@inproceedings{ranaldi-etal-2024-empowering-multi,
title = "Empowering Multi-step Reasoning across Languages via Program-Aided Language Models",
author = "Ranaldi, Leonardo and
Pucci, Giulia and
Haddow, Barry and
Birch, Alexandra",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-main.678",
pages = "12171--12187",
abstract = "In-context learning methods are popular inference strategies where Large Language Models (LLMs) are elicited to solve a task using provided demonstrations without parameter updates. Among these approaches are the reasoning methods, best exemplified by Chain-of-Thought (CoT) and Program-Aided Language Models (PAL), which elicit LLMs to generate reasoning paths, thus promoting accuracy and attracting increasing attention. However, despite the success of these methods, the ability to deliver multi-step reasoning remains limited to a single language, making it challenging to generalize to other languages and hindering global development.In this work, we propose Cross-lingual Program-Aided Language Models (CrossPAL), a method for aligning reasoning programs across languages. In particular, our method delivers programs as intermediate reasoning steps in different languages through a double-step cross-lingual prompting mechanism inspired by the Program-Aided approach. In addition, we introduce Self-consistent CrossPAL (SCrossPAL) to ensemble different reasoning paths across languages. Our experimental evaluations show that our method significantly outperforms existing prompting methods, reducing the number of interactions and achieving state-of-the-art performance.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ranaldi-etal-2024-empowering-multi">
<titleInfo>
<title>Empowering Multi-step Reasoning across Languages via Program-Aided Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Leonardo</namePart>
<namePart type="family">Ranaldi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giulia</namePart>
<namePart type="family">Pucci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barry</namePart>
<namePart type="family">Haddow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexandra</namePart>
<namePart type="family">Birch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In-context learning methods are popular inference strategies where Large Language Models (LLMs) are elicited to solve a task using provided demonstrations without parameter updates. Among these approaches are the reasoning methods, best exemplified by Chain-of-Thought (CoT) and Program-Aided Language Models (PAL), which elicit LLMs to generate reasoning paths, thus promoting accuracy and attracting increasing attention. However, despite the success of these methods, the ability to deliver multi-step reasoning remains limited to a single language, making it challenging to generalize to other languages and hindering global development.In this work, we propose Cross-lingual Program-Aided Language Models (CrossPAL), a method for aligning reasoning programs across languages. In particular, our method delivers programs as intermediate reasoning steps in different languages through a double-step cross-lingual prompting mechanism inspired by the Program-Aided approach. In addition, we introduce Self-consistent CrossPAL (SCrossPAL) to ensemble different reasoning paths across languages. Our experimental evaluations show that our method significantly outperforms existing prompting methods, reducing the number of interactions and achieving state-of-the-art performance.</abstract>
<identifier type="citekey">ranaldi-etal-2024-empowering-multi</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-main.678</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>12171</start>
<end>12187</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Empowering Multi-step Reasoning across Languages via Program-Aided Language Models
%A Ranaldi, Leonardo
%A Pucci, Giulia
%A Haddow, Barry
%A Birch, Alexandra
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F ranaldi-etal-2024-empowering-multi
%X In-context learning methods are popular inference strategies where Large Language Models (LLMs) are elicited to solve a task using provided demonstrations without parameter updates. Among these approaches are the reasoning methods, best exemplified by Chain-of-Thought (CoT) and Program-Aided Language Models (PAL), which elicit LLMs to generate reasoning paths, thus promoting accuracy and attracting increasing attention. However, despite the success of these methods, the ability to deliver multi-step reasoning remains limited to a single language, making it challenging to generalize to other languages and hindering global development.In this work, we propose Cross-lingual Program-Aided Language Models (CrossPAL), a method for aligning reasoning programs across languages. In particular, our method delivers programs as intermediate reasoning steps in different languages through a double-step cross-lingual prompting mechanism inspired by the Program-Aided approach. In addition, we introduce Self-consistent CrossPAL (SCrossPAL) to ensemble different reasoning paths across languages. Our experimental evaluations show that our method significantly outperforms existing prompting methods, reducing the number of interactions and achieving state-of-the-art performance.
%U https://aclanthology.org/2024.emnlp-main.678
%P 12171-12187
Markdown (Informal)
[Empowering Multi-step Reasoning across Languages via Program-Aided Language Models](https://aclanthology.org/2024.emnlp-main.678) (Ranaldi et al., EMNLP 2024)
ACL