
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 1182–1191
November 12-16, 2024 ©2024 Association for Computational Linguistics

Rethinking Pruning Large Language Models:
Benefits and Pitfalls of Reconstruction Error Minimization

Sungbin Shin1* Wonpyo Park2 Jaeho Lee1,2,3 Namhoon Lee1,2,3
1POSTECH 2Google 3Yonsei University

{ssbin4,jaeho.lee,namhoonlee}@postech.ac.kr
wppark@google.com

Abstract

This work suggests fundamentally rethinking
the current practice of pruning large language
models (LLMs). The way it is done is by di-
vide and conquer: split the model into sub-
models, sequentially prune them, and recon-
struct predictions of the dense counterparts on
small calibration data one at a time; the final
model is obtained simply by putting the re-
sulting sparse submodels together. While this
approach enables pruning under memory con-
straints, it generates high reconstruction errors.
In this work, we first present an array of recon-
struction techniques that can significantly re-
duce this error by more than 90%. Unwittingly,
however, we discover that minimizing recon-
struction error is not always ideal and can over-
fit the given calibration data, resulting in rather
increased language perplexity and poor perfor-
mance at downstream tasks. We find out that a
strategy of self-generating calibration data can
mitigate this trade-off between reconstruction
and generalization, suggesting new directions
in the presence of both benefits and pitfalls of
reconstruction for pruning LLMs.1

1 Overview

Large language models (LLMs) have shown re-
markable potential and achieved tremendous suc-
cesses in various domains (Brown et al., 2020; Sing-
hal et al., 2023; Roziere et al., 2023). Nevertheless,
running them requires a significant amount of com-
putations and memory, raising concerns about ac-
cessibility, sustainability, and scalability (Strubell
et al., 2019; Bender et al., 2021). Neural network
pruning holds great promise for mitigating this is-
sue (LeCun et al., 1989; Hoefler et al., 2021). A
complication here is that the standard approach is
not quite feasible since it usually involves an exten-

*Work partly done as a student researcher at Google
1Our code is available at https://github.com/

LOG-postech/rethinking-LLM-pruning.

1
0 10 20 30

Block index
0

1

2

3

Er
ro

r (
no

rm
al

ize
d) reconstruction X

reconstruction O

(a) Effects of reconstruction techniques on reducing the error

1.5

2.0

2.5

3.0 Recon error (test)

6.4

6.6

6.8

7.0 Perplexity

43

44

45

46 Task error

self-generated data X self-generated data O

(b) Effects of self-generated data on mitigating overfitting

Figure 1: (a) Reconstruction techniques significantly
reduce the compounding errors and lead to a substan-
tial reduction of error in the final block. Reconstruction
O and X refer to the results with and without the pro-
posed reconstruction techniques (BR, GP, CR) respec-
tively. (b) Minimizing reconstruction error may not al-
ways be ideal since models can overfit calibration data
(we show this in Section 3.2). Using our self-generated
calibration data in the reconstruction process mitigates
this issue quite effectively by decreasing test error, per-
plexity, and error rates for downstream tasks.

sive training process (and training data) which is
challenging to carry out for LLMs.

To address this issue, LLM pruning is done post
training. Specifically, it could be formulated as a
reconstruction problem as follows:

min
w,m

}fpw̄;Dq ´ fpmd w;Dq}22
s.t. }m}0 ď k ,

(1)

i.e., given a pre-trained model w̄, the goal is to find
a pruning mask m such that the resulting sparse
model m d w reconstructs the predictions of the

1182

https://github.com/LOG-postech/rethinking-LLM-pruning
https://github.com/LOG-postech/rethinking-LLM-pruning

original dense model fpw̄; ¨q on some calibration
data D; here, d denotes element-wise product for
vectorized representations, and m needs to sat-
isfy a given sparsity constraint k. If the objective
criterion—reconstruction error—is minimized to
zero, then we achieve the perfect reconstruction
and thereby pruning results.

While one could now avoid training LLMs from
scratch with (1), it still requires as much memory
as of the given LLM, hindering development un-
der memory constraints. To circumvent this issue,
many recent works take a divide-and-conquer ap-
proach: i.e., split the model into a sequence of
smaller submodels, prune and reconstruct each sub-
model individually, and simply put all resulting
sparse submodels together (Frantar and Alistarh,
2023; Sun et al., 2024; Zhang et al., 2024). Albeit
fairly effective, we find that this can easily create
critically high compounding errors. This is because
solutions for each subproblem yield non-zero re-
construction errors.

In this work, we address the reconstruction error
minimization for pruning LLMs with the following
three major pillars. First, we focus on developing
various engineering techniques to reduce this error.
These are inspired to lessen the suboptimality of
subsolutions by incorporating different levels of
extension schemes. Second, we suggest that reduc-
ing this error is not necessarily favorable, however.
Our extensive experimental results indicate that it
is possibly due to overfitting, given limited calibra-
tion data and high problem complexity. Third, we
present useful strategies to potentially mitigate the
risk of reconstruction and improve generalization.
This is based on what we call the self-generation
of calibration data.

Briefly, this work investigates the benefits and
pitfalls of the reconstruction error minimization
scheme for pruning LLMs. To our best knowledge,
this trade-off has not been explicitly identified or
studied before, thereby suggesting rethinking the
current practice. Our initial investigations may
shed light on some potential future research direc-
tions. We summarize our main results in Figure 1.

2 Reconstruction Techniques

This section explains three optimization schemes
we use to reduce reconstruction errors in this work.

Block-wise reconstruction (BR) The seminal
work of Frantar and Alistarh (2023) proposes to
reconstruct predictions layer-wise based on least

squares. By removing non-linearity this approach
yields a closed-form solution. However, we find
that this can create a high reconstruction error since
the system is highly underdetermined (i.e., there
are much more parameters than calibration data).
To reduce compounding errors, we first consider
extending the unit of optimization target from a
layer to a block of layers. Specifically, this means
a block-wise reconstruction (BR) which can be for-
mulated as follows:

min
w1,...,wB

Bÿ

i“1

}gipw̄i;xiq ´ gipm̄i d wi;xiq}22 (2)

where gi refers to the i-th block of layers (e.g., a
Transformer block) in which we have the optimiza-
tion variables wi, and xi denotes the inputs to the
i-th block which originally come from calibration
data; here, the pruning mask m̄ is fixed assuming
that it is already obtained from an arbitrary pruning
method. I.e., the goal is to update variables in each
block to minimize the extended reconstruction er-
rors. We solve this problem iteratively using the
standard gradient-based method. Notably a similar
approach is also proposed in the concurrent work
of Guo et al. (2024), and we find in our experiments
that BR is extremely effective in reducing the re-
construction errors in Section 3.1. We illustrate the
idea of BR in Figure 2.

Global propagation (GP) While the general
divide-and-conquer principle is quite functional,
we identify a potential issue therein: by sequen-
tially solving the subproblem, it is constantly fitting
practically suboptimal solutions obtained from the
previous step (which become gradually worse), as
with xi “ gi´1pm̄i´1 d wi´1;xi´1q. We realize
that this is another source of compounding errors,
and thus, suggest that when we locally reconstruct
a model, at least we use global propagation (GP)
from the original dense model as input to the target
reconstruction; i.e., xi “ gi´1pw̄i´1;xi´1q. We
show that GP improves the reconstruction results
quite significantly in Section 3.1. We further note
that a similar principle is found in various appli-
cations including low-rank approximation (Zhang
et al., 2015), channel pruning (He et al., 2017),
and quantization (Nagel et al., 2020; Hubara et al.,
2021). We illustrate the idea of GP in Figure 2.

Cross-block reconstruction (CR) Another way
we consider to further reduce reconstruction errors
is to extend the reconstruction unit from a block to

1183

D

block

model

BR

…
…

…
GP

CR

calibration data

layer LR

model prediction
f

Figure 2: An illustration of reconstruction techniques for pruning large language models. Here, we want the sparse
model fpm d w; ¨q to reconstruct the prediction of the dense model on some calibration data D. LR, BR, GP, and
CR each correspond to layer-wise reconstruction, block-wise reconstruction, global propagation, and cross-block
reconstruction. Here, solid and dashed arrows each represent the inputs coming from sparse and dense models.

multiple blocks and stitch the solutions in between
by connecting via the adjacent blocks. Specifically,
this means that now g in (2) becomes a composite
of multiple blocks, say h, and we ensure h overlaps;
more precisely, hi “ gi ˝gi´1 and hi`1 “ gi`1 ˝gi
for two blocks, and so on for all blocks. This way,
namely cross-block reconstruction or CR (Ding
et al., 2023), we can potentially bridge between
subsolutions by taking into account some interac-
tion between adjacent blocks, and hence, reduce
the compounding errors. We illustrate the idea of
CR in Figure 2.

To elaborate further, the difference between BR

and CR is that while BR is about updating param-
eters within a block (thus it is not concerned with
how to combine subsolutions), CR takes a step fur-
ther and is about stitching the subsolutions; i.e.,
CR updates parameters within two adjacent blocks,
and when it comes to reconstructing the next block,
it includes the overlapping block so that it has the
effect of “stitching”. This method is found to be
quite effective for reducing the error, however, we
find that this method can often lead to overfitting.
We discuss this in detail in Section 3.2.

3 Experiments

3.1 Reconstruction error

We first evaluate the effectiveness of the suggested
techniques in reducing the reconstruction error.
Here, we focus on pruning LLaMA-7B (Touvron
et al., 2023) and OPT-125M (Zhang et al., 2022)
to unstructured 50% sparsity with three pruning
methods: SparseGPT (Frantar and Alistarh, 2023),
Wanda (Sun et al., 2024), and Magnitude (Han
et al., 2015). For each pruning method, we exam-
ine four reconstruction strategies: layer-wise re-
construction (LR), block-wise reconstruction (BR),
block-wise reconstruction with global propaga-
tion (BR+GP), and cross-block reconstruction with
global propagation (BR+GP+CR). Following the
convention, we use 256 calibration data randomly

0 10 20 30
Block index

0

1

2

3

Er
ro

r (
no

rm
al

ize
d) LR

BR
BR+GP
BR+GP+CR

(a) SparseGPT

0 10 20 30
Block index

0

1

2

3

Er
ro

r (
no

rm
al

ize
d) LR

BR
BR+GP
BR+GP+CR

(b) Wanda

Figure 3: Results of reconstruction techniques for
LLaMA-7B. They constantly reduce the compound-
ing errors, achieving a significant decrease at the final
block („ 90%). We find this trend is consistent across
different settings. See Figures 5 and 6 of Appendix B
for more results.

sampled from C4 (Raffel et al., 2020) each contain-
ing 1024 tokens. We run the Adam optimizer for
10 epochs (see Appendix A for details). The results
are presented in Figure 3.

We can see that all the reconstruction techniques
reduce the compounding errors quite significantly,
yielding a substantial reduction at the final block.
Specifically, BR first reduces the final error by at
least 50% across all pruning methods compared
to LR, BR+GP further reduces the error by at least
60% compared to BR, and finally, BR+GP+CR re-
duces the error by at least 20% compared to BR+GP.
Consequently, we observe that the error is reduced
from 87% to 94% with BR+GP+CR compared to
the baseline LR.

3.2 Generalization performance

We now evaluate the generalization performances
of the reconstruction results. Specifically, we mea-
sure the perplexity of the pruned model on three
different datasets: raw-Wikitext2 (Merity et al.,
2017), PTB (Marcus et al., 1994), and validation
data of C4. We also measure its zero-shot task per-
formance in accuracy on seven downstream tasks:
BoolQ (Clark et al., 2019), RTE (Wang et al., 2019),

1184

Pruner Reconstruction Error (normalized)
Perplexity Zero-shot accuracy

Wiki PTB C4 Mean BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OpenbookQA Mean

Dense ´ ´ 5.68 10.12 7.34 7.71 75.11 66.43 56.96 70.00 75.29 41.81 34.40 60.00

SparseGPT

LR 2.86 7.24 12.61 9.17 9.67 73.36 58.12 51.86 68.90 70.62 36.95 28.60 55.49
BR 1.24 6.82 11.69 8.66 9.06 71.71 54.51 52.54 68.27 71.68 36.18 28.40 54.76

BR+GP 0.48 6.72 11.32 8.55 8.86 71.22 53.79 53.57 68.90 71.76 37.54 27.80 54.94
BR+GP+CR 0.37 6.83 11.41 8.71 8.99 72.91 55.60 53.24 68.51 71.21 36.26 27.80 55.07

Wanda

LR 3.56 7.25 12.77 9.28 9.77 71.28 55.23 52.04 66.46 69.36 36.52 28.80 54.24
BR 1.33 6.82 11.54 8.70 9.02 72.02 57.04 52.45 67.09 72.18 36.60 28.60 55.14

BR+GP 0.51 6.68 11.25 8.56 8.83 72.66 60.29 53.25 68.43 71.46 37.63 29.80 56.22
BR+GP+CR 0.38 6.79 12.01 8.72 9.18 73.00 59.93 53.18 68.27 71.13 37.29 28.80 55.94

Magnitude

LR 8.08 17.29 49.67 23.78 30.25 54.65 54.15 45.47 59.43 58.75 33.45 22.60 46.93
BR 2.37 7.83 15.73 9.66 11.07 68.90 49.82 47.85 66.38 70.29 36.77 27.00 52.43

BR+GP 0.63 6.88 11.77 8.77 9.14 71.65 52.35 53.00 68.19 70.75 37.63 29.00 54.65
BR+GP+CR 0.46 6.98 11.96 8.85 9.27 72.23 48.74 53.20 67.09 70.54 36.95 28.20 53.85

Table 1: Effects of different reconstruction techniques on error, perplexity, and zero-shot accuracy for LLaMA-7B.
Bold and underline refer to best in general and task-specific. See Table 3 of Appendix B for the OPT-125M results.

Pruner CR
Error (normalized)
Calib Test

SparseGPT
X 0.006 0.0083
O 0.004 0.0078

Wanda
X 0.006 0.0080
O 0.004 0.0076

Magnitude
X 0.008 0.0109
O 0.005 0.0102

(a) OPT-125M

Pruner CR
Error (normalized)
Calib Test

SparseGPT
X 0.48 2.30
O 0.37 2.53

Wanda
X 0.51 2.23
O 0.38 2.48

Magnitude
X 0.63 2.42
O 0.46 2.55

(b) LLaMA-7B

Table 2: Reconstruction errors of OPT-125M and
LLaMA-7B on test data (raw-Wikitext2) as well as cal-
ibration data. Overfitting by CR is only observed for
the larger LLaMA-7B model. We find that larger mod-
els in general are more susceptible to overfitting. See
Tables 3 and 4 of Appendix B for more results.

HellaSwag (Zellers et al., 2019), Winogrande (Sak-
aguchi et al., 2020), ARC Easy and Challenge
(Clark et al., 2018), and OpenbookQA (Mihaylov
et al., 2018). The results are presented in Table 1.

At first, we find that the perplexity effectively
decreases with BR and GP; the value reduces across
all test cases including different models, pruning
methods, and datasets. Unexpectedly, however, the
perplexity rather increases when we add CR despite
the reduced reconstruction errors. We also observe
a similar trend in zero-shot performance for Wanda
and Magnitude pruning, with mean accuracy in-
creasing by a large margin with BR and GP but
decreasing with CR. Interestingly, for SparseGPT,
reconstruction techniques do not generally help
zero-shot performance. We hypothesize that it is
because SparseGPT already conducts fairly heavy
optimization compared to other methods, and ap-
plying further reconstruction on particular calibra-
tion data may not help improve zero-shot perfor-
mance since it is more sensitive to distribution shift.
Furthermore, we find that such overfiting tends to
occur more for LLaMA-7B than OPT-125M (see
Table 2). This is possibly due to model size; i.e.,

given the same amount of (limited) calibration data,
over-optimizing can make large models more likely
to overfit and lead to poor generalization.

We can summarize our findings are as follows.
• BR and GP are found to be very effective in

reducing perplexity in all cases; on the other
hand, CR often leads to overfitting, especially
for large models.

• This holds true for zero-shot performance as
well, with only exception of SparseGPT, for
which BR and GP do not help much in improv-
ing zero-shot performance; this is possibly
due to the fact that SparseGPT already con-
ducted fairly heavy optimization of remaining
weights. It is also possible that adapting to
downstream task is more prone to overfitting.
This certainly requires more investigations.

In short, we can attempt to say without much loss
of generality that “BR and GP can generally help
for pruning LLMs in terms of reducing perplexity”.

4 Further Exploration

We have seen that reconstruction techniques are
useful but they can lead to undesirable overfitting.
Here we explore potential ways to alleviate this
risk. In particular, we identify that the calibration
data is highly limited in two aspects: it is too little
(compared to optimization variables)2 and does not
represent the training data (as it is arbitrarily given);
the former is related to the general representation-
generalization complexity trade-off, and the latter
is about whether the reconstruction can mimic the
behavior of the original model.

2This can be especially problematic for domain-specific
LLMs, e.g., healthcare (Singhal et al., 2023; Luo et al., 2022)
and finance (Wu et al., 2023; Yang et al., 2023), where obtain-
ing real-world data can be highly challenging due to privacy
concerns.

1185

0 256 1024 2048
of self-generated data

1.5

2.0

2.5

3.0
Er

ro
r (

no
rm

al
ize

d)

(a) Test error

0 256 1024 2048
of self-generated data

6.5

6.6

6.7

6.8

6.9

7.0

Pe
rp

le
xi

ty

(b) Perplexity

Figure 4: Effects of self-generated calibration data on
(a) reconstruction error for test data (raw-Wikitext2)
and (b) perplexity for LLaMA-7B; they both improve
with more self-generation. See Figure 7 of Appendix B
for more results.

To this end, we reflect on the fact that what we
are dealing with is a generative (language) model,
meaning that we can create calibration data that
is potentially much bigger in size and closer to
the original distribution. We find that this self-
generation technique has recently been proposed in
other contexts (Meng et al., 2022; Ye et al., 2022;
Liu et al., 2023; Li et al., 2024), and thus, follow
the process therein to produce high-quality text
data. Using that, we perform reconstruction again,
and the results are reported in Figure 4. We observe
that making use of more self-generated calibration
data (without unfairly violating the given setting)
reduces both test error and perplexity, mitigating
overfitting quite effectively.

5 Conclusion

In this work, we take a close look at the current
practice of minimizing reconstruction errors for
pruning LLMs. We first find that with various re-
construction techniques, one can reduce the error
quite significantly and improve quality of pruning
results on both language perplexity and zero-shot
accuracy. Nevertheless, it turns out that decreasing
error as it is now is not always desirable since it
may cause overfitting calibration data. We present
initial results that this issue can be potentially miti-
gated by self-generating calibration data. There are
many remaining possibilities, and we believe our
findings suggest opportunities for future work.

6 Limitations

There remain several limitations in our experiments
and we plan to address these in future work. First,
our main experiments are limited to LLaMA-7B
and OPT-125M. We intend to scale up our experi-
ments to much larger models of up to 70B param-

eters and different architectures including Mixtral
(Jiang et al., 2024) or Gemma (Team et al., 2024).
Next, reconstruction techniques BR, GP, and CR

require additional memory compared to LR, al-
though they still use much less memory compared
to model-level reconstruction of solving (1) (see
Appendix B for the details). We plan to introduce
parameter-efficient optimization (Hu et al., 2022)
to alleviate this increased memory burden.

Although the self-generation of calibration data
effectively mitigates overfitting, it requires more
computation for reconstruction. Finally, we find
that some portions of the generated texts are far
from plain English texts and thus may not serve as
good calibration data (see Table 5 of Appendix C
for the examples). In this regard, we believe that re-
ducing the number of these irrelevant examples and
generating only a few number of high-quality texts
can be a potential way to improve performance and
increase efficiency.

Acknowledgements

This work was partly supported by the Institute of
Information & communications Technology Plan-
ning & Evaluation (IITP) grant funded by the
Korean government (MSIT) (RS-2019-II191906,
Artificial Intelligence Graduate School Pro-
gram (POSTECH); RS-2022-II220959/No.2022-0-
00959, (part2) Few-Shot learning of Causal Infer-
ence in Vision and Language for Decision Making;
RS-2024-00338140, Development of Learning and
Utilization Technology to Reflect Sustainability of
Generative Language Models and Up-to-Dateness
over Time) and the National Research Foundation
of Korea (NRF) grant funded by the Korean gov-
ernment (MSIT) (RS-2023-00210466, RS-2023-
00265444, RS2023-0021371). Sungbin Shin was
supported by Kwanjeong Educational Foundation
Scholarship.

References
Emily M Bender, Timnit Gebru, Angelina McMillan-

Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language models
be too big? FAccT.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. NeurIPS.

Christopher Clark, Kenton Lee, Ming-Wei Chang,

1186

Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. NAACL.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Xin Ding, Xiaoyu Liu, Yun Zhang, Zhijun Tu, Wei Li,
Jie Hu, Hanting Chen, Yehui Tang, Zhiwei Xiong,
Baoqun Yin, et al. 2023. Cbq: Cross-block quan-
tization for large language models. arXiv preprint
arXiv:2312.07950.

Elias Frantar and Dan Alistarh. 2023. SparseGPT:
Massive language models can be accurately pruned
in one-shot. ICML.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Bider-
man, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h,
Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey
Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric
Tang, Anish Thite, Ben Wang, Kevin Wang, and
Andy Zou. 2023. A framework for few-shot lan-
guage model evaluation.

Song Guo, Fan Wu, Lei Zhang, Xiawu Zheng,
Shengchuan Zhang, Fei Chao, Yiyu Shi, and
Rongrong Ji. 2024. Ebft: Effective and block-
wise fine-tuning for sparse llms. arXiv preprint
arXiv:2402.12419.

Song Han, Jeff Pool, John Tran, and William Dally.
2015. Learning both weights and connections for
efficient neural network. NeurIPS.

Yihui He, Xiangyu Zhang, and Jian Sun. 2017. Chan-
nel pruning for accelerating very deep neural net-
works. ICCV.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli
Dryden, and Alexandra Peste. 2021. Sparsity in
deep learning: Pruning and growth for efficient in-
ference and training in neural networks. JMLR.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. ICLR.

Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner,
and Daniel Soudry. 2021. Accurate post training
quantization with small calibration sets. ICML.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las
Casas, Emma Bou Hanna, Florian Bressand, et al.
2024. Mixtral of experts. arXiv preprint
arXiv:2401.04088.

Yann LeCun, John Denker, and Sara Solla. 1989. Opti-
mal brain damage. NeurIPS.

Liang Li, Qingyuan Li, Bo Zhang, and Xiangxiang
Chu. 2024. Norm tweaking: High-performance low-
bit quantization of large language models. AAAI.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie
Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chan-
dra. 2023. Llm-qat: Data-free quantization aware
training for large language models. arXiv preprint
arXiv:2305.17888.

Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng
Zhang, Hoifung Poon, and Tie-Yan Liu. 2022.
Biogpt: generative pre-trained transformer for
biomedical text generation and mining. Briefings in
bioinformatics.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex
Damian, Jason D Lee, Danqi Chen, and Sanjeev
Arora. 2023. Fine-tuning language models with just
forward passes. NeurIPS.

Mitch Marcus, Grace Kim, Mary Ann Marcinkiewicz,
Robert MacIntyre, Ann Bies, Mark Ferguson, Karen
Katz, and Britta Schasberger. 1994. The penn
treebank: Annotating predicate argument structure.
HLT.

Yu Meng, Jiaxin Huang, Yu Zhang, and Jiawei Han.
2022. Generating training data with language
models: Towards zero-shot language understanding.
NeurIPS.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. ICLR.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. EMNLP.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen,
Christos Louizos, and Tijmen Blankevoort. 2020.
Up or down? adaptive rounding for post-training
quantization. ICML.

Satya Sai Srinath Namburi, Makesh Sreedhar, Srinath
Srinivasan, and Frederic Sala. 2023. The cost of
compression: Investigating the impact of compres-
sion on parametric knowledge in language models.
EMNLP 2023 Findings.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. JMLR.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950.

1187

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2020. Winogrande: An adver-
sarial winograd schema challenge at scale. AAAI.

Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mah-
davi, Jason Wei, Hyung Won Chung, Nathan Scales,
Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl,
et al. 2023. Large language models encode clinical
knowledge. Nature.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in nlp. ACL.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter.
2024. A simple and effective pruning approach for
large language models. ICLR.

Gemma Team, Thomas Mesnard, Cassidy Hardin,
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale,
Juliette Love, et al. 2024. Gemma: Open models
based on gemini research and technology. arXiv
preprint arXiv:2403.08295.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2019.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. ICLR.

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravol-
ski, Mark Dredze, Sebastian Gehrmann, Prabhan-
jan Kambadur, David Rosenberg, and Gideon Mann.
2023. Bloomberggpt: A large language model for
finance. arXiv preprint arXiv:2303.17564.

Hongyang Yang, Xiao-Yang Liu, and Christina Dan
Wang. 2023. Fingpt: Open-source financial large
language models. arXiv preprint arXiv:2306.06031.

Jiacheng Ye, Jiahui Gao, Qintong Li, Hang Xu, Jiang-
tao Feng, Zhiyong Wu, Tao Yu, and Lingpeng Kong.
2022. Zerogen: Efficient zero-shot learning via
dataset generation. EMNLP.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? ACL.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al.
2022. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068.

Xiangyu Zhang, Jianhua Zou, Kaiming He, and Jian
Sun. 2015. Accelerating very deep convolutional
networks for classification and detection. TPAMI.

Yuxin Zhang, Lirui Zhao, Mingbao Lin, Yunyun Sun,
Yiwu Yao, Xingjia Han, Jared Tanner, Shiwei Liu,
and Rongrong Ji. 2024. Dynamic sparse no training:
Training-free fine-tuning for sparse llms. ICLR.

A Experimental Details

Experiment configurations We run our experi-
ments with a single A100 GPU having 80GB of
memory. For BR and CR, we run the Adam opti-
mizer for 10 epochs with a batch size of 8, without
weight decay or gradient clipping. The learning
rate is set to 0.0002 and decays linearly following
Guo et al. (2024). For evaluating the performance
on downstream tasks, we use the EleutherAI-
evalharness framework (Gao et al., 2023).

Calculation of normalized reconstruction error
The reconstruction error for i-th block is calcu-
lated as 1

NHT }gipw̄i; x̄iq´gipmidwi;xiq}22 where
N,H, T each represent the number of calibra-
tion data, hidden dimension, and the token length.
x̄i, xi represent the inputs coming from dense and
sparse blocks respectively.

Licenses and uses of models and datasets
LLaMA (Touvron et al., 2023) and OPT (Zhang
et al., 2022) are released under non-commercial
bespoke licenses. raw-Wikitext2 (Merity et al.,
2017), PTB (Marcus et al., 1994), and C4 (Raf-
fel et al., 2020) are released under CC BY-SA
4.0, LDC user agreement, and ODC-By. BoolQ
(Clark et al., 2019), RTE (Wang et al., 2019), Hel-
laSwag (Zellers et al., 2019), Winogrande (Sak-
aguchi et al., 2020), ARC (Clark et al., 2018),
and OpeenbookQA (Mihaylov et al., 2018) are re-
leased under CC BY-SA 3.0, Apache 2.0, MIT
License, Apache 2.0, CC BY-SA 4.0, and Apache
2.0 respectively. We confirm that these models and
datasets are used for their intended use and the data
does not contain personal information. EleutherAI-
evalharness framework is released under the MIT
License.

B Additional Results

More results on the reconstruction techniques
Effects of reconstruction techniques on reducing
the error for LLaMA-7B and OPT-125M are pre-
sented in Figures 5 and 6 respectively. It is clearly
observed that different reconstruction techniques
significantly reduce the error for all cases.

Effects of reconstruction techniques on perfor-
mance for OPT-125M are presented in Table 3.

1188

Pruner Reconstruction Error (normalized)
Perplexity Zero-shot accuracy

Wiki PTB C4 Mean BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OpenbookQA Mean

Dense ´ ´ 27.66 38.99 26.56 31.07 55.44 50.18 29.19 50.20 43.60 19.03 16.6 37.75

SparseGPT

LR 0.019 36.35 54.93 33.12 41.47 61.31 48.01 28.29 53.28 40.19 19.28 15.60 38.00
BR 0.008 31.94 45.75 29.91 35.87 60.49 47.65 28.44 51.38 42.17 19.88 14.60 37.80

BR+GP 0.006 31.57 45.52 29.81 35.63 60.18 45.13 28.53 52.17 42.63 19.62 14.80 37.58
BR+GP+CR 0.004 30.86 44.61 29.45 34.97 60.31 46.21 28.64 51.07 42.63 19.71 15.80 37.77

Wanda

LR 0.032 39.00 56.27 34.62 43.30 62.05 48.38 28.31 52.01 39.56 19.62 14.20 37.73
BR 0.008 31.55 46.17 29.89 35.87 60.24 47.65 28.34 50.20 41.50 19.54 15.00 37.50

BR+GP 0.006 31.18 45.47 29.67 35.44 59.85 48.01 28.66 51.54 41.71 19.28 16.20 37.89
BR+GP+CR 0.004 30.59 44.80 29.33 34.91 58.81 45.85 28.68 50.99 42.34 19.03 15.00 37.24

Magnitude

LR 0.121 193.36 276.15 141.01 203.5 60.55 53.43 27.32 52.57 33.04 19.97 14.20 37.30
BR 0.010 36.06 49.15 31.63 38.95 58.99 48.38 28.35 51.22 41.20 19.88 15.80 37.69

BR+GP 0.008 35.56 48.17 31.75 38.50 58.20 49.46 28.44 51.54 42.26 19.88 15.20 37.85
BR+GP+CR 0.005 33.76 46.84 30.88 37.16 57.28 45.49 28.53 51.93 42.00 19.97 15.60 37.26

Table 3: Effects of different reconstruction techniques on error, perplexity, and zero-shot accuracy for OPT-125M.
Bold and underline refer to best in general and task-specific.

Pruner CR
Error (normalized)

Calib Test (Wiki) Test (PTB) Tets (C4)

SparseGPT
X 0.006 0.0083 0.009 0.0065
O 0.004 0.0078 0.0083 0.0061

Wanda
X 0.006 0.008 0.0088 0.0061
O 0.004 0.0076 0.0082 0.0058

Magnitude
X 0.008 0.0109 0.0115 0.0125
O 0.005 0.0102 0.0111 0.0099

(a) OPT-125M

Pruner CR
Error (normalized)

Calib Test (Wiki) Test (PTB) Tets (C4)

SparseGPT
X 0.48 2.30 2.29 1.99
O 0.37 2.53 2.60 2.31

Wanda
X 0.51 2.23 2.29 1.98
O 0.38 2.48 2.86 2.31

Magnitude
X 0.63 2.42 2.72 2.21
O 0.46 2.55 3.03 2.40

(b) LLaMA-7B

Table 4: Reconstruction errors of OPT-125M and LLaMA-7B on test data (raw-Wikitext2) as well as calibration
data. Overfitting by CR is only observed for the larger LLaMA-7B model.

Example number Text

1 Americas, and the U.K., while 18 other countries have legalized the medical use of cannabis. The latest announcement is a win for Canadians ...
2 apprehension of the inevitability of death? And, therefore, how could such a person come to believe ...
3 ‘#’ + this.currentID + .’̈\n };\n\n return {\n next: next,\n previous: previous,\n}...
4 Picker.setSelected(false);\n \n actionPhrasesTableModel.fireTableDataChanged();\n ...

Table 5: Examples of self-generated data.

0 10 20 30
Block index

0

1

2

3

Er
ro

r (
no

rm
al

ize
d) LR

BR
BR+GP
BR+GP+CR

(a) SparseGPT

0 10 20 30
Block index

0

1

2

3

Er
ro

r (
no

rm
al

ize
d) LR

BR
BR+GP
BR+GP+CR

(b) Wanda

0 10 20 30
Block index

0

2

4

6

8

Er
ro

r (
no

rm
al

ize
d) LR

BR
BR+GP
BR+GP+CR

(c) Magnitude

Figure 5: Results of reconstruction techniques for
LLaMA-7B. They constantly reduce the compound-
ing errors, achieving a significant decrease at the final
block (87% „ 94%).

Different techniques effectively improve the perfor-
mance on perplexity and downstream tasks, with
the exception of overfitting for CR on downstream
tasks.

More results on self-generated data Recon-
struction error on calibration data and test data
for OPT-125M and LLaMA-7B are presented in
Table 4. Decreased error for calibration data leads

0 3 6 9 11
Block index

0.000

0.005

0.010

0.015

0.020

Er
ro

r (
no

rm
al

ize
d) LR

BR
BR+GP
BR+GP+CR

(a) SparseGPT

0 3 6 9 11
Block index

0.00

0.01

0.02

0.03

Er
ro

r (
no

rm
al

ize
d) LR

BR
BR+GP
BR+GP+CR

(b) Wanda

0 3 6 9 11
Block index

0.00

0.05

0.10

Er
ro

r (
no

rm
al

ize
d) LR

BR
BR+GP
BR+GP+CR

(c) Magnitude

Figure 6: Results of reconstruction techniques for OPT-
125M. They constantly reduce the compounding er-
rors, achieving a significant decrease at the final block
(79% „ 96%).

to decreased error for test data for OPT-125M, but
leads to increased test error for LLaMA-7B.

Effects of self-generated calibration data are pre-
sented in Figure 7. In most cases, more number
of self-generated data leads to decreased test error
and perplexity.

Memory consumption of reconstruction tech-
niques Solving (1) directly can be memory-

1189

0 256 1024 2048
of self-generated data

1.8

2.0

2.2

2.4

2.6
Er

ro
r (

no
rm

al
ize

d)
wiki
ptb
c4

0 256 1024 2048
of self-generated data

8

10

Pe
rp

le
xi

ty

wiki
ptb
c4

(a) SparseGPT

0 256 1024 2048
of self-generated data

1.75

2.00

2.25

2.50

2.75

Er
ro

r (
no

rm
al

ize
d)

wiki
ptb
c4

0 256 1024 2048
of self-generated data

8

10

12

Pe
rp

le
xi

ty

wiki
ptb
c4

(b) Wanda

0 256 1024 2048
of self-generated data

2.00

2.25

2.50

2.75

3.00

Er
ro

r (
no

rm
al

ize
d)

wiki
ptb
c4

0 256 1024 2048
of self-generated data

8

10

12

Pe
rp

le
xi

ty

wiki
ptb
c4

(c) Magnitude

Figure 7: Effects of self-generated calibration data on reconstruction error for test data and perplexity for LLaMA-
7B; they both improve with more self-generation.

LR BR BR+GP BR+GP+CR Full fine-tuning

peak memory (GB) 3.9 5.7 5.7 10.6 ą 100

Table 6: Peak GPU memory for LLaMA-7B and sparseGPT. Compared to LR, reconstruction techniques incur
additional GPU memory but it is quite marginal compared to fine-tuning the full model. The results are obtained
with the batch size of 8 and gradient accumulation. For full fine-tuning, the results are from Malladi et al. (2023).

intensive, thus many recent work suggest divide-
and-conquer such as LR and BR. In the work of
Frantar and Alistarh (2023), the authors show that
for the 175B parameter OPT model it requires at
least five A100 GPUs of 80GB, whereas by us-
ing LR it reduces down to a single A100 GPU of
80GB. In our experiments, for Llama-7B, both LR

and BR+GP+CR can all be done on a commodity
3090 GPU of 24GB memory; it requires more than
100GB to perform full fine-tuning of LLaMA-7B
(Malladi et al., 2023). In theory, optimizing more
parameters can incur more memory footprints, and
thus, in the order of LR “ GP ă BR ă CR, there
will be more memory usage.

The exact amount depends on the specific model.
To provide solid evidence, we ran profiling peak
GPU memory for LLaMA-7B with the batch size
of 8 (see Table 6 for the results). Compared to LR,
reconstruction techniques surely incur additional
GPU memory, however, (i) it is quite marginal com-
pared to fine-tuning the full model, and (ii) it could
be reduced further by introducing memory reduc-
tion techniques in practice such as CPU offloading
and gradient checkpointing.

Pruning attention vs. feed-forward We also in-
vestigated the effects of only pruning attention vs.
feed-forward blocks for different reconstruction
techniques. Here, we conducted experiments for
OPT-125m and SparseGPT by pruning either at-
tention or feed-forward blocks to 50% sparsity and
measuring the perplexity on raw-Wikitext2. The
results are provided in Table 7. We first observe
that pruning both attention and feed-forward yields
the largest performance drop. Also, we find that
pruning only the attention block leads to worse

performance compared to pruning only the feed-
forward block, which is consistent with the findings
in the previous work (Namburi et al., 2023). In-
terestingly, we find that reconstruction techniques
can be more effective for cases with poor perfor-
mance; i.e., in the order of pruning all blocks >
pruning attention > pruning feed-forward, BR, GP,
CR reconstruction techniques yield more reduction
in perplexity (which is good by itself).

C Details on Self-generation of
Calibration Data

We generate additional calibration data from the
original dense model. Here, we sample 10240 num-
ber of English texts each containing 2048 tokens.
Specifically, we first randomly choose the initial
token and generate four subsequent tokens by de-
terministically selecting top-1 predictions, similar
to Liu et al. (2023). Here, we resample the tokens
if the generated texts are not detected as English.
Then, we stochastically generate the remaining to-
kens until the <EOS> token is produced or the
sequence length exceeds 2048. Finally, the addi-
tional calibration data can be obtained by sampling
a subset of generated texts and randomly selecting
the intermediate 1024 tokens for each text.

Examples of self-generated texts are presented
in Table 5. Examples 1 and 2 are plain English
texts and can serve as good calibration data. How-
ever, we observe that programming codes such as
examples 3 and 4 are often generated, which might
not serve as good calibration data for improving the
perplexity for English texts or accuracy for down-
stream tasks which are not related to code genera-
tion. In this regard, we believe that generating only

1190

Pruning block LR BR BR+GP BR+GP+CR

Attention 32.82 30.15 29.97 29.64
Feed-forward 30.69 29.23 28.89 28.73

All 36.35 31.94 31.57 30.86

Table 7: Effects of pruning block for different reconstruction techniques. Here, we prune either attention or feed-
forward block to 50% sparsity and measure the perplexity on raw-Wikitext2. Pruning only the attention block
leads to worse performance compared to pruning only the feed-forward block. The results are for OPT-125m with
sparseGPT.

a few number of high-quality texts can lead to im-
proved performance while reducing computational
costs.

Here, the generated data do not contain personal
information or offensive content.

1191

