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Abstract

This paper introduces and investigates the prob-
lem of Task and Language Incremental Contin-
ual Learning (TLCL), wherein a multilingual
model is systematically updated to accommo-
date new tasks in previously learned languages
or new languages for established tasks. This
significant yet previously unexplored area holds
substantial practical relevance as it mirrors the
dynamic requirements of real-world applica-
tions. We benchmark a representative set of
continual learning (CL) algorithms for TLCL.
Furthermore, we propose Task and Language-
Specific Adapters (TLSA), an adapter-based
parameter-efficient fine-tuning strategy. TLSA
facilitates cross-lingual and cross-task transfer
and outperforms other parameter-efficient fine-
tuning techniques. Crucially, TLSA reduces pa-
rameter growth stemming from saving adapters
to linear complexity from polynomial complex-
ity as it was with parameter isolation-based
adapter tuning. We conducted experiments on
several NLP tasks arising across several lan-
guages. We observed that TLSA outperforms
all other parameter-efficient approaches with-
out requiring access to historical data for replay.

1 Introduction

A deployed NLP model may need to be periodi-
cally updated for various reasons, such as adapting
to data shifts or accommodating newly available
training data. Learning new tasks or languages is
crucial for real-world NLP models (Wang et al.,
2023b). For example, a customer service that han-
dles specific tasks like order tracking and returns in
English needs to extend its support for additional
languages or handle more tasks like catering to
payment issues.

Growing demand for multilingual support makes
developing robust multilingual NLP models cru-

Code Repository: https://github.com/ShreySatapara/TL-
CL

time

 Task Incremental

 Language Incremental

 Task & Language Incremental

Legend

Task 1

Task 2

Task 3

Task 4

Language 1

Language 2

Language 3

Language 4

Figure 1: Experimental Setting of different CL scenarios
(1) Task Incremental Continual Learning: Learning a se-
quence of distinct tasks appearing in the same language.
While (2) Language Incremental Continual Learning
focuses on sequentially learning the same tasks in new
languages. (3) Task and language incremental continual
learning enable both by learning new tasks for known
languages, learning a new language for a known task
or learning completely new tasks in a new language
sequentially.

cial. A multilingual model (Tang et al., 2020; Xue
et al., 2021) is fundamentally a singular deep neu-
ral network trained across multiple languages. This
unified approach simplifies the training and main-
tenance of NLP systems by consolidating multilin-
gual capabilities into a single model. It optimizes
performance across languages through shared learn-
ing architectures. Like monolingual models, mul-
tilingual models must be periodically updated to
adapt to new tasks or languages. If these updates
are not carefully managed, training on new data
can reduce the model’s ability to perform previ-
ously learned tasks or handle earlier languages
effectively. This phenomenon is known as catas-
trophic forgetting (McCloskey and Cohen, 1989;
French, 1993). To prevent catastrophic forgetting, a
machine learning paradigm called continual learn-
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ing (CL) (De Lange et al., 2021; Ke and Liu, 2022).
CL aims to address the challenges of adapting a
pre-trained language model (PLM) to a new task,
language or domain while retaining previously ob-
tained knowledge.

Most previous works deal with the challenge of
forgetting mitigation for task incremental continual
learning (TICL) (Khan et al., 2022; Razdaibiedina
et al., 2023; Sun et al., 2019; Wang et al., 2023a).
Another line of research deals with CL over lan-
guage sequences but is mostly limited to language
incremental learning for neural machine translation
(Gu et al., 2022; Bapna et al., 2019). There is scarce
literature on language incremental continual learn-
ing (LICL) on other downstream tasks. M’hamdi
et al. (2023) studied cross-lingual CL on individ-
ual downstream tasks from knowledge preserva-
tion, accumulation and generalization perspective.
Badola et al. (2023) proposed a parameter-efficient
fine-tuning approach using Adapters and language
similarity metrics.

The intertwined complexities of task and lan-
guage incremental continual learning (TLCL) re-
main unexplored despite the need. We fill that gap
in this paper. In the TLCL setting, a pre-trained,
multilingual model must be continually updated
with a new task for an already-seen language or
a new language for an already-seen task. Given a
shared multilingual model, the goal of updating is
to adapt new task-language1 pair while retaining
knowledge obtained from previously learned task-
language data. Figure 1 shows three different types
of incremental learning.

We propose Task and Language-Specific
Adapters (TLSA), a novel parameter-efficient fine-
tuning approach that leverages adapters for contin-
ual learning (CL) over tasks and languages. This
method enables cross-lingual and cross-task trans-
fer between different task-language pairs. Addi-
tionally, TLSA reduces the number of adapters that
need to be stored, compared to standard parameter
isolation-based fine-tuning using adapters.

We conduct experiments using four different
tasks, namely classification (cls), natural language
inference (nli), context-based question answering
(qa) and summarization (summ), each in four lan-
guages: English (en), Spanish (es), Hindi (hi) and
Arabic (ar). We comprehensively analyze a wide
variety of successful CL algorithms from previous

1Throughout paper task-language term refers to a task in
particular language

literature investigated in a CL context including
(a) regularization (Kirkpatrick et al., 2017), (b) Ex-
perience Replay (Chaudhry et al., 2019) and (c)
Parameter Isolation (Khan et al., 2022) techniques.
The experiments demonstrate the superior perfor-
mance of TLSA over other parameter-efficient fine
tuning approaches.

Our main contributions are:

1. We propose a new problem setup, Task
and language incremental continual learning
(TLCL), where a multilingual model has to
sequentially learn tasks with different objec-
tives from different languages while retaining
previous knowledge.

2. We propose TLSA, a novel adapter-based
parameter-efficient fine-tuning strategy which
enables cross-lingual and cross-task transfer.
It outperforms all other parameter-efficient
finetuning techniques while reducing the num-
ber of adapters that need to be stored.

3. In our experiments, we explore different
CL scenarios, ranging from complete task-
language data availability to highly con-
strained single-language settings, to simulate
the complexities of real-world deployments.

2 Related Works

From an experimental setup perspective, existing
CL in NLP (Biesialska et al., 2020) can be broadly
divided into TICL and LICL. Researchers have
broadly used replay-based techniques (de Mas-
son D’Autume et al., 2019; Han et al., 2020; Lopez-
Paz and Ranzato, 2017) that store a subset of sam-
ples for future rehearsal via experience replay. Ad-
ditionally, Regularisation-based strategies (Kirk-
patrick et al., 2017; Farajtabar et al., 2020) which
restrict changes in model parameters to avoid inter-
ference with already learned tasks. Architecture-
based (Razdaibiedina et al., 2023; Wang et al.,
2023d) CL methods learn separate sets of parame-
ters for each task.

Task incremental continual learning TICL
(De Lange et al., 2021) aims to develop algorithms
to accumulate knowledge on non-stationary data
for different tasks. Some previous works for TICL
in NLP include LAMOL (Sun et al., 2019), which
proposes a pseudo-replay-based approach where it
learns downstream tasks. It also learns to generate
training data for downstream tasks simultaneously.
Parameter isolation-based methods such as Wang
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et al. (2023c) learn a small set of private parameters
for each task with a shared and frozen pretrained
model, while Khan et al. (2022) proposes train-
ing separate sets of adapters for each downstream
task. Progressive Prompts (Razdaibiedina et al.,
2023) trains new soft prompts for each task and
sequentially concatenates them with the previously
learned prompts. Wang et al. (2022) also trains a
separate set of adapters for task-oriented dialogue
systems.

Language incremental continual learning
(LICL) also known as multilingual continual learn-
ing (MCL) (M’hamdi et al., 2023), studies multi-
lingual modelling from a CL perspective. Many
researchers have studied language incremental CL
for neural machine translation (NMT) (Berard,
2021) tasks. Berard (2021); Chuang et al. (2020);
Gu et al. (2022) and Escolano et al. (2019) pro-
pose a method by replacing shared vocabulary
with small language-specific vocabulary and fine-
tuning embeddings on the new language parallel
data. Chuang et al. (2020) suggests using knowl-
edge distillation for continual NMT. M’hamdi et al.
(2023) explores cross-lingual continual learning
from knowledge preservation and cross-lingual gen-
eralization perspective.Badola et al. (2023) pro-
poses a sparse fine-tuning approach for LICL.

Parameter-efficient finetuning: Parameter-
efficient fine-tuning (PEFT) has recently garnered
attention from many researchers, especially for
large language models. Recent work on PEFT
has shown that training a subset of parameters can
achieve full model performance (Karimi Mahabadi
et al., 2021; Li and Liang, 2021; Houlsby et al.,
2019a). PEFT methods like adapters have shown
promising results for zero-shot cross-lingual trans-
fer (Pfeiffer et al., 2020b) as well as continual learn-
ing (Ke et al., 2021; Bapna et al., 2019).

3 Problem Definition And Background

This section formally defines task and language
incremental continual learning (TLCL). To the best
of our knowledge, we are the first to study TLCL,
where the focus is on continually learning both new
tasks and new languages.

3.1 Problem Setup

Our proposed problem setting of task and language
incremental continual learning involves a sequence
of downstream problems, where each problem is to
solve a task in a language. We assume that there ex-

ists a sequence of |K| downstream problems each
associated with a dataset D = {Dtl}(t,l)∈K , where
K ⊆ (T ×L), T ⊆ T (set of all tasks), and L ⊆ L
(set of all languages). The datasetDt,l is specific to
a unique pair of task t and language l, and contains
data points (Xt,l, Y t,l) = {Xt,l

i , Y t,l
i }N

t,l

i=1 where
Xt,l

i is an input in language l and Y t,l
i is the cor-

responding output for task t, with N t,l being the
number of the data points for task t in language l.

As with all CL settings, datasets for all task-
language pairs are not available at once; rather, they
arrive sequentially one after another. We need to
train the model on each task-language data succes-
sively without forgetting previously learned task-
language combinations under finite memory con-
straints.

3.2 Continual Learning Methods

We briefly highlight previous approaches in contin-
ual learning that are relevant to our methodology.

Elastic weight consolidation (EWC): The core
idea behind EWC (Kirkpatrick et al., 2017) is to
protect model weights that are important to previ-
ous tasks. This is achieved by adding a regular-
ization term to the loss function, which constrains
weight updates for crucial parameters while allow-
ing the model to learn new tasks. This is achieved
through weighing by the Fisher Information Ma-
trix.

Adapter (Houlsby et al., 2019b) based ap-
proaches are lightweight alternatives to full model
fine-tuning. Adapters are small feed-forward neu-
ral networks in an encoder-decoder configuration
that are introduced at every transformer layer. They
are generally small in size relative to the back-bone
transformer. Adapters are fine-tuned on down-
stream tasks while keeping the backbone model
frozen. We describe adapters and EWC in further
detail in Appendix B

4 Methodology

In continual learning, a significant challenge is for-
getting, which arises due to updates in models’
parameters, which may overwrite information that
was crucial for previous task-language pairs. Tradi-
tional CL methods like ER (Chaudhry et al., 2019),
and EWC (Kirkpatrick et al., 2017) mitigate this to
an extent but require fine-tuning the entire model
for each new task-language pair, which is com-
putationally expensive. Parameter Isolation (PI)
based parameter efficient fine-tuning (PEFT) meth-
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ods like Adapters address forgetting and computa-
tional costs by training only a subset of parameters.

To address our problem setup, we can consider
an adapter-based fine-tuning approach on a multi-
lingual pre-trained model, where we train separate
adapters for each task-language pair. However, this
can limit transfer learning opportunities and lead
to a polynomial increase in the number of adapters
that need to be stored when a new task or language
is added. To address these issues, we propose Task
and Language-Specific Adapters (TLSA), which
support cross-lingual and cross-task transfer while
reducing number of adapter sets that need to be
stored from polynomial to linear if a new task or
language is introduced.

4.1 Task And Language Specific Adapters
We propose Task and Language-Specific Adapters
(TLSA), which aim to facilitate CL across tasks
and languages. The core idea of the approach is the
segregation of task-specific and language-specific
information through separate adapters. Starting
with a pretrained model with parameters θb, we
add task-specific and language-specific adapters
with parameters θt and θl respectively for each
downstream task. By training task-specific adapter
parameters (θt) for each task across multiple lan-
guages with EWC regularization, these adapters
can accumulate task-specific knowledge while re-
maining language-agnostic. conversely, by training
language-specific adapter parameters (θl) across
all tasks for a given language with EWC regular-
ization, these adapters can accumulate language-
specific knowledge while remaining task-agnostic.
The key elements of TLSA are as follows:

Task-specific adapters: When a new task t is
introduced, the corresponding task-specific θt is
employed to learn new task. If the same task t
reappears with a different language, the previously
learned task-specific θt is fine-tuned using Elas-
tic Weight Consolidation (EWC) regularization.
The same task-specific adapters are shared across
all languages for a particular task, enabling cross-
lingual transfer between tasks.

Language-specific adapters: When a new lan-
guage l is presented, the corresponding language-
specific adapter parameter θl is employed. If the
same language l reappears with a different task t,
the previously learned θl is fine-tuned using EWC
regularization. Here, the same language-specific
adapters are shared across all tasks for each lan-
guage, enabling cross-task knowledge transfer.

We define the optimization objective for task t
and language l in the following way:

argmin
θt,θl

(L(Y t,l, F (Xt,l, θb, θt, θl) (1)

+α[1t∈Stasks
R(θt, θ

∗
t ) + 1l∈Slangs

R(θl, θ
∗
l )])

where, Stasks is the set of previously seen tasks.
Slangs denotes set of previously seen languages.
R(·, ·) denotes EWC regularization (Kirkpatrick
et al., 2017) (details in the Equation B.1) and α is
the regularization strength. Here, θ∗t is the adapter
parameters trained for task t until the previous
task-language pair. Similarly, θ∗l denotes language-
specific adapter parameters for l trained until the
previous task-language pair. The fisher information
for each task and language-specific adapters is cal-
culated separately after finishing training on each
task-language data in sequence. Appendix A Algo-
rithm 1 shows the end-to-end training process for
TLSA. During Inference for a task in a particular
language, respective task-specific and language-
specific adapters are used. Figure 2 illustrates posi-
tioning of the task and language-specific adapters
in TLSA. We observe that the task-specific and
language-specific adapters can vary in number and
are applied to different transformer blocks; more
details on this are available in subsection 5.6.

For the parameter isolation-based setup with
|T | tasks and |L| languages, the total number of
adapters required is expressed as |T |×|L|×(naN)
where N denotes the total number of encoder and
decoder layers, and na denotes no. of adapters to be
added into one encoder layer plus one decoder layer.
In this setup, parameter growth can be described
as O(|T | × |L|), indicating polynomial growth as
new tasks or languages are added. For the TLSA
setup, the required number of adapters is given by:
|T | × (na(N −Nl)) + |L| × (naNl), where Nl is
the number of layers containing language-specific
adapters. The parameter growth in this model is
O(|T | + |L|), signifying linear growth with the
addition of new tasks or languages.

While TLSA enables knowledge transfer across
tasks and languages, EWC regularization term need
not be very effective in dealing with catastrophic
forgetting. In contrast, TLSA with parameter iso-
lation (TLSAPI ) overcome forgetting by saving
adapters after training on each task-language pair
and reusing them during inference for those pairs.
Though TLSAPI can be very effective, it intro-
duces a tradeoff between memory usage and per-
formance compared to TLSA.
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Figure 2: (a) The positions where adapters are added in each transformer encoder and decoder layer, here N indicates
no. of encoder and decoder layers stacked on top of each other. (b) Three different scenarios for new task-language
pair in the sequence. Here, different colours represent encoder (E) or decoder (D) containing task-specific and
language-specific adapters for the respective task and language mentioned in the legend. Here, L1, L2, T1, and T2

mean language 1, language 2, task 1, and task 2, respectively. Here, each box represents a transformer layer, where
either task-specific or language-specific adapters are added to all positions illustrated in Figure (a).

5 Experimental Setup

5.1 Tasks And Datasets

To evaluate our approach, we consider four tasks,
namely text classification (cls), natural language
inference (nli), context-based question answering
(qa) and text summarization (summ). Each task
in the four languages of English (en), Spanish
(es), Hindi (hi) and Arabic (ar). For Natural lan-
guage inference and question answering, we utilize
the XNLI (Conneau et al., 2018) and the XQuAD
(Artetxe et al., 2020) datasets, respectively. For
languages other than English, we adopt the transla-
tions by XTREME (Hu et al., 2020). As for Text
Summarization, data is acquired from the XLSum
(Hasan et al., 2021) dataset. Finally, to evaluate
text classification, we choose Augustyniak et al.
(2023)’s sentiment analysis dataset. As the dataset
contains Hindi in its romanised form, we combine
datasets from OdiaGenAI2 and Kaggle3 for the text
classification task in Hindi.

5.2 Dataset Construction

We combine a few different datasets as mentioned
in subsection 5.1. Some datasets have many train-
ing examples; for example, XNLI has 4.5 million
training samples. To reduce the expensive com-
putational cost of our experiments, we randomly
sample 8000 samples for training; for validation
and testing, we try to keep 1000 and 2500 data

2Huggingface OdiaGenAI Hindi Dataset
3Kaggle Hindi Sentiment Analysis Dataset

points for each task-language pair data. However,
for some task-language pairs, validation and test-
ing of the data is less due as sufficient examples
are unavailable. We use XQuAD for test answer-
ing, and training and validation were created using
translations provided by (Hu et al., 2020). Dataset
statistics for all task-language-specific data is avail-
able in Table C.4

To make better use of pre-trained knowledge
by reformulating tasks(Liu et al., 2023), we unify
all tasks into question-answering tasks. This al-
lows the model to leverage signals across tasks and
languages effectively, as suggested by Zhao and
Schütze (2021). We use English prompts for all
task-language pairs for better cross-lingual cross-
task transfer as suggested by (Fu et al., 2022). The
exact prompts used for each task are available in
Table C.5.

We test these methods for three distinct scenar-
ios for TLCL: (1) Complete Task-Language Se-
quences: In this setup, we assume that task data for
each task is available in all languages. For exam-
ple, if there are two tasks qa and nli both in two
languages en and hi, we have data available for
all four task-language pairs (qa-en, nli-en, qa-hi,
nli-hi). The second scenario is (2) Partial Task-
Language Availability, where task data is available
in only a subset of languages, i.e. data available
only for (qa-en, nli-en, nli-hi). Another scenario
is a single language constraint where tasks are avail-
able in different languages, and neither task nor
language is repeated, i.e. data is available only for
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(qa-en, nli-hi). For each of these scenarios, we
consider three different task-language sequences.
The exact sequences are available in appendix in
Table C.6.

5.3 Evaluation
Following McCann et al. (2018), we employ exact
match (EM) as an evaluation metric for cls and
nli tasks across all languages. For qa, we use the
F1 score, and Rouge (Lin, 2004) score is used for
summ. More details on these metrics are available
in Appendix C.

PercentLoss: We use the percentage loss
metric instead of absolute performance to com-
pare different fine-tuning strategies. For Task-
Language pair t, l percentage loss is calculated

as PercentLosst,l = 100×
(

UBt,l−Rk′
t,l

UBt,l

)
where

UBt,l is the performance of UpperBound meth-
ods for task t in language l4, and Rk′

t,l is the
performance of respective methods on (t, l) task-
language pair when trained till k′ (final task-
language pair). This percentage metric normalizes
for the varying difficulties across tasks and eval-
uation metrics. A higher per cent loss indicates
larger deviations from the multitask upper bound.
This enables a fair comparison by penalizing meth-
ods more for degradation on easier tasks with high
upper-bound performance.

Other than average PercentLoss, we use a task-
wise performance average, forgetting, and forward
transfer (Rodríguez et al., 2018) for all three dif-
ferent task-language sequences in all scenarios for
evaluation. More details on evaluation metrics are
available in Appendix D. We report all results
averaged across three different task-language se-
quences. The order in which task-language data
arrive for each sequence is available in appendix in
Table C.6.

5.4 Baselines
Lower bound baseline sequential fine-tuning:
This is native sequential fine-tuning (SFT). Where
all model parameters are trained on the sequence
of task-language data without any regularization or
replay samples.
Non-continual upper bound baseline: These are
strong upper bound models used as reference points
for performance. Multilingual multitask finetuning
(MTMLFT) trains a single model jointly across

4We consider multitask multilingual finetuning as a refer-
ence as it’s considered as upper bound (UB) for CL framework

all task-language data. Individual finetuning (IFT)
trains independent models on the dataset for each
task-language pair.
EWC (Kirkpatrick et al., 2017): We focus on an
elastic weight consolidation-based method, which
mitigates forgetting by reducing the changes in
parameters important for previously seen task-
language pairs.
Experience replay (ER) (Chaudhry et al., 2019):
This method alleviates forgetting by maintaining
a size memory buffer balanced between each task-
language pair and regular examples from memory
for replay
Adapter finetuning: As mentioned in subsec-
tion B.2, adapters are small units added and fine-
tuned on downstream tasks while keeping the base
model frozen. These modules can be added after
the attention block, or FFN in each transformer
layer.

In this work, we explored two variants of adapter-
based fine-tuning. Adapter finetuning with pa-
rameter isolation (AT) where we initialize and
train a new set of parameters and save them sep-
arately for each task-language data in sequence.
For a fair comparison of TLSA and replay-based
method in terms of no. of trainable parameters,
we have a second variant, Adapter Finetuning
with Experience replay (ATER). In (ATER), the
same adapters are finetuned while keeping the base
model frozen across all task-language data sequen-
tially with an experience replay.

Task specific adapters: Like TLSA, we ex-
plored the task-specific adapter (TSA) method,
where instead of having separate adapters for each
task and language, we only have separate adapters
for each task added to all layers of transformer en-
coder and decoder. Just like task-specific adapters
in TLSA, in this case, also task-specific adapter
parameters θt is employed to learn a new task. If
the same task t reappears, the previously learned
θt is fine-tuned with regularization. The idea is to
facilitate cross-lingual transfer for the same task
across all languages.

Continual learning using MAD-X: We use
MAD-X (Pfeiffer et al., 2020b) in CL setup (MAD-
XCL) by inserting invertible adapters and stack-
ing task and language adapters in each layer of
the mT5 model. Like TLSA, language-specific
adapters are trained across tasks, and task-specific
adapters across languages. Unlike TLSA, MAD-X
uses frozen pre-trained language adapters, but for
a fair comparison, we modify it to use randomly
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initialized adapters for both tasks and languages.

5.5 Implementation Details

For our experiments, we formulate text-to-text for-
mulation for all experiments, where for cls and
nli tasks, labels are mapped to words (e.g. 0/1/2
could be mapped to negative, positive, or neu-
tral for cls task). We use the mT5 model (Xue
et al., 2021), a multilingual encoder-decoder-based
model pre-trained for masked language modelling
objectives. In our experiments, we used pre-trained
mT5-small checkpoint5. We train the model using
cross-entropy loss, and additional regularization is
added for approaches like TLSA, TSA and EWC.

Adapter placements: Based on an ablation
study mentioned in Appendix E for placements of
task and language-specific adapters, we placed two
adapters in each encoder layer for all experiments,
one after multi-head attention and one after FFN.
We placed three adapters in each decoder block,
one after self-attention, one after cross-attention,
and one after FFN for each decoder block.

5.6 Results

This section compares different CL methods based
on evaluation metrics mentioned in section 5.3. The
results presented are averaged across three different
task-language sequences. We found that TLSAPI

outperforms all other methods, followed by ER
and TLSA. Notably, ER performs better than all
methods except TLSAPI , even when using just 1%
of the data for each task-language pair for replay.
This superior performance is largely due to the re-
play samples acting as inherent regularization, com-
bined with a higher number of trainable parameters
(due to full fine-tuning of the backbone model),
compared to parameter-efficient fine-tuning (PEFT)
methods. Scalability analysis of Experience Replay
with different no. of samples for replay is available
in Appendix H

For a fair comparison in terms of trainable pa-
rameters, we also experimented with ATER. De-
spite showing strong forward transfer across most
tasks, ATER suffers from high forgetting, leading
to poorer performance compared to TLSA. TLSA,
without parameter isolation, outperforms all other
PEFT methods and achieves nearly equivalent re-
sults to experience replay (less than 1% AvgPer-
centLoss difference) without accessing any histori-
cal data. Given that TLSAPI has polynomial mem-

5Huggingface google/mt5-small checkpoint

ory growth but offers superior performance com-
pared to TLSA, the choice between these variants
ultimately depends on the tradeoff between mem-
ory consumption and performance needs.

Table 1 contains the results of complete and par-
tial task-language sequences, and Table 2 contains
the results of task-language sequence with a single
language constraint. Evaluation based on forgetting
and forward transfer is available in Appendix F. In
a single language constraint-based sequence, where
no tasks or languages are repeated, AT, TSA, and
TLSA yield the same performance. Therefore, we
report only the results for AT. Since AT is a param-
eter isolation-based task-language order invariant
technique, it will perform the same across all task-
language sequences.

No. of layers for task and language-specific
adapters?: As the mT5-small is already pre-
trained on the multilingual corpus, it already con-
tains language-related knowledge; hence, we de-
cided to keep fewer layers containing language-
specific adapters than layers containing task-
specific adapters. We did the ablation study on
different layers containing language-specific and
task-specific adapters on task-language Seq1. We
observed that out of 8 encoders and 8 decoders of
mT5-small, 2 encoder and 2 decoder layers with
language-specific adapters and the rest with task-
specific adapters in TLSA method perform opti-
mally, compared to more or less no of layers with
language-specific adapters. Performance for dif-
ferent language-specific adapters is available in
Figure 3(b). Task-wise details are available in Ta-
ble H.16

Regularization strength for EWC in TLSA:
To investigate the influence of regularization
strength on the performance of TLSA, we con-
ducted experiments on Complete Task-Language
Sequence on order 1 (refer Table C.6). Figure 3
(a) shows that TLSA with EWC regularization per-
forms better than TLSA without EWC regulariza-
tion. However, it shows that setting regularization
strength to high values hurts the model’s perfor-
mance. Taskwise Avg. PercentLoss is available in
Table H.17.

Cross lingual and cross task transfer in TLSA:
As outlined in subsection 4.1, since task-specific
adapters are shared across all the languages for
a given task, they were hypothesized to facilitate
the cross-lingual transfer. Conversely, language-
specific adapters are shared across all tasks for a
particular language and enable cross-task transfer.
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Performance on
Complete Task Language Sequences

Performance on
Partial Task-Language Sequences

Method Seq1 Seq2 Seq3 Average Seq4 Seq5 Seq6 Average
Continual learning methods with 100% trainable parameters

SFT 35.10 63.26 34.64 44.33 ± 16.39 55.57 56.08 50.41 54.02 ± 3.14

EWC 38.59 53.03 40.49 44.04 ± 7.85 46.66 48.05 46.25 46.99 ± 0.94

ER 9.42 12.77 12.26 11.48 ± 1.81 6.41 6.00 7.06 6.49 ± 0.53

Parameter efficient CL methods with less then 0.5% trainable parameters
AT 13.79 13.79 13.79 13.79 ± 0.00 11.42 11.42 11.42 11.42 ± 0.00

ATER 11.50 14.15 13.47 13.04 ± 1.38 15.72 14.46 13.79 14.66 ± 0.98

MAD-XCL 22.09 25.33 19.23 22.22 ± 3.05 34.61 26.98 13.24 24.94 ± 0.00

TLSA 10.32 12.82 11.74 11.63 ± 1.25 7.85 5.09 8.81 7.25 ± 1.93

TLSAPI 8.82 8.05 6.19 7.69 ± 1.35 6.92 5.67 5.93 6.17 ± 0.66
TSA 20.20 23.70 24.26 22.72 ± 2.20 14.62 14.93 12.77 14.11 ± 1.17

IFT 0.35 0.35 0.35 0.35 ± 0.00 -4.85 -4.85 -4.85 -4.85 ± 0.00

MTMLFT 0.00 0.00 0.00 0.00 ± 0.00 0.00 0.00 0.00 0.00 ± 0.00

Table 1: Average PercentLoss for task-language sequences and average across three task-language sequences for
complete and partial task-language sequences. Note: PercentLoss of MTMLFT is 0.00, as we refer to it as the upper
bound to calculate PercentLoss. The highest-performing method is highlighted in bold.

Method Seq7 Seq8 Seq9 Average
Continual learning methods

with 100% trainable parameters
SFT 40.42 85.45 52.90 59.59 ± 23.25

EWC 38.30 82.83 51.79 57.64 ± 22.83

ER 1.08 13.27 9.61 7.99 ± 6.26
Parameter Efficient CL methods with
less then 0.5% trainable parameters

AT 9.60 9.60 9.60 9.60 ± 0.00

ATER 17.03 46.16 21.85 28.35 ± 15.61

MAD-XCL 12.24 12.24 12.24 12.24 ± 0.00

IFT -7.98 -7.98 -7.98 -7.98 ± 0.00

MTMLFT 0.00 0.00 0.00 0.00 ± 0.00

Table 2: Average PercentLoss for task-language se-
quences and average across three task-language se-
quences single language constraint based task-language
sequences. Note: PercentLoss of MTMLFT is 0.00, as
we refer to it as the upper bound to calculate Percent-
Loss.

For the empirical evaluation of these hypotheses,
we conducted experiments where, after initially
training task-specific adapters in one language, we
froze these adapters and sequentially trained the
model on the same task in other languages, up-
dating only language-specific adapters. Similarly,
after initial training on language-specific adapters
in one task, we froze those adapters and trained the
model on different tasks within the same language.

The observations revealed that updating task-

specific and language-specific adapters signifi-
cantly enhanced cross-lingual and cross-task trans-
fer effectiveness. Figure 3(d) illustrates the perfor-
mance comparison between the TLSA model with
frozen language-specific adapters, as discussed ear-
lier, and the standard TLSA approach across all
tasks within the same language. Additionally, Fig-
ure 3(c) provides a comparative analysis of cross-
lingual transfer across all languages for each task,
using the previously described model with frozen
task-specific adapters and the original TLSA con-
figuration.

How does continual learning methods gener-
alize to unseen task-language pairs?: To ana-
lyze the zero-shot transfer to unseen task-language
pairs during training, we made the inference on
remaining task-language pairs in the case of par-
tial task-language sequences. We infer that most
CL methods have a positive correlation between
their performance for each task in terms of average
performance for each task in seen and unseen lan-
guages. Table 3 contains a task-wise performance
of different CL methods for zero-shot generaliza-
tion averaged across three sequences. We ob-
served that while most methods perform well on
classification (cls) and natural language inference
(nli) tasks, their performance significantly declines
on more difficult tasks such as question-answering
(qa) and summarization (summ). This is primarily
due to models training on specific tasks that in-
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(d)(b)

(c)(a)

Figure 3: Figure (a) shows the Average percentage loss for different regularization strengths for task-language Seq1.
(b) shows the Average percentage loss for task-language Seq1 for different no. of layers containing language-specific
adapters. (c) Language-wise comparison for each task for TLSA with frozen task-specific adapters and original
TLSA implementation. (d) Task-wise competition for each language for TLSA with frozen language-specific
adapters and original TLSA implementation.

Method CLS NLI QA SUMM
SFT 45.47 37.05 0.60 0.01
EWC 43.35 39.59 1.99 0.03
ER 46.80 51.50 8.87 0.14

TSA 54.85 58.48 40.59 2.84
TLSA 46.35 57.45 6.07 0.48
ATER 42.67 48.81 11.27 0.05

MAD-XCL 34.62 39.24 2.07 0.03
MTMLFT 52.37 53.87 13.14 0.49

Table 3: Taskwise average performance on three task
sequences for zero-shot generalization using remaining
task-language pairs in partial task-language sequence.

troduce strong token biases, negatively impacting
their zero-shot performance.

For example, when training models on classifi-
cation and NLI tasks in English and Spanish, the
language-specific adapters develop biases towards
tokens associated with these tasks and labels. As a
result, this specialization leads to poor performance
when the model is applied in zero-shot settings to
question-answering and summarization in the same
languages. Among the methods evaluated, TSA
consistently outperforms others, including TLSA,
in zero-shot scenarios. TSA facilitates better cross-
lingual transfer, while all other methods except AT

are capable of cross-lingual transfer, suffer in zero-
shot settings due to inter-task interference, resulting
in poorer performance than TSA.

6 Conclusion And Future Work

We introduce and study the problem of task and
language incremental continual learning. We pro-
vide the first benchmark to compare the effec-
tiveness of different CL methods for the TLCL
case. We further introduce TLSA, a parameter and
memory-efficient fine-tuning method for TLCL,
and its variant TLSAPI , eliminating forgetting
by parameter isolation. TLSAPI outperforms all
other CL methods for complete and partial task-
language sequence, while ER performs better in
single-language constraint-based scenarios. TLSA
outperforms all other PEFT methods and performs
on par with ER without having access to historical
data. The selection of TLSA vs TLSAPI can be
made based on a tradeoff between memory and
performance. We also explore their capabilities for
zero-shot generalization to unseen task-language
pairs. However, we find them to struggle with zero-
shot generalization. Therefore, a key future direc-
tion is to improve zero-shot transfer capabilities
within CL to unseen task-language pairs.
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Limitations

Since this is one of the first studies on task and
language incremental continual learning, the paper
focuses on laying the groundwork by establish-
ing the experimental setting on a set of NLP tasks
and languages. Possible limitations of our experi-
mental setup are the restrictions on evaluating the
mT5-small checkpoint and fixing the number of
samples for each task-language data. However, in
real-life scenarios, one may have access to different
amounts of data for each task-language pair. In our
setup for evaluation, the language chosen (en, es,
hi, ar) is diverse but still a relatively high resource;
extending the TICL setup on underrepresented (or
even absent) during the pretraining of the model
may provide interesting insights.
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Piotr Gramacki, Krzysztof Rajda, Mikoł aj Morzy,
and Tomasz Kajdanowicz. 2023. Massively multilin-
gual corpus of sentiment datasets and multi-faceted
sentiment classification benchmark. In Advances in
Neural Information Processing Systems, volume 36,
pages 38586–38610. Curran Associates, Inc.

Kartikeya Badola, Shachi Dave, and Partha Talukdar.
2023. Parameter-efficient finetuning for robust con-
tinual multilingual learning. In Findings of the As-
sociation for Computational Linguistics: ACL 2023,
pages 9763–9780, Toronto, Canada. Association for
Computational Linguistics.

Ankur Bapna, Naveen Arivazhagan, and Orhan Firat.

2019. Simple, scalable adaptation for neural machine
translation. CoRR, abs/1909.08478.

Alexandre Berard. 2021. Continual learning in multilin-
gual NMT via language-specific embeddings. In
Proceedings of the Sixth Conference on Machine
Translation, pages 542–565, Online. Association for
Computational Linguistics.

Magdalena Biesialska, Katarzyna Biesialska, and
Marta R. Costa-jussà. 2020. Continual lifelong learn-
ing in natural language processing: A survey. In
Proceedings of the 28th International Conference
on Computational Linguistics, pages 6523–6541,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elho-
seiny, Thalaiyasingam Ajanthan, Puneet K Dokania,
Philip HS Torr, and Marc’Aurelio Ranzato. 2019. On
tiny episodic memories in continual learning. arXiv
preprint arXiv:1902.10486.

Yung-Sung Chuang, Shang-Yu Su, and Yun-Nung Chen.
2020. Lifelong language knowledge distillation. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2914–2924, Online. Association for Computa-
tional Linguistics.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina
Williams, Samuel Bowman, Holger Schwenk, and
Veselin Stoyanov. 2018. XNLI: Evaluating cross-
lingual sentence representations. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2475–2485, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah
Parisot, Xu Jia, Aleš Leonardis, Gregory Slabaugh,
and Tinne Tuytelaars. 2021. A continual learning sur-
vey: Defying forgetting in classification tasks. IEEE
transactions on pattern analysis and machine intelli-
gence, 44(7):3366–3385.

Cyprien de Masson D’Autume, Sebastian Ruder, Ling-
peng Kong, and Dani Yogatama. 2019. Episodic
memory in lifelong language learning. Advances in
Neural Information Processing Systems, 32.

Carlos Escolano, Marta R. Costa-jussà, and José A. R.
Fonollosa. 2019. From bilingual to multilingual neu-
ral machine translation by incremental training. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics: Student Re-
search Workshop, pages 236–242, Florence, Italy.
Association for Computational Linguistics.

Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang
Li. 2020. Orthogonal gradient descent for continual
learning. In International Conference on Artificial
Intelligence and Statistics, pages 3762–3773. PMLR.

Robert French. 1993. Catastrophic interference in con-
nectionist networks: Can it be predicted, can it be

12132

https://doi.org/10.18653/v1/2020.acl-main.421
https://doi.org/10.18653/v1/2020.acl-main.421
https://proceedings.neurips.cc/paper_files/paper/2023/file/7945ab41f2aada1247a7c95e75cdf6c8-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/7945ab41f2aada1247a7c95e75cdf6c8-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/7945ab41f2aada1247a7c95e75cdf6c8-Paper-Datasets_and_Benchmarks.pdf
https://doi.org/10.18653/v1/2023.findings-acl.619
https://doi.org/10.18653/v1/2023.findings-acl.619
https://arxiv.org/abs/1909.08478
https://arxiv.org/abs/1909.08478
https://aclanthology.org/2021.wmt-1.62
https://aclanthology.org/2021.wmt-1.62
https://doi.org/10.18653/v1/2020.coling-main.574
https://doi.org/10.18653/v1/2020.coling-main.574
https://doi.org/10.18653/v1/2020.emnlp-main.233
https://doi.org/10.18653/v1/D18-1269
https://doi.org/10.18653/v1/D18-1269
https://doi.org/10.18653/v1/P19-2033
https://doi.org/10.18653/v1/P19-2033


prevented? Advances in Neural Information Process-
ing Systems, 6.

Jinlan Fu, See-Kiong Ng, and Pengfei Liu. 2022. Poly-
glot prompt: Multilingual multitask prompt training.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
9919–9935, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Shuhao Gu, Bojie Hu, and Yang Feng. 2022. Continual
learning of neural machine translation within low for-
getting risk regions. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1707–1718, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Sylvain Gugger, Lysandre Debut, Thomas Wolf, Philipp
Schmid, Zachary Mueller, Sourab Mangrulkar, Marc
Sun, and Benjamin Bossan. 2022. Accelerate: Train-
ing and inference at scale made simple, efficient and
adaptable. https://github.com/huggingface/
accelerate.

Xu Han, Yi Dai, Tianyu Gao, Yankai Lin, Zhiyuan Liu,
Peng Li, Maosong Sun, and Jie Zhou. 2020. Contin-
ual relation learning via episodic memory activation
and reconsolidation. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 6429–6440.

Tahmid Hasan, Abhik Bhattacharjee, Md. Saiful Is-
lam, Kazi Mubasshir, Yuan-Fang Li, Yong-Bin Kang,
M. Sohel Rahman, and Rifat Shahriyar. 2021. XL-
sum: Large-scale multilingual abstractive summariza-
tion for 44 languages. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 4693–4703, Online. Association for Computa-
tional Linguistics.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019a. Parameter-efficient transfer learning for NLP.
In Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 2790–2799.
PMLR.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019b. Parameter-efficient transfer learning for NLP.
In Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 2790–2799.
PMLR.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra-
ham Neubig, Orhan Firat, and Melvin Johnson.
2020. Xtreme: A massively multilingual multi-task
benchmark for evaluating cross-lingual generalisa-
tion. In International Conference on Machine Learn-
ing, pages 4411–4421. PMLR.

Rabeeh Karimi Mahabadi, James Henderson, and Se-
bastian Ruder. 2021. Compacter: Efficient low-rank
hypercomplex adapter layers. In Advances in Neural
Information Processing Systems, volume 34, pages
1022–1035. Curran Associates, Inc.

Zixuan Ke and Bing Liu. 2022. Continual learning of
natural language processing tasks: A survey. arXiv
preprint arXiv:2211.12701.

Zixuan Ke, Hu Xu, and Bing Liu. 2021. Adapting BERT
for continual learning of a sequence of aspect senti-
ment classification tasks. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 4746–4755, Online.
Association for Computational Linguistics.

Shadab Khan, Surbhi Agarwal, and PK Srijith. 2022.
Lifelong language learning with adapter based trans-
formers. In Continual Lifelong Learning Workshop
at ACML 2022.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. 2017. Over-
coming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences,
114(13):3521–3526.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, Joe Davison, Mario Šaško, Gun-
jan Chhablani, Bhavitvya Malik, Simon Brandeis,
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid,
Sylvain Gugger, Clément Delangue, Théo Matus-
sière, Lysandre Debut, Stas Bekman, Pierric Cis-
tac, Thibault Goehringer, Victor Mustar, François
Lagunas, Alexander Rush, and Thomas Wolf. 2021.
Datasets: A community library for natural language
processing. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing: System Demonstrations, pages 175–184, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597, Online. Association for Computational Lin-
guistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023. Pre-
train, prompt, and predict: A systematic survey of

12133

https://doi.org/10.18653/v1/2022.emnlp-main.674
https://doi.org/10.18653/v1/2022.emnlp-main.674
https://doi.org/10.18653/v1/2022.emnlp-main.111
https://doi.org/10.18653/v1/2022.emnlp-main.111
https://doi.org/10.18653/v1/2022.emnlp-main.111
https://github.com/huggingface/accelerate
https://github.com/huggingface/accelerate
https://aclanthology.org/2021.findings-acl.413
https://aclanthology.org/2021.findings-acl.413
https://aclanthology.org/2021.findings-acl.413
https://proceedings.mlr.press/v97/houlsby19a.html
https://proceedings.mlr.press/v97/houlsby19a.html
https://proceedings.neurips.cc/paper_files/paper/2021/file/081be9fdff07f3bc808f935906ef70c0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/081be9fdff07f3bc808f935906ef70c0-Paper.pdf
https://doi.org/10.18653/v1/2021.naacl-main.378
https://doi.org/10.18653/v1/2021.naacl-main.378
https://doi.org/10.18653/v1/2021.naacl-main.378
https://arxiv.org/abs/2109.02846
https://arxiv.org/abs/2109.02846
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013


prompting methods in natural language processing.
ACM Computing Surveys, 55(9):1–35.

David Lopez-Paz and Marc’Aurelio Ranzato. 2017.
Gradient episodic memory for continual learning. Ad-
vances in neural information processing systems, 30.

Bryan McCann, Nitish Shirish Keskar, Caiming Xiong,
and Richard Socher. 2018. The natural language
decathlon: Multitask learning as question answering.
CoRR, abs/1806.08730.

Michael McCloskey and Neal J. Cohen. 1989. Catas-
trophic interference in connectionist networks: The
sequential learning problem. volume 24 of Psychol-
ogy of Learning and Motivation, pages 109–165. Aca-
demic Press.

Meryem M’hamdi, Xiang Ren, and Jonathan May. 2023.
Cross-lingual continual learning. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 3908–3943, Toronto, Canada. Association for
Computational Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc.

Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya
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Mengjie Zhao and Hinrich Schütze. 2021. Discrete and
soft prompting for multilingual models. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 8547–8555,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

A Task and Language Specific Adapters
Algorithm

Algorithm 1 contents end-to-end training process
for TLSA where Θtasks and Θlangs denotes a Dic-
tionary to store parameters of task-specific and
language-specific adapters.

Algorithm 1 Incremental Continual Learning with
Task and Language-Specific Adapters and EWC

1: Stasks ← ϕ, Slangs ← ϕ
2: Initilize empty dictionaries Θtasks and Θlangs
3: for all (t, l) ∈ K do
4: if t ∈ Stasks then
5: θt ← Θtasks[t]
6: else
7: θt ← RandomInitialization()
8: end if
9: if l ∈ Slangs then

10: θl ← Θlangs[l]
11: else
12: θl ← RandomInitialization()
13: end if
14: for all (xi, yi) ∈ {Xt,l

i , Y t,l
i }Ni=1 do

Optimize based on Equation 1
15: end for
16: Θtasks[t]← θt, Θlangs[l]← θl
17: Stasks ← Stasks ∪ {t}, Slangs ← Slangs ∪ {l}
18: end for

B Background

B.1 Elastic Weight Consolidation
For a model that has learned task A and is now
learning task B, The loss function for task B, modi-
fied with EWC, is given by

L(θ) = LB(θ) +
λ

2
R(θ, θ∗A)

R(θ, θ∗A) =
∑

i

Fi(θi − θ∗A,i)
2 (2)

Where LB(θ) is the loss function for Task B, θ rep-
resents model parameters, θ∗A represents model pa-
rameters after training on task A, which are treated
as optimal values for the previous task. F denotes

the diagonal fisher information matrix correspond-
ing to parameters θ, indicating the importance of
each weight. The summation over i in the equa-
tion signifies that this regularization is applied to
each parameter individually. This means that each
parameter θi from the model’s parameters θ is com-
pared against its optimal value θ∗A,i from Task A,
weighted by the corresponding value Fi from the
fisher information matrix, Fi denotes the following

Fi = Ex∼p(x)

[(
∂ log p(y|x; θ)

∂θi

)2
]

(3)

B.2 Adapters

Adapters (Houlsby et al., 2019b) are lightweight
alternatives to full model fine-tuning, consisting of
only a tiny set of newly introduced parameters at
every transformer layer. These adapter layers com-
prise a down projection matrix D, which projects
input into lower dimensional space hdown, a non-
linearity f and an Up Projection U . The associ-
ated transformation can be described as A(h) =
h+ UT f(DTh), where h is hidden representation
input to the adapter block. These adapters can be
placed after the transformer layer’s attention block
or feed-forward network (FFN).

C Dataset

C.1 Task Description

• Classification (Augustyniak et al., 2023): We
consider sentiment analysis, where the goal is
to classify the sentiment expressed in the input
sentences into one of the following classes:
positive, negative or neutral.

• Natural Language Inference (NLI) (Conneau
et al., 2018): The NLI task is to find if a given
premise sentence contradicts, entails or is neu-
tral towards the hypothesis sentence.

• Context-Based Question Answering (Artetxe
et al., 2020): Given a paragraph, the task is to
identify the answer to a question as a span of
the corresponding paragraph.

• Text Summarization (Hasan et al., 2021): Gen-
erate a concise and meaningful text summary
given a text document
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Task Dataset Evaluation
Metrics Language Abbrivation Train Val Test

English nli-en 8000 1000 2500
Hindi nli-hi 8000 1000 2500

Spanish nli-es 8000 1000 2500

Natural
Language
Inference

(nli)

XNLI EM

Arabic nli-ar 8000 1000 2500
English summ-en 8000 1000 2500
Hindi summ-hi 8000 1000 2015

Spanish summ-es 8000 578 563

Text
Summarization

(summ)
XSUMM ROUGE

Arabic summ-ar 8000 1000 1262
English qa-en 8000 1000 1168
Hindi qa-hi 8000 1000 1094

Spanish qa-es 8000 1000 1150

Context Based
Question

Answering
(qa)

SQUAD
+

XSQUAD
F1 Score

Arabic qa-ar 8000 1000 1136
English cls-en 8000 1000 2500
Spanish cls-es 8000 1000 2500MMS
Arabic cls-ar 8000 1000 2500

Text
Classification

(cls) OdiaGenAI
+ Kaggle

EM

Hindi cls-hi 8000 1000 2500

Table C.4: Dataset source, statistics, and evaluation metrics for all 16 task-language pairs used in our CL experiments.

D Evaluation Metric

We use the following evaluation metrics to measure
the performance of different tasks that we consid-
ered in this experimental setup suggested by Mc-
Cann et al. (2018). Exact Match (EM): We use
exact match to evaluate cls and nli tasks, where
we compare the normalized generated label (strip
out articles and punctuation) and actual text label
of a particular class. F1 Score (F1): We calculate
normalized F1 score for question answering task.
Rouge: For text summarization, we employ the
rouge score, as suggested in McCann et al. (2018),
we take an average of ROUGE-1, ROUGE-2 and
ROUGE-L scores.

To measure transfer and forgetting in CL setup,
we calculate forward transfer and forgetting in the
following way.

Forgetting: Assume k′ = (t′, l′), t′ ∈ T, l′ ∈
L as the final task-language pair observed by the
model, then we define forgetting for a particular
task t ∈ T as

Ft =

∑
l∈L

[
Rk′,(t,l) −R(t,l),(t,l)

]

1t=t′(|L| − 1) + 1t̸=t′ |L|
(4)

where Rk,k̂ implies to the performance of our

model on k̂ task-language pair when trained till
k task-language pair.

Forward Transfer: Assume k̄ = (t̄, l̄), t̄ ∈ T,
l̄ ∈ L as the first task-language pair encountered

by the model, then forward transfer corresponding
to a particular task t ∈ T ,

FWTt =

∑
l∈L

[
R(t,l),(t,l) −R(t,l)

]

1t=t̄(|L| − 1) + 1t̸=t̄|L|
(5)

where R(t,l) implies the performance of the model
when independently trained on (t, l) task-language
pair.

E Experimental Details

All of our experiments were performed on 3
NVIDIA V100-32GB GPUs on a DGX-2 Server.
Our Implementation uses PyTorch (Paszke et al.,
2019), the transformers (Wolf et al., 2020), the
adapter-hub (Pfeiffer et al., 2020a), accelerate
(Gugger et al., 2022), and the datasets (Lhoest
et al., 2021) library. For the evaluation metric,
we referred to implementation from McCann et al.
(2018). We use pre-trained mt5-small checkpoint
to initialize our models.

We conducted all of our experiments with per
device batch size 8, gradient accumulation 2, and
constant learning rate 1e-4 for 25 epochs using
the huggingface transformers Seq2SeqTrainer class.
We use default reduction factor 16 and Bert initial-
ization (Pfeiffer et al., 2020a) for adapters across
all experiments. For TLSA and TSA, the regular-
ization strength used is 1e3, which we found via ab-
lation study over different regularization strengths.
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Task Question Context Answer

Text
Classification

Is the given sentence
positive,

negative or neutral?
{Input Sentence }

positive/
negative/
neutral

Natural
Language
Inference

Hypothesis:
{hypothesis_sentence}

Entailment, neutral,
or contradiction?

Premise:
{premise_sentence}

entailment/
neutral/

contradiction

Context
Based

Question
Answering

{Question} { Context }
{ Expected
Answer }

Text
Summarization

What is the summary? { Document }
{ Expected
Summary }

Table C.5: Prompts used for different tasks, to unify them as context-based question answering tasks. Here, there is
no explicit prompt for the question answering task as it’s already a context-based question answering task.

We use 1% samples per task-language data for ex-
perience replay. For standard EWC-based finetun-
ing, we use regularization strength to be 10. In
adapters-based approaches like AT, ATER, TLSA
and TSA, only 0.44% parameters are trainable.
While other approaches fine-tune all model pa-
rameters. In TLSA, we added language-specific
adapters to the first and third encoder layers and
the sixth and eighth decoder layers. The decision
of adapter positioning is based on ablations study
mentioned in subsection H.1

Table E.7 contains the total and trainable no of
parameters in each approach.

F Taskwise Forgetting and Forward
transfer

We evaluated different CL methods using metrics
like Forgetting and Forward transfer as defined in
Appendix D. Table F.8, Table F.10 and Table F.13
contain task-wise average forward transfer for com-
plete task-language sequence, partial task-language
sequence and task-language sequence with single
language constraints, respectively.

Table F.9, Table F.11 and Table F.12 contain
task-wise average Forgetting for complete task-
language sequence, partial task-language sequence
and task-language sequence with single language
constraints, respectively. We observed that TLSA
has less forgetting than other methods.

Since AT is a parameter isolation-based ap-
proach, forgetting and forward transfer is zero;
hence, we have not added those values to the respec-
tive tables. In single-language constraint-based se-

quences, since there is no overlap between tasks
or languages methods like AT, TLSA, TSA, MAD-
XCL has zero forgetting and forward transfer since
all the parameters are isolated for each task and lan-
guage; hence, we skipped those values in respective
tables.

G Abilation Study

H Scalability Analysis of Experience
Replay

As experience replay is outperforming TLSA, we
conducted scalability analysis with different no. of
data points for replay to see at which point ER
outperforms TLSA.

H.1 Abilation Study for TLSA
Along with finding the best regularization strength
and no. of layers to add language-specific adapters,
after deciding the regularization strength and no.
of layers to add language-specific adapters, we
conducted an ablation study on placing task and
language-specific adapters in different encoder and
decoder layers. We observed that placing language-
specific adapters in the early layers of the encoder
and later layers of the decoder performs better
than adding language-specific adapters in the ini-
tial layers of the encoder and the initial layer of
the decoder. We hypothesise that adding language-
specific adapters in initial layers allows it to map to
universal representation space across all languages,
while adding language-specific adapters at later
layers of the decoder helps by adding language-
specific bias during generation. We also observe
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Seq Task-Language Sequence

Complete
Task-

Language
Sequence

1
qa-ar→ summ-hi→ cls-en→ nli-es→ qa-hi→ nli-en→ summ-ar→ cls-hi→
cls-ar→ qa-en→ nli-ar→ summ-es→ summ-en→ cls-es→ nli-hi→ qa-es

2
nli-hi→ cls-ar→ summ-en→ qa-hi→ cls-es→ qa-ar→ summ-ar→ nli-es→
summ-hi→ qa-en→ cls-en→ nli-ar→ qa-es→ cls-hi→ nli-en→ summ-es

3
nli-en→ qa-es→ cls-ar→ summ-ar→ nli-hi→ qa-en→ cls-en→ summ-hi→
qa-ar→ cls-es→ summ-en→ nli-ar→ nli-es→ cls-hi→ summ-es→ qa-hi

Partial
Task-

Language
Sequence

4 qa-hi→ cls-en→ summ-hi→ qa-ar→ nli-es→ summ-ar→ nli-hi→ cls-es
5 nli-es→ qa-hi→ cls-en→ summ-hi→ cls-es→ summ-ar→ qa-ar→ nli-hi
6 summ-ar→ cls-es→ qa-hi→ qa-ar→ nli-hi→ summ-hi→ nli-es→ cls-en

Single
Language
Constraint

7 summ-hi→ qa-ar→ nli-es→ cls-en
8 cls-en→ nli-es→ qa-ar→ summ-hi
9 qa_ar→ cls_en→ summ_hi→ nli_es

Table C.6: 9 different orders of task-language sequences for continual learning experiments. Seq 1-3 corresponds
to a continual learning scenario where all tasks’ data is available in all the languages. Seq 4-6 are for partial
task-language sequences, where each task can appear in one or more languages. Seq 7-9 denotes experimental
scenario for experiments with single language constraint-based sequences.

Method Total no.
of parameters

No. of trainable
Parameters

Methods that requires full model finetuning
SFT 300,176,768 300,176,768
EWC 300,176,768 300,176,768
ER 300,176,768 300,176,768
IFT 300,176,768 300,176,768

MTMLFT 300,176,768 300,176,768
PEFT based CL Methods

AT 301,509,248 1,332,480
ATER 301,509,248 1,332,480
TLSA 301,509,248 1,332,480
TSA 301,509,248 1,332,480

MAD-XCL 301,374,592 1,197,824

Table E.7: No of total and trainable parameters for each method.

that adding LSA in alternate layers performs better
than adding them in consecutive layers. Table H.15
contains Avg. PercentLoss for Seq1 for different
positioning of TSA and LSA.
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Method CLS NLI QA SUMM
SFT 0.02 ± 0.41 -0.67 ± 1.04 2.97 ± 1.38 0.19 ± 0.05
EWC -0.44 ± 0.21 -0.02 ± 0.45 2.12 ± 0.43 0.29 ± 0.03
ER -0.76 ± 0.23 -0.40 ± 1.30 2.44 ± 0.82 0.15 ± 0.28

ATER 1.15 ± 0.52 10.57 ± 3.80 11.52 ± 1.00 0.69 ± 0.13
TLSA 0.92 ± 0.17 9.67 ± 1.58 4.80 ± 2.17 -0.36 ± 0.23
TSA 1.02 ± 0.57 9.15 ± 1.26 3.89 ± 1.88 -0.24 ± 0.16

MAD-XCL 0.65 ± 0.23 9.43 ± 2.26 3.92 ± 2.21 -0.23 ± 0.92

Table F.8: Taskwise average forward transfer average across three task-language sequences for complete task-
language sequencer scenario.

Method CLS NLI QA SUMM
SFT 34.10 ± 10.97 12.88 ± 6.17 23.81 ± 27.64 12.16 ± 1.14
EWC 34.23 ± 8.80 10.64 ± 11.15 23.93 ± 27.68 12.47 ± 1.28
ER 7.29 ± 0.29 3.60 ± 3.34 6.07 ± 5.15 3.44 ± 0.52

ATER 10.16 ± 0.38 3.65 ± 3.21 1.41 ± 4.82 2.33 ± 0.16
TLSA 6.20 ± 1.62 -0.92 ± 1.45 -0.61 ± 4.94 1.41 ± 1.43
TSA 8.21 ± 0.99 -2.22 ± 1.59 1.07 ± 3.07 8.08 ± 0.70

MAD-XCL 13.42 ± 2.12 1.46 ± 3.43 2.09 ± 1.23 6.83 ± 3.28

Table F.9: Taskwise Forgetting average across three different task-language sequences for complete task-language
sequencer scenario.

Method CLS NLI QA SUMM
SFT 0.36 ± 0.43 -0.54 ± 1.61 1.03 ± 0.87 0.12 ± 0.09
EWC -0.14 ± 1.09 -0.35 ± 0.96 1.02 ± 0.73 -0.02 ± 0.07
ER -1.05 ± 0.26 -0.25 ± 1.45 0.56 ± 0.68 -0.09 ± 0.09

ATER 1.11 ± 0.65 3.83 ± 3.40 8.77 ± 1.75 0.47 ± 0.22
TLSA -0.30 ± 0.44 5.97 ± 1.28 5.86 ± 2.67 -1.02 ± 0.88
TSA -1.25 ± 0.23 6.45 ± 1.01 4.47 ± 0.15 -5.13 ± 2.24

MAD-XCL -2.34 ± 1.94 2.85 ± 2.94 6.36 ± 1.93 -3.85 ± 0.35

Table F.10: Taskwise average forward transfer average across three task-language sequences for partial task-language
sequencer scenario.

Method CLS NLI QA SUMM
SFT 17.82 ± 22.59 18.96 ± 15.05 44.03 ± 6.00 13.22 ± 3.89
EWC 17.82 ± 23.50 16.91 ± 13.91 38.09 ± 12.68 11.54 ± 4.32
ER 3.97 ± 1.65 3.64 ± 1.92 7.58 ± 3.24 2.36 ± 0.30

ATER 6.09 ± 3.89 3.42 ± 6.06 6.16 ± 3.58 2.01 ± 0.72
TLSA 1.55 ± 0.51 -1.42 ± 0.83 1.26 ± 2.49 0.39 ± 0.81
TSA 2.46 ± 0.14 -3.31 ± 1.12 2.38 ± 0.47 4.55 ± 2.08

MAD-XCL 4.64 ± 1.86 -1.86 ± 0.46 1.76 ± 0.46 3.75 ± 2.57

Table F.11: Taskwise average forgetting averaged across three task-language sequences for partial task-language
sequencer scenario.
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Method CLS NLI QA SUMM
SFT 35.37 ± 30.64 31.07 ± 30.64 44.45 ± 4.84 13.47 ± 11.67
EWC 36.62 ± 31.77 29.77 ± 30.23 42.95 ± 7.15 13.20 ± 11.45
ER 4.62 ± 4.18 3.72 ± 3.99 13.36 ± 5.47 1.48 ± 1.65

ATER 11.63 ± 10.22 13.07 ± 12.50 18.26 ± 11.15 0.89 ± 0.79

Table F.12: Taskwise Forgetting averaged across three task-language sequences for single language constraint-based
task-language sequencer scenario.

Method CLS NLI QA SUMM
SFT -0.84 ± 1.16 -1.19 ± 0.54 0.28 ± 0.52 0.02 ± 0.09
EWC -0.64 ± 1.24 -1.27 ± 0.61 1.08 ± 0.71 -0.17 ± 0.04
ER -1.01 ± 0.22 -1.73 ± 0.49 -0.61 ± 0.51 -0.03 ± 0.04

ATER 26.82 ± 30.25 26.64 ± 20.86 -18.69 ± 23.15 -25.21 ± 31.49

Table F.13: Taskwise forward transfer average across three different task-language sequences for single language
constraint-based task-language sequencer scenario.

#Examples
For

Replay

Complete
Task-Language

Sequence

Partial
Task-Language

Sequence

Single Language
Constraint

10 14.94 23.79 25.58
20 13.61 15.83 11.11
40 8.34 6.17 5.28
80 6.85 6.41 3.54
100 6.32 2.88 2.10

Table H.14: AvgPercentLoss for experience replay using different no. of examples for replay using Seq1, Seq4 and
Seq7 for Complete Task-Language Sequence, Partial Task-Language Seq and Single language constraint

Encoder Layers
with LSA

Encoder Layers
with TSA

Decoder Layers
with LSA

Decoder Layers
with TSA

Avg.
PercentLoss

0,2 1,3,4,5,6,7 5,7 0,1,2,3,4,6 10.32
0,1 2,3,4,5,6,7 6,7 0,1,2,3,4,5 10.7
0,1 2,3,4,5,6,7 0,1 2,3,4,5,6,7 25.13
0,2 1,3,4,5,6,7 0,2 1,3,4,5,6,7 25.31

Table H.15: Performence for adding task-specific adapters(TSA) and Language language-specific adapters (LSA) in
different layers in encoder and decoder layers.

#LSA
in

Encoder

#TSA
in

Encoder

#LSA
in

Decoder

#TSA
in

Decoder
CLS NLI QA SUMM AvgPercentLoss

0 8 0 8 67.03 64.81 48.25 6.41 -20
1 7 1 7 67.19 63.37 51.57 9.67 -14.31
2 6 2 6 68.8 63.13 51.11 12.36 -9.98
3 5 3 5 70.15 61.7 34.61 8.98 -21.91
4 4 4 4 68.89 59.46 44.47 11.67 -15.25

Table H.16: Taskwise average performance and Avg. PercentLoss for employing different no of task-specific and
language-specific adapters in TLSA method.
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Regularization
Strength CLS NLI QA SUMM Avg.

PercentLoss
0 8.85 -5.64 27.5 52.74 20.86

1.00E+03 5.21 -8.38 17.53 26.91 10.32
1.00E+04 4.98 -5.27 40.24 37.45 19.35
1.00E+05 8.31 1.74 47.36 28.06 21.37
1.00E+06 12.43 8.93 53.02 29.92 26.08
1.00E+07 19.01 11.86 56.51 28.82 29.05

Table H.17: Taskwise Average PercentLoss for different regularization strengths for TLSA method.
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Figure H.4: Performance on different tasks for different numbers of samples when using experience replay. seq4 is
shown. The title of each plot denotes the task-language being evaluated. Labels on the X-axis indicate, from left to
right, the order in which each task-language training data subset is exposed to the model.
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