, presenting 3
questions feedback can answer:

1. Where the learner is going (feed up),

2. How they are going (feed back), and

3. Where to next (feed forward)

and argue feedback is effective if it answers all
three.
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Work Feedback Definition

Ramaprasad (1983) Information which changes the gap between "the actual level and the
reference level of a system parameter." This is quite a strict definition – if
the information does not change the gap, it is not considered feedback, and
information about the actual level, the reference level and their comparison
is needed beforehand.

Kulhavy and Stock (1989) Refer to a previous definition of feedback, whereby feedback is considered
"any of the numerous procedures that are used to tell a learner if an
instructional response is right or wrong" (Kulhavy, 1977).

Sadler (1989) "Information about how successfully something has been or is being
done."

Butler and Winne (1995) A way to update the learner’s internal state and knowledge, and subse-
quently task execution (a more learner-centric model of feedback).

Kluger and DeNisi (1996) The information provided by an external agent on one or more aspects of
task performance. Note this excludes the learner as a possible source of
feedback.

Mason and Bruning
(2001)

Feedback "is any message generated in response to a learner’s action."

Narciss and Huth (2004);
Narciss (2008)

"All post-response information which informs the learner on his/her actual
state of learning or performance in order to regulate the further process of
learning in the direction of the learning standards strived for."

Nicol and Macfarlane-
Dick (2006)

Information relating the learner’s current state to the goal state (both
with regards to learning as well as performance). Importantly, they con-
sider students generate internal feedback and that the better they are at
self-regulation, the better they will be at either generating or leveraging
feedback.

Hattie and Timperley
(2007)

Information generated by an agent about the learner’s understanding or
their performance.

Evans (2013) Feedback "includes all feedback exchanges generated within assessment
design, occurring within and beyond the immediate learning context,
being overt or covert (actively and/or passively sought and/or received),
and importantly, drawing from a range of sources."

Lipnevich et al. (2016) Feedback is information transmitted to the learner with the intent of
changing their understanding and execution, in order to improve learning.

Carless and Boud (2018) Feedback as the process through which the student understands and inte-
grates information from various sources in order to improve their learning
or performance (a more learner-centric perspective).

Lipnevich and Panadero
(2021)

Feedback "is information that includes all or several components: students’
current state, information about where they are, where they are headed
and how to get there, and can be presented by different agents (i.e., peer,
teacher, self, task itself, computer). This information is expected to have a
stronger effect on performance and learning if it encourages students to
engage in active processing."

Table 2: Different pedagogical works’ definitions of feedback.
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