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Abstract

Language documentation projects often involve
the creation of annotated text in a format such
as interlinear glossed text (IGT), which cap-
tures fine-grained morphosyntactic analyses in
a morpheme-by-morpheme format. However,
there are few existing resources providing large
amounts of standardized, easily accessible IGT
data, limiting their applicability to linguistic re-
search, and making it difficult to use such data
in NLP modeling.

We compile the largest existing corpus of IGT
data from a variety of sources, covering over
450k examples across 1.8k languages, to en-
able research on crosslingual transfer and IGT
generation. We normalize much of our data to
follow a standard set of labels across languages.

Furthermore, we explore the task of automati-
cally generating IGT in order to aid documen-
tation projects. As many languages lack suf-
ficient monolingual data, we pretrain a large
multilingual model on our corpus. We demon-
strate the utility of this model by finetuning it
on monolingual corpora, outperforming SOTA
models by up to 6.6%. Our pretrained model
and dataset are available on Hugging Face.1

1 Introduction

With nearly half of the world’s 7,000 languages
considered endangered, communities of minori-
tized language speakers are working to preserve
and revitalize their languages (Seifart et al., 2018).
These efforts often involve collection, analysis,
and annotation of linguistic data. Annotated text
can be used in the creation of reference materials
(such as dictionaries and grammars) as well as to
develop language technologies including search-
able digital text (Blokland et al., 2019; Rijhwani
et al., 2023) and computer-assisted educational
tools (Uibo et al., 2017; Chaudhary et al., 2023).

1https://huggingface.co/collections/lecslab/
glosslm-66da150854209e910113dd87

Figure 1: Components of interlinear gloss with an Ara-
paho sentence and English translation (Cowell, 2020).
Blue boxes show transcriptions that are unsegmented
(top) or segmented (bottom). Segmented text is split
into morphemes which are aligned with the gloss labels
shown in the green box. The task of automatic glossing
uses some or all of the information in the gray box (tran-
scription & translation) to generate the gloss line.

Interlinear glossed text (IGT) is a widespread for-
mat in language documentation for linguistic anno-
tation. IGT is a multi-line data format (see Figure 1)
which includes (1) a transcription of speech in the
language, (2) an aligned morpheme-by-morpheme
description, and oftentimes (3) a free translation.
IGT can be used to illustrate morphosyntactic fea-
tures of languages that other researchers may not
be familiar with, and it is a popular format for ex-
amples in linguistics papers and textbooks. It also
serves as a resource in the NLP context for the cre-
ation of morphological paradigms (Moeller et al.,
2020), machine translation (Zhou et al., 2019), gen-
erating precision grammars (Bender et al., 2013),
and other tools including POS taggers and depen-
dency parsers (Georgi, 2016).

Compiling IGT Data Though IGT often follows
a common glossing format, gloss conventions vary
wildly. Furthermore, IGT data is rarely compiled
into large, standardized corpora, often existing as
scattered examples in research papers. To address
this, we compile the largest corpus of digitized
IGT from various existing sources, with over 450k
examples in 1.8k languages (§3). We explore meth-
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ods to normalize this data (§4)., standardizing over
80% of the grammatical glosses in the corpus to
follow the UniMorph schema (Sylak-Glassman,
2016). We are releasing our corpora for future NLP,
linguistics, and language documentation research.

Automating IGT Generation The creation of
new IGT corpora is often difficult and time-
consuming, requiring documenters to perform lin-
guistic analysis and extensive documentation simul-
taneously. Research has found that computational
tools can help accelerate annotation and overcome
this bottleneck (Palmer et al., 2009) by predicting
the gloss line of IGT given a transcription.

The majority of prior work on automatic gloss-
ing focuses on training monolingual models that
can predict IGT for a single language (Moeller and
Hulden, 2018; McMillan-Major, 2020; Zhao et al.,
2020), however, these models can struggle when
data is limited and require dedicated effort to train
and deploy.

We aim to overcome the monolingual data bottle-
neck by creating a multilingual pretrained gloss-
ing model that can be adapted to specific languages
and gloss formats. We continually pretrain a model
on our corpus, and find that the pretrained mul-
tilingual model retains high performance across
languages. We then finetune the pretrained model
on monolingual data, including languages that do
not appear in the pretraining corpus. Our mod-
els achieve new SOTA performance on five out of
seven languages, and demonstrate clear improve-
ments for low-resource language settings over an
equivalent finetuned model without our continual
pretraining (§7).

2 Interlinear Glossed Text (IGT)

2.1 Format
Interlinear glossed text is a structured data for-
mat which presents text in a language being stud-
ied along with morphological glosses—aligned la-
bels that indicate each morpheme’s meaning and/or
grammatical function. Often, a free translation in
a widely-spoken language is included as well. An
IGT example for Arapaho is given in item 1 (Cow-
ell, 2020), with glosses and translations in English.

(1) nuhu’
this

tih-’eeneti-3i’
when.PAST-speak-3PL

heneenei3oobei-3i’
IC.tell.the.truth-3PL

“When they speak, they tell the truth.”

This example is segmented, with morphemes sep-
arated by dashes. Each morpheme in the Ara-
paho sentence (e.g. tih) is directly aligned with

a gloss (e.g. when.PAST) that describes the mor-
pheme’s function and/or meaning. Labels in all
caps (e.g. PAST) are grammatical glosses; lower-
case labels (e.g. speak) are lexical glosses. Periods
are used for fusional morphemes, which carry sev-
eral morphological or lexical functions in a single
morpheme.

IGT examples may instead use unsegmented
transcriptions, as in the Uspanteko example in
item 2 (Pixabaj et al., 2007).

(2) o
o

sey
sea

xtok
COM-buscar

rixoqiil
E3S-esposa

“O sea busca esposa.”

Here, words and their labels are aligned, but no
explicit alignment between morpheme glosses and
individual morphemes is provided, and thus the
segmentation of words into morphemes is unclear.

2.2 Challenges with Interlinear Glossing
Effective glossing requires expert knowledge of
the target language and linguistic understanding
of morphological patterns. Furthermore, certain
factors exist that make this task particularly difficult
for automated systems. Often, transcriptions are
not segmented into morphemes, and systems must
perform simultaneous segmentation and glossing.

Glossing conventions and formats may vary
widely from documenter to documenter (Chelliah
et al., 2021), with differences in label spelling (e.g.
SING/SG/S to denote singular), formatting and
punctuation, and language-specific labels. Further-
more, nearly all languages have very little digitized
IGT data, posing difficulty to automated systems
and human annotators alike. Finally, even when
automated systems have been created, practical
deployment remains an additional challenge for
documenters.

3 GlossLM Corpus

While various publicly available sources of digi-
tized IGT exist, the lack of unified data formatting
and ease of access is a roadblock to using these re-
sources effectively. To solve this problem, we com-
pile and clean the largest IGT dataset from a variety
of sources and languages. In total, our dataset con-
tains over 450k IGT instances (from 250k unique
sentences) in 1.8k languages, collected from six
different IGT corpora. All sources are publicly
available under the CC BY 4.0 License, allowing
free use and redistribution, and we have confirmed
with the creators of each source that our usage is
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within the intended use. We make our artifacts
available under the same license.

3.1 Data Sources

Corpus Languages IGT instances

ODIN 936 83,661
SIGMORPHON 7 68,604
IMTVault 1,116 79,522
APICS 76 15,805
UraTyp 35 1,719
Guarani Corpus 1 803

Total 1,782 250,582

Table 1: Number of unique examples and languages in
each source corpus for the GLOSSLM dataset.

ODIN The Online Dictionary of Interlinear Text
(ODIN, Lewis and Xia 2010) is a large dataset of
158k IGT examples representing 1496 languages,
compiled by scraping IGT from linguistics docu-
ments on the internet. We use the preprocessed
version of ODIN by He et al. (2023), which dis-
cards languages with fewer than five IGT samples,
resulting in 84k unique glossed sentences across
936 languages.

SIGMORPHON Shared Task We use the IGT
data from the 2023 SIGMORPHON Shared Task
on Interlinear Glossing (Ginn et al., 2023). The
data covers seven languages with diverse features
and includes 69k glossed sentences. We use the
shared task corpora as our primary evaluation sets,
with the same splits as the shared task.

IMTVault IMTVault (Nordhoff and Krämer,
2022) is a recent aggregation of IGT data extracted
from LATEX code in books published by the Lan-
guage Science Press. We use the 1.1 release (Nord-
hoff and Forkel, 2023) which includes 1116 lan-
guages and 80k examples.

APiCS The Atlas of Pidgin and Creole Language
Structures (APiCS) is a set of books detailing
grammatical features of 76 pidgin and creole lan-
guages (Michaelis et al., 2013a,b). APiCS online
provides interactive versions of the books, includ-
ing 16k IGT examples.

UraTyp UraTyp (Norvik et al., 2022) provides
grammatical and typological information, collected
from linguistic questionnaires on various languages.
This includes a small number of IGT examples
(1.7k) spanning 35 languages.

Guarani Corpus The Guarani Corpus (Maria
Luisa Zubizarreta, 2023) consists of 803 examples
of IGT, representing fifteen stories, for Guarani, a
Tupian language spoken in South America. We use
Beautiful Soup2 to parse examples from HTML.

3.2 Preprocessing
In total we have 250k unique IGT instances in 1.8k
languages. If datasets explicitly indicate whether
an IGT line is segmented, we use this value. Oth-
erwise, we determine segmentation by checking if
a line has any morpheme boundary markers (the
hyphen “-”). For segmented words, we remove
the segmentation markers to create an additional
unsegmented version of the same example, for a
total of 451k examples (206k segmented).

We run langid (Lui and Baldwin, 2012) on
translations to verify the translation language la-
bels, and leave the translation field blank if the
predicted language did not match the language in-
dicated by the original source. Finally, we pad any
non-lexical punctuation with spaces and normal-
ize spacing, as our experiments indicate that our
models are sensitive to this formatting.

3.3 Language Coverage
Within our dataset, around 90% of examples have
an associated Glottocode (Hammarström et al.,
2023), amounting to 1,785 unique Glottocodes and
over 150 language families represented. While it
would be ideal to have a relatively balanced set
across languages and language families, many lan-
guages only have a few lines of IGT available,
and thus our dataset has a long tail distribution
across languages. The language with the greatest
representation by far is Arapaho (from the SIG-
MORPHON Shared Task dataset) with almost 98k
IGT instances, making up about 20% of the en-
tire dataset. Overall, 25% of languages have fewer
than 5 IGT instances, 50% have fewer than 10, and
75% have fewer than 54. We include histograms
for the distributions across languages and language
families in Appendix A, as well as preliminary anal-
ysis of typological coverage using the Grambank
database (Skirgård et al., 2023) in Appendix B.

4 Normalizing Gloss Labels

4.1 Motivation
As our data comes from a variety of sources, span-
ning many languages and documentation projects,

2https://pypi.org/project/beautifulsoup4/
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there is a great amount of diversity in the morpho-
logical glosses used. This includes cases where sev-
eral different labels are used to indicate the same
feature (e.g. SING, SG, or S for singular), as well as
formatting differences such as the usage of periods
(e.g. 1SG vs 1.SG).

We explore the feasibility and value of normaliz-
ing glosses to a single standardized format. On one
hand, normalizing glosses may make it easier to
train models that utilize crosslingual information
through shared gloss labels, but on the other hand,
it is difficult (perhaps impossible) to select a sin-
gle schema that preserves the original intent of all
annotators.

We split gloss lines by period and count the num-
ber and frequency of unique grammatical gloss
labels across our corpus (focusing on the all-caps
functional glosses, not stem translations) and visu-
alize the distribution in Figure 2.

Unique Glosses0

20000

40000

Fr
eq

ue
nc

y

Figure 2: Distribution of unique glosses across all lan-
guages.

There are 11,493 unique glosses which roughly
form a Zipfian distribution (Zipf, 1945). The most
common glosses, unsurprisingly, are labels such
as PL (plural, 52,488 instances), 3SG (3rd-person
singular, 39,147), and PAST (36,124), which occur
broadly across many languages.

Normalizing all unique glosses would be a mon-
umental task with uncertain benefits. However, we
observe that the 200 most common gloss types ac-
count for 82.7% of glosses in our dataset. We focus
on normalizing these glosses: e.g. all instances
of PAST and PST, which are both in the top 200,
should be normalized to the same label. We note
that there are other aspects of the data that vary (e.g.
periods vs. underscores for multi-word glosses,
representing non-concatenative morphology), as
addressed in Mortensen et al. (2023). Future work
could potentially focus on the benefits of these as-
pects of normalization on training.

4.2 Methodology

We select the UniMorph schema of Sylak-
Glassman (2016) as our standardized set. While no
single set of labels captures the intricacies of all of
the world’s languages, UniMorph is widely used
and has coverage for many common features.

The two lead authors of this paper jointly created
a mapping from the labels in our dataset to Uni-
Morph labels. While many mappings were obvi-
ous (or already compatible with UniMorph), others
posed a myriad of issues. For glosses primarily
used for a single language, we consulted the origi-
nal source dataset to determine the meaning.

Ambiguous labels Several labels were ambigu-
ous, corresponding to one of several UniMorph
glosses depending on the language and annotator.
For example, the label S (appearing 20,855 times)
is used for singular, subject, and noun/sustantivo
(at least) in our dataset. In order to map these, we
would need to analyze their meaning on a sentence-
by-sentence basis, which was not feasible; thus, we
left such ambiguous labels as-is.

Glosses not in UniMorph UniMorph primarily
focuses on common crosslingual inflectional fea-
tures, and does not cover the full extent of the mor-
phological systems of the world. We observed 64
of 200 (32%) gloss labels with no clear UniMorph
equivalent, including demonstratives (DEM, 15,585
instances), obliques (OBL, 13,639), and clitics (CL,
7,453). In many cases, there is a related UniMorph
gloss that is more general or more specific; for ex-
ample preterite (PRET, 1,986) could be mapped
to simple past (PST). However, this would be an
imprecise mapping, and could be confusing to a lin-
guist of the particular language, so we again elect
to leave these glosses unmapped.

We use our mapping to normalize the dataset and
make the normalized version available in addition
to the original.

4.3 Use in Future Research

We believe our dataset can potentially be useful
across NLP research, linguistic research, and lan-
guage documentation. NLP researchers benefit
from a single, easily-accessible dataset covering
many languages, which can be used for future re-
search on interlinear glossing, morpheme analysis,
segmentation, and translation.

Linguistics researchers will be able to use the
dataset to easily search for phenomena across lan-

12270



guages, particularly with the normalized version
of the dataset. For example, a linguist could
find examples of sentences demonstrating the erga-
tive/absolutive distinction. They could further re-
fine this analysis by narrowing the results to a set
of related languages, using the glottocodes in our
dataset.

As another example, if a linguist wished to deter-
mine how prior researchers have annotated exam-
ples in a particular language, they would previously
have to search across research papers, textbooks,
and small corpora. With our dataset, it is trivial to
pull up all of the examples in a particular language,
potentially compiled from many sources.

5 Automatic IGT Generation

Next, we evaluate the applicability of our dataset to
the NLP task of automatic gloss prediction. We se-
lect the IGT data from the SIGMORPHON Shared
Task on Interlinear Glossing (Ginn et al., 2023) to
use for evaluation and testing, as this data consis-
tently adheres to a set of glossing conventions and
has been evaluated on prior models.

5.1 Target Languages
We reuse the train/eval/test splits for the seven lan-
guages from the SIGMORPHON Shared Task (Ta-
ble 2). We designate three languagues—Arapaho,
Tsez, and Uspanteko—as in-domain languages,
which are included in the GLOSSLM corpus. We
use Gitksan, Lezgi, Natugu, and Nyangbo as out-
of-domain languages, which are omitted from the
corpus. All languages except Nyangbo include
translations.

The shared task included two distinct settings:

• In the open track, the transcription lines were
segmented into morphemes. This becomes a
token classification task, and tends to be far
easier, with SOTA models achieving 80-90%
accuracy (and even a naïve method that sim-
ply selects the most common gloss for each
morpheme was very effective).

• In the closed track, transcription lines were
not segmented. This setting is far more chal-
lenging, as models must jointly learn to seg-
ment words and predict glosses, and the best
models achieved as low as 11% accuracy on
small datasets. On the other hand, these mod-
els have the potential to be more valuable to
documentation projects, where segmented text
may not be available.

In our experiments, we focus on the unseg-
mented setting (closed track). However, the seg-
mented data is also included in the GLOSSLM cor-
pus, and could easily be used in future research.

Finetuning

Language Pre-train Train Eval Test

Other languages 198,121 - - -

In-domain languages
Arapaho (arp) 39,132 39,132 4,892 4,892
Tsez (ddo) 3,558 3,558 445 445
Uspanteko (usp) 9,774 9,774 232 633

Out-of-domain languages
Gitksan (git) - 74 42 37
Lezgi (lez) - 705 88 87
Natugu (ntu) - 791 99 99
Nyangbo (nyb) - 2,100 263 263

Table 2: Number of total (unsegmented) pretrain (for in-
domain languages), train, evaluation, and test examples
for the target languages.

5.2 Evaluation Metrics
For evaluating predictions, we strip punctuation
(except for within glosses).3 We evaluate mor-
pheme accuracy, which counts the number of
correct morpheme glosses in the correct position.
Hence, if a gloss is incorrectly inserted or deleted,
the subsequent glosses will be incorrect. We also
evaluate word accuracy, which counts the number
of entire correct word glosses.

However, accuracy may sometimes be too
strict of a measurement—especially for generative
models—as minor character insertions/deletions
in the label are penalized heavily. Thus, we also
evaluate chrF++ (Popović, 2015), a character-level
metric often used in machine translation. chrF++
measures the F1 score over character n-grams be-
tween the reference and predictions, and is robust
to insertions and deletions, unlike accuracy.

6 GlossLM Model

Using our IGT corpus described in section 3, we
train a single multilingual pretrained model for the
glossing task that can be easily adapted to docu-
mentation projects, for both seen languages and
unseen ones.

6.1 Architecture
We use the ByT5 model, a multilingual pretrained
model using the T5 architecture (Raffel et al.,

3Because of this post-processing, our results for baselines
are slightly different than what original sources report.
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2020). ByT5 operates on byte-level inputs, as op-
posed to word or subword tokens, making it easily
adaptable to different scripts and unseen languages.
We use the ByT5-base model (582M parameters),
pretrained on the mC4 dataset (Xue et al., 2021).
We did not experiment with pretraining a randomly
initialized model, as pretraining runs are expensive
and we predict that the pretrained non-IGT base
model serves as a better initialization.

6.2 IGT Pretraining
We continually pretrain the ByT5 model on the
GLOSSLM corpus described in section 3. As
we are evaluating on unsegmented IGT data, we
omit segmented data for the evaluation languages
from the pretraining corpus.4 We structure the
glossing task as a text-to-text problem, training the
model with examples formatted with the following
prompt:

Provide the glosses for the following

transcription in <lang>.

Transcription in <lang>: <transcription>

Transcription segmented: <yes/no/unknown>

Translation in <metalang>: <translation>

Glosses:

Models are trained to output the gloss line follow-
ing the above prompt input. We include transla-
tions, which has been shown to provide benefits
in gloss prediction (Zhao et al., 2020; Ginn et al.,
2023). For some data, a translation was not avail-
able (≈ 3% of the training data), in which case the
translation line is omitted. We pretrain models us-
ing the hyperparameters given in Appendix C. We
did not conduct hyperparameter search, only tuning
the batch size, to fit in our GPUs, and epochs and
early stopping, to ensure convergence.

6.3 Performance of Pretrained Model
When training massively multilingual models, per-
formance on individual languages can sometimes
degrade in what is dubbed the "curse of multilin-
guality" (Conneau et al., 2020; Chang et al., 2023).
To investigate this issue, we evaluate our pretrained
model on the in-domain languages without any ad-
ditional finetuning.

We compare the performance of our pretrained
model to the current SOTA, which is the second

4However, our corpus includes segmented IGT examples
in other languages, which we do not evaluate.

system from Girrbach (2023a), as shown in Fig-
ure 3. We find that the model outperforms the
SOTA across all three in-domain languages. This
result gives little evidence to believe our model suf-
fers from the curse of multilinguality, as it retains
good performance across several languages.5
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Figure 3: Comparison of our pretrained model and the
SOTA (Girrbach, 2023a) for in-domain languages on
unsegmented data. Our model outperforms on all three
languages.

Our pretrained model can be used for automated
glossing across several languages, without need-
ing to train and serve separate monolingual models.
This could be valuable to real-world documenta-
tion projects, as we can serve a single pretrained
model that can be used across projects, significantly
reducing the barrier to using an automated system.

The languages evaluated here are well-
represented in the pretraining corpus, from Tsez
(3.7k unsegmented examples, about 3% of the total
corpus) to Arapaho (39.1k examples, 21%). A
natural question is whether the model retains good
performance on a language which occurs very
rarely in the pretraining corpus. We simulate this
scenario by adding a small amount of data to the
pretraining corpus for two unseen languages: 1000
examples in Nyangbo and 500 in Natugu (less than
1% of the total corpus). We evaluate on the unseen
test split and observe 76.8% and 55.0% morpheme
accuracy, respectively. These results indicate the
model can still perform well on languages that are
sparse in the pretraining corpus.
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Figure 4: Morpheme accuracy for various systems.

7 Results

7.1 Comparison with Baselines

After pretraining GLOSSLM, we train finetuned
versions for each of the languages in the test set.
We first describe our finetuning procedure and com-
pare results of our finetuned models against base-
lines from Ginn (2023) (§7.1). Then, to further
isolate the efficacy of pretraining, we compare the
finetuned versions of GLOSSLM to a finetuned
ByT5 model without the multilingual gloss pre-
training (§7.2). Finally, we explore whether train-
ing on a minimally normalized version of the data
improves performance (§7.3).

As previously noted, we focus on the unseg-
mented setting; for completeness, we provide full
results for both segmented and unsegmented data
in Appendix D.

Finetuning can help align the model to a particu-
lar language or even a new unseen language. We
finetune our GLOSSLM pretrained model on the
training dataset for each language individually, and
label these runs as GLOSSLMFT. We do this for
both the in-domain languages, to focus the model
on a single language, as well as the out-of-domain
languages, allowing us to study the model’s adap-
tation to unseen languages.

Finetuning used the same parameters as pretrain-
ing, but with 100 training epochs and early stopping
(patience 3, start epoch 15)6, and took anywhere
from 20 minutes to one day for each language. In-
ference uses beam search with n = 3 beams.

We compare the finetuned GLOSSLM models
with three baseline systems which include the state-

5These languages do make up large fractions of our pre-
training corpus, so the model will almost certainly underper-
form on underrepresented languages.

6For Gitksan, due to the size of the training set, we set max
epochs to 300 and patience to 15.

of-the-art from prior work:

1. TOP-CHOICE selects the most frequent label
associated with each morpheme/word in the
training data, and assigns “???” to unseen
morphemes.

2. TOKEN-CLASS treats the glossing task as a
token classification problem, where the output
vocabulary consists of the IGT morpheme or
word-level labels. Each target language’s data
is used to train a language-specifc TOKEN-
CLASS model, which uses the RoBERTa archi-
tecture with default hyperparameters without
any additional pretraining (Liu et al., 2019).
This was used as the baseline model for the
SIGMORPHON 2023 Shared Task on inter-
linear glossing (Ginn, 2023).

3. TÜ-CL (Girrbach, 2023b) uses straight-
through gradient estimation (Bengio et al.,
2013) to induce latent, discrete segmentations
of input texts, and predicts glosses using a
multilayer perceptron.

As shown in Figure 4, we find that our finetuned
models outperform SOTA in all but two languages
(Gitksan and Lezgi). The TÜ-CL model (Girrbach,
2023a), which is a close second and outperforms
on Gitksan and Lezgi, uses explicit latent segmen-
tations, which seems to be particularly beneficial
for the very low-resource, unsegmented setting.

To illustrate common errors from the finetuned
GLOSSLM moderls, we include examples of sys-
tem outputs in Table 10. When inspecting out-
puts, we observe that there are sometimes incon-
sistencies in the IGT labels where multiple inter-
changeable glosses are used for the same mor-
pheme. While we try to account for a portion
of grammatical gloss variations (§4, §7.3), this is
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particularly an issue for lexical glosses (e.g. the
Arapaho word ’eeneisih’i is glossed in the data
as “how.X.things.are.named”, “how.s.o..is.named”,
and “how.things.are.named”). We also find outputs
that include lexical items present in the translation
that are not included in the gold gloss, indicating
that the model may rely too heavily on translations
when predicting lexical glosses in certain cases.

7.2 Comparison with Finetuned ByT5
To directly assess the impact of pretraining on per-
formance, we finetune ByT5 models on each lan-
guage in the test set with the same configuration
as for the finetuned GLOSSLM models. We then
compare the performance of our models (which
have undergone both multilingual gloss pretrain-
ing and finetuning) with analogous ByT5 models
(without multilingual gloss pretraining), as shown
in Figure 5.
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Figure 5: Performance after monolingual finetuning,
comparing a standard pretrained ByT5 with a continu-
ally pretrained GLOSSLM model. The x-axis uses the
log (base 10) of the number of training examples in a
given language, for readability.

We observe mixed results, which are largely de-
pendent on the size of the training corpus. For
languages with less training data (Gitksan, Lezgi,
Natugu) the GLOSSLMFT model outperforms the
finetuned ByT5 model (by 10.0, 15.1, and 9.1
points respectively). In the case of Gitksan, the fine-
tuned ByT5 model is completely unable to produce
well-formatted output (likely due to the tiny train-
ing corpus) while the GLOSSLMFT model does not
struggle with this as much. A possible explanation
is that even if there are no similar languages in the
pretraining corpus, the GLOSSLMFT can leverage
knowledge about IGT formatting from unrelated
languages.

For Lezgi—which shows the greatest improve-
ments from pretraining with the GLOSSLM
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Figure 6: Change in morpheme accuracy after normal-
izing glosses to the UniMorph schema and finetuning
GLOSSLM. We observe small improvements for several
languages, but worse performance in two cases.

corpus—a qualitative analysis of examples with
the greatest morpheme error rate between finetuned
ByT5 and GLOSSLM reveals that there are regular
error patterns that are fixed with continual pretrain-
ing. For example, the finetuned ByT5 model often
outputs AOC instead of AOR and OLB instead
of ERG, whereas the finetuned GLOSSLM gets
these correct. We include examples of these out-
puts in Table 11.

However, with enough data (starting with
Nyangbo, 2100 examples) the two approaches
achieve nearly identical performance. This is an un-
surprising result, indicating that large amounts of
high-quality monolingual data overshadow any ben-
efits from crosslingual transfer. Furthermore, we
note that benefits of multilingual gloss pretraining
shown may not be unique to the T5 architecture—
while we only experiment with ByT5, our pretrain-
ing strategy could be applied to other architectures.

7.3 Effect of Gloss Normalization
Finally, we experiment with pretraining and fine-
tuning on a minimally normalized version of the
dataset, where the 200 most frequent grammatical
labels are mapped to a set of standard labels.

We repeat the same pretraining and finetuning
process as before. When comparing the perfor-
mance of the pretrained model before finetuning on
in-domain languages, we find minimal differences
compared to the results in §6.3.

We report the change in morpheme accuracy af-

12274



ter normalizing in Figure 6. We observe mixed re-
sults. Some languages (Arapaho, Uspanteko, Gitk-
san) show worse or equivalent performance. Others
(Tsez, Nyangbo, Natugu, and Lezgi) show small
to moderate improvements, with Lezgi achieving
the largest improvement of 3.0 percentage points.
Thus, we found that normalization was most help-
ful when finetuning the pretrained model on unseen
languages with a low-to-moderate amount of train-
ing data.

8 Related Works

Automatic Interlinear Glossing Recent re-
search has explored various methods for generating
IGT, including rule-based methods (Bender et al.,
2014), active learning (Palmer et al., 2010, 2009),
conditional random fields (Moeller and Hulden,
2018; McMillan-Major, 2020), and neural models
(Moeller and Hulden, 2018; Zhao et al., 2020). The
2023 SIGMORPHON Shared Task (Ginn et al.,
2023) compared a number of highly-effective IGT
generation systems, including ensembled LSTMs
(Coates, 2023), straight-through gradient estima-
tion (Girrbach, 2023a), CRF-neural systems (Ok-
abe and Yvon, 2023a), and BiLSTM encoders
(Cross et al., 2023).

In particular, this work is inspired by He et al.
(2023), which pretrains ByT5 models on the ODIN
corpus, and Okabe and Yvon (2023b), which pre-
trains a CRF model on the IMTVault corpus. How-
ever, neither explore using a pretraining corpus as
large as ours, nor do they evaluate on unsegmented
text. Furthermore, neither of these studies find sig-
nificant benefits to using pretraining corpora, while
we observe benefits under certain conditions.

Large Multilingual Pretrained Models Prior
work has shown that large, massively multilin-
gual pretrained language models can boost perfor-
mance across low- and high-resource languages on
a variety of tasks. These include encoder-decoder
models trained with the masked language model-
ing objective (Pires et al., 2019; Conneau et al.,
2020) and the span corruption objective (Xue et al.,
2021, 2022), as well as decoder-only language mod-
els (Workshop et al., 2023; Shliazhko et al., 2024).
Work such as Wang et al. (2020), Adelani et al.
(2022b), and Adelani et al. (2022a) has shown that
continual pretraining and/or finetuning large mul-
tilingual models is an effective method for tasks
like low-resource language translation and named
entity recognition.

9 Conclusion

High-quality language documentation involves an
incredible amount of effort. We compile, normal-
ize, and release the largest corpus of multilingual
IGT data, enabling future research in linguistics,
NLP, and documentation. Furthermore, we demon-
strate the applicability of our corpus by pretraining
a multilingual neural model for automatic gener-
ation of IGT. We finetune the model on monolin-
gual corpora, showing benefits on low-resource
languages due to multilingual pretraining. In five
out of seven languages, we achieve a new SOTA
on automatic IGT generation.

Limitations

Our work evaluates the effectiveness of massively
multilingual pretraining on seven IGT datasets in
different languages using the ByT5 architecture.
We did not experiment with pretraining on other
architectures, which may show different results.
While we believe the selected evaluation languages
cover a diverse set of features and dataset sizes,
other languages may show better or worse results.

Our pretraining corpus consists of all IGT data
we were able to find and utilize. As such, it
is not evenly distributed among languages, over-
representing a few languages with large language
documentation efforts. Thus, models pretrained on
the corpus will perform better on these and similar
languages.

The only hyperparameter optimization we per-
formed was finding a batch size that fit our GPUs
and tuning epochs and early stopping in order to
ensure convergence. We did not conduct hyper-
parameter search over other parameters such as
learning rate or optimizer, architecture parameters,
or dataset splits.

When evaluating predictions, we ignored punctu-
ation (as our primary concern was gloss accuracy).
Certain models may perform better or worse at out-
putting proper punctuation format, which could be
a concern for certain applications.

Finally, it has been demonstrated that IGT gen-
eration models are often not robust to domain
shift, compared with human annotators (Ginn and
Palmer, 2023). Our models will likely have im-
pacted performance for out-of-domain texts, such
as highly technical or domain-specific language.
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Ethics Statement

We hope this work can aid in the struggle against
language extinction. However, language documen-
tation, preservation, and revitalization require far
more than generating IGT, and we should be care-
ful not to understate the difficulty of these efforts.
We utilize datasets produced by the painstaking
effort of language documenters and speakers, and
strive to treat the corpora as human artifacts, not
just data to be consumed.

We hope our research can aid documentary lin-
guists through automated gloss prediction. How-
ever, we caution against using these systems with-
out human collaboration, as they can introduce
error and miss novel linguistic insights. There is
some risk of these systems being used to replace
human annotators, which we strongly oppose.

While we try to train only the necessary models
for our experiments, training large machine learn-
ing models carries an environmental cost (Bender
et al., 2021; Strubell et al., 2020).

We do not evaluate our corpus for bias (racial,
gender, etc) or inclusive language, and it’s possible
that our models can carry some of these biases.

Finally, NLP work that involves Indigenous
and endangered languages has historically been
plagued by colonialist approaches to data use and
technology development (Schwartz, 2022). The
large IGT datasets for endangered languages (Ara-
paho, Guarani, Uspanteko) were collected in col-
laboration with native communities, and our work
is in accordance with the agreements for their us-
age.
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A Language Distribution

Figure 7 and Figure 8 display the number of exam-
ples per language and language family on a portion
of our dataset.

B Grambank Typological Analysis

Along with number of languages, we would also
like to measure whether the distribution of typo-
logical features in our dataset is reflective of the
diversity of features in the world. We use the Gram-
bank typological database (Skirgård et al., 2023) as
a standard against which to judge the typological di-
versity of our dataset. Grambank covers over 2430
languages, with up to 195 features (e.g., "What is
the order of numeral and noun in the NP?") per
language. The values of the features comprise a
vector for each language.

43% of our languages are found in Grambank,
amounting to 72% coverage over all training in-
stances. However, Grambank does not have com-
plete feature vectors for all languages. Using the
method described by Skirgård et al. (2023), we im-
puted missing feature values (9.7% of all features),
resulting in complete feature vectors of size 161, as
we only accept features that are defined for at least
64% of our dataset (as to balance dataset coverage
as well as feature coverage).

We then create an average feature vector for our
dataset by averaging the feature vectors of the the
languages present in Grambank (weighting the av-
erage based on the number of training instances
in each language) and compare this to the average
of feature vectors for all languages in Grambank.
We find a cosine similarity of 0.92 between the
two vectors. In comparison, the language with the
greatest similarity to the average Grambank vector
in our data has a cosine similarity of 0.81. We re-
port additional details of our methods and analysis
below.

B.1 Imputation Details
We adapt the imputation procedure described in
(Skirgård et al., 2023) and follow the steps below.
Thresholds were chosen to maximize the language
coverage while keeping the imputed values below
10%.

• Removed languages that had > 36% missing
data out of the dataset

• Removed features that had >36% missing data
among the remaining languages

• Binarized the multistate values

• Removed all but one dialect for each language
according

• Imputed missing values with iterated random
forest with MissForest7

B.2 Underrepresented Features

ID Feature Average Value

GB024b Does the numeral always follow the noun 0.468in the NP?

GB193b Are most adnominal property words placed 0.536after nouns?

GB025b In the pragmatically unmarked order, does the 0.425adnominal demonstrative follow the noun?

GB118 Are there serial verb constructions? 0.406

GB130a Is the order in intransitive clauses with 0.382a full nominal subject consistently SV?

Table 3: Most underrepresented Grambank features in
training data with their average value (from imputed
vectors).

In Table 3 we report the top five features for
which the average representation in our training
data is most distant from the expected value (as
determined by averaging feature values across all
languages in Grambank).

B.3 Averaged Feature Vector

For reference, we include the vector set of 161 aver-
age Grambank features over all training languages
weighted by the number in Table 12.

C Training Hyperparameters

Training the GLOSSLMALL and GLOSSLMUNSEG

models used A6000 and A100 GPUs, and took
around 5 days per run. We list the hyperparameters
used in Table 4.

Parameter Value

Optimizer Adafactor
Initial LR 5e-5
Weight decay 0.01
Batch size 2
Gradient accumulation steps 64
Epochs 13

Table 4: Pretraining Hyperparameters

7https://rpubs.com/lmorgan95/MissForest
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Figure 7: Counts per language. We only show languages with at least 2k samples present in the dataset. Arapaho
(arap1274) is by far the most represented language in our data, followed by Uspanteko (uspa1245). Both languages
are part of the SIGMORPHON Shared Task dataset.
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Figure 8: Counts per language family in our dataset. We only show language families with at least 1k samples
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Model
Morpheme accuracy / Word accuracy (Segmented)

In-domain Out-of-domain
arp ddo usp Avg git lez ntu nyb Avg

TOP-CHOICE 83.2 / 74.0 78.5 / 64.4 79.7 / 72.9 80.5 / 70.4 51.1 / 29.7 62.2 / 54.4 78.4 / 68.1 72.5 / 63.8 66.1 / 54.0
TOKEN-CLASS 90.4 / 84.2 86.4 / 76.5 82.5 / 76.5 86.4 / 79.1 25.3 / 16.4 50.2 / 38.8 62.0 / 54.3 88.8 / 84.4 56.6 / 48.5
TÜ-CL 90.7 / 84.6 91.2 / 85.1 84.5 / 78.5 88.8 / 82.7 50.2 / 26.6 84.9 / 77.6 91.7 / 86.0 91.4 / 87.9 79.6 / 69.5
CRF 90.4 / 84.2 91.9 / 85.6 84.4 / 78.9 88.9 / 82.9 52.4 / 33.6 84.7 / 77.5 91.1 / 86.6 88.8 / 84.4 79.3 / 70.5
SMF 80.1 / 79.4 78.2 / 82.8 73.2 / 75.7 77.2 / 79.3 12.7 / 20.6 47.8 / 56.4 64.0 / 75.7 85.4 / 82.7 52.5 / 58.9
BYT5ALL 88.7 / 83.2 93.5 / 89.9 86.3 / 82.7 89.5 / 85.3 2.2 / 3.6 72.5 / 69.7 83.4 / 82.2 90.7 / 89.2 62.2 / 61.2

GLOSSLMALL, PRE 89.3 / 84.2 91.7 / 88.3 84.1 / 81.0 88.4 / 84.5 3.6 / 9.1 3.6 / 1.8 4.9 / 9.8 2.9 / 3.0 3.8 / 5.9
GLOSSLMALL, FT 90.1 / 85.0 92.8 / 89.3 86.4 / 84.5 89.8 / 86.3 28.9 / 34.9 74.7 / 71.3 86.0 / 81.5 90.7 / 87.7 70.1 / 68.9

Model
Morpheme accuracy / Word accuracy (Unsegmented)

In-domain Out-of-domain
arp ddo usp Avg git lez ntu nyb Avg

TOP-CHOICE 27.9 / 56.9 15.2 / 64.1 43.6 / 60.4 28.9 / 60.5 3.6 / 16.9 20.1 / 58.2 12.7 / 55.1 72.3 / 76.7 27.2 / 51.7
TOKEN-CLASS 43.6 / 69.9 51.2 / 74.3 57.2 / 72.1 50.7 / 72.1 8.54 / 16.9 40.7 / 45.5 19.4 / 48.2 14.2 / 5.96 20.7 / 29.1
TÜ-CL 77.8 / 77.5 74.1 / 80.4 70.0 / 73.4 74.0 / 77.1 11.7 / 21.1 59.9 / 71.8 56.2 / 78.0 85.2 / 85.0 53.3 / 64.0
BYT5UNSEG 80.8 / 79.7 84.2 / 87.4 78.9 / 82.5 81.3 / 83.2 0.1 / 0.3 42.2 / 53.4 53.7 / 71.0 90.4 / 88.4 46.6 / 53.3

GLOSSLMUNSEG, PRE 79.8 / 79.2 77.5 / 82.8 76.8 / 80.8 78.0 / 80.9 2.3 / 3.5 1.5 / 1.3 4.1 / 9.6 1.6 / 2.9 2.4 / 4.3
GLOSSLMUNSEG, FT 82.1 / 81.5 83.6 / 87.3 78.6 / 81.0 81.4 / 83.3 10.1 / 28.4 57.3 / 64.9 62.8 / 78.9 87.4 / 86.2 54.4 / 64.6

GLOSSLM-NORMUNSEG, PRE 79.6 / 80.0 79.6 / 83.2 74.8 / 76.6 78.0 / 79.9 2.2 / 7.8 2.6 / 1.8 2.9 / 9.7 1.0 / 2.5 2.2 / 5.45
GLOSSLM-NORMUNSEG, FT 82.0 / 81.5 84.2 / 87.8 76.4 / 79.2 80.8 / 82.8 9.3 / 16.4 60.3 / 67.8 63.4 / 76.6 90.0 / 87.6 55.8 / 62.1

Table 5: Morpheme- and word-level accuracy of various systems on segmented (top) and unsegmented (bottom) text.
Best performance per language in each setting the table is bolded. GLOSSLMALL, PRE refers to performance using
the pretrained GLOSSLM directly, while GLOSSLMALL, FT refers to performance after fine-tuning the pretrained
model on the specific language.

Model
chrF++ Score (Segmented)

In-domain Out-of-domain
arp ddo usp Avg git lez ntu nyb Avg

TOP-CHOICE 75.0 71.9 71.4 72.8 33.7 69.7 74.5 62.2 60.0
TOKEN-CLASS 84.2 81.8 75.3 80.4 25.6 52.1 65.4 84.3 56.9
TÜ-CL 85.2 88.4 77.7 83.8 34.8 78.9 87.9 87.7 72.3
CRF 84.2 88.2 79.4 83.9 40.9 79.2 88.4 84.3 73.2
SMF 80.7 86.6 76.3 81.2 28.0 62.0 78.8 82.2 62.6
BYT5ALL 84.2 91.8 84.6 86.9 9.07 74.9 85.1 88.8 64.5

GLOSSLMALL, PRE 85.2 90.8 83.1 86.4 21.5 14.1 18.2 8.8 15.7
GLOSSLMALL, FT 86.3 91.5 85.9 87.9 43.1 75.0 84.1 87.4 72.4

Model
chrF++ Score (Unsegmented)

In-domain Out-of-domain
arp ddo usp Avg git lez ntu nyb Avg

TOP-CHOICE 44.0 63.5 55.1 54.2 8.4 51.6 40.5 74.0 43.6
TOKEN-CLASS 56.2 72.9 65.3 64.8 18.8 56.4 45.1 18.8 34.8
TÜ-CL 77.6 84.6 72.5 78.2 23.0 71.5 78.6 84.1 64.3
BYT5UNSEG 80.7 90.0 83.0 84.6 7.6 59.6 77.0 88.4 58.2

GLOSSLMUNSEG, PRE 80.5 86.8 81.0 82.8 19.4 13.3 16.3 8.1 14.3
GLOSSLMUNSEG, FT 82.9 89.8 81.7 84.8 34.9 68.8 80.7 85.5 67.5

GLOSSLM-NORMUNSEG, PRE 80.3 86.6 78.7 81.9 19.5 14.3 16.6 7.4 14.5
GLOSSLM-NORMUNSEG, FT 82.6 89.9 81.1 84.5 29.1 70.9 79.0 87.5 66.6

Table 6: CHRF++ scores of various systems on segmented (top) and unsegmented (bottom) data. Best performance
per language in each setting the table is bolded. GLOSSLMALL, PRE refers to performance using the pretrained
GLOSSLM directly, while GLOSSLMALL, FT refers to performance after finetuning on the specific language.
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D Full Results

We provide full results for accuracy and chrF++
scores in Table 5 and Table 6 . For our normal-
ization experiments, we only trained and tested on
unsegmented data for the target languages.

E In- vs out-of-vocabulary errors

In-domain Out-of-domain

arp ddo usp git lez ntu nyb

% OOV 30.0 15.6 20.0 78.1 27.3 27.6 8.42

IV 96.2 92.3 91.4 66.7 85.4 91.3 92.8
OOV 55.7 71.7 57.1 26.0 33.9 55.7 32.6

% OOV 30.0 18.7 21.4 80.5 25.5 28.9 9.27

IV 95.3 91.4 89.1 60.0 81.6 91.3 91.7
OOV 50.1 69.7 50.9 20.7 16.4 48.3 30.6

Table 7: Percent of words that are out-of-vocab in the
test split for each language along with in- versus out-
of-vocabulary accuracy at the word level. Top is the
segmented setting (GLOSSLMALL, FT), bottom is unseg-
mented (GLOSSLMUNSEG, FT).

Language Morpheme %OOV

arp 3.6
ddo 41.2
usp 4.9
git 2.8
lez 1.1
ntu 0.5
nyb 5.3

Table 8: Percent of out-of-vocabulary morphemes in the
test split.

Language OOV Token Recall

arp 49.87
ddo 44.13
usp 44.89
git 58.21
lez 71.66
ntu 40.14

Table 9: Percent of lexical glosses present in the transla-
tion in the test split. Nyangbo examples do not include
translations.

We report word-level accuracy for our finetuned
GLOSSLM models, indicating whether the tran-
scribed word is in- or out-of-vocabulary in Table 7,
as well as the percent of OOV words in the test
set. The OOV rate between segmented and unseg-
mented may vary slightly, as mappings between

segmented and unsegmented forms are not nec-
essarily one-to-one. We consider a word to be
in-vocabulary if the form of the word in the tran-
scription and its corresponding gold label in the
gloss co-occur in the training data. We also include
morpheme-OOV rates and statistics on lexical gloss
overlap with translations in in Table 8 and Table 9,
as reported in Ginn et al. (2023).

F Example Outputs

We include example outputs to show the errors
discussed in §7.1 and §7.2.
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Sample ID

uspa1245_136

transcription jaan
translation Esta bien.
gold bueno
output esta@bien

uspa1245_149

transcription kond (ti’) laj chaak
translation Cuando en su trabajo.
gold cuando ??? PREP trabajo
output cuándo??? PREP trabajo

lezg1247_1

transcription вич- ни хьун- нва- й къвалах- ар я
translation and all this were real stories
gold reflxv- FOC - be- PERF- PST- word- PL was
output himself- FOC be- PERF- PTP real.story- PL was

lezg1247_22

transcription ва гьада гьикъван гьа терези- ди- н стрелка пара хкаж хьа- нва- тӀа гьам вилик кутуна- нва
translation she put first that person which is more valuable according to the position of scale arrow.
gold and then how that.the.same scale- DIR- GEN arrow very up happened- PERF- COND that before put- PERF
output that according.to that.the.same value- OBL- GEN position.in very hit be- PERF- COND that.the.same behind put- PERF

arap1274_991

transcription neetotohoe
translation Take off your pants !
gold take.off.one’s.pants
output take.off.pants

arap1274_1998

transcription cee’iyo
translation payday .
gold payment
output pay.day

arap1274_1667

transcription howouunonetiit hiniito’eibetiit biisiinowoot niihooku’oot beh- ’entou- ’
translation pity , relationships , learning through observation , watching closely , it’s all there .
gold pity.mercy relatedness learning.by.observing watching.along all- located.present 0S
output pity.mercy relationships learning.through.observation watching.along all- located.present- 0S

Table 10: Selected example outputs to illustrate errors by GLOSSLMALL finetuned models.

Sample ID MER

lezg1247_71

transcription Акъадарда и пачагь ибуру ламрал , балкӀандал акъадарда , ламрал акъадарда яда , цӀайни ахъайда , им гьи хуьрей агъуз .
gold mount.ENT this king these-ERG donkey.on horse-SPSS mount.ENT donkey.on mount.ENT or fire.and released.ENT he this village.out.of down

ByT5 mount.ENT-ENT this king these-ERG donkey-OBL-SPSS horse-OBL-SPSS mount.ENT-ENT donkey-OBL-SPSS mount.ENT-ENT was fire-FOC 0.585put.ENT-ENT he this village-INESS-SPSS down.ENT-ENT
GlossLM mount.ENT this king these-ERG donkey.on horse-SPSS mount.ENT donkey.on mount.ENT or fire.and mount.ENT he this village.out.of down 0.068

lezg1247_49

transcription Хтана балкӀан , « Гьаа », лагьана « гила чавай физ жеда » лагьана , « пачагьдин руш гъиз ».
gold return-AOR horse Yes say-AOR now help-INELAT go-DAT be-ENT say-AOR king-DIR-GEN girl will.bring-DAT
ByT5 coming-AOC horse Yes say-AOC now king-DIR-GEN girl be-ENT say-AOC king-DIR-GEN girl be-ENT 0.398
GlossLM return-AOR horse Yes say-AOR now help-INELAT go-DAT be-ENT say-AOR king-DIR-GEN girl will.bring-DAT 0

lezg1247_27

transcription АтӀуз гана ибурун кьилерни .
gold cutting.IMC-DAT give-AOR these-ERG-GEN chapter-PL-FOC
ByT5 then give-AOR these-ERG-GEN head-PL-FOC 0.380
GlossLM cutting.IMC-DAT give-AOR these-ERG-GEN chapter-PL-FOC 0

lezg1247_0

transcription И гададини гъил вегьена са жуьт къачуда .
gold this boy-DIR-GEN-ERG hand threw-AOR one pair take-INESS
ByT5 this boy-DIR-GEN-ERG hand took-AOC one necklace take-ENT 0.327
GlossLM this boy-DIR-GEN-ERG hand threw-AOR one pair take-INESS 0

lezg1247_42

transcription И рушни пачагь хьана гила башламишда вичин пачагьвализ .
gold this girl-Q king happened-AOR now started.ENT-INESS himself-ERG-GEN reigned.ENT-ERG-DAT
ByT5 this girl-FOC king be-AOC now started.ENT-ENT himself-OBL-GEN reign.to-OBL-DAT 0.325
GlossLM this girl-Q king happened-AOR now started.ENT-INESS himself-ERG-GEN reigned.ENT-ERG-DAT 0

Table 11: Lezgi examples with the highest difference in MER between finetuned ByT5 and GlossLM outputs.
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ID Avg. Value ID (cont.) Avg. Value (cont.) ID (cont.) Avg. Value (cont.)

GB020 0.183 GB111 0.573 GB305 0.364
GB021 0.15 GB113 0.6 GB309 0.185
GB022 0.199 GB114 0.502 GB312 0.649
GB023 0.058 GB115 0.52 GB313 0.161
GB026 0.065 GB116 0.007 GB314 0.038
GB027 0.351 GB117 0.705 GB315 0.054
GB028 0.373 GB118 0.123 GB316 0.031
GB030 0.21 GB119 0.196 GB317 0.03
GB031 0.067 GB120 0.276 GB318 0.1
GB035 0.484 GB121 0.215 GB319 0
GB036 0.023 GB122 0.162 GB320 0.002
GB037 0.019 GB124 0.081 GB321 0.065
GB038 0.036 GB126 0.369 GB324 0.07
GB039 0.165 GB129 0.001 GB326 0.487
GB041 0.044 GB131 0.329 GB327 0.563
GB042 0.097 GB132 0.519 GB328 0.515
GB043 0.021 GB133 0.25 GB333 0.721
GB044 0.602 GB134 0.704 GB334 0.276
GB047 0.701 GB135 0.729 GB335 0.093
GB048 0.634 GB136 0.235 GB336 0.002
GB049 0.661 GB137 0.206 GB408 0.352
GB051 0.18 GB138 0.43 GB409 0.073
GB052 0.02 GB139 0.653 GB410 0.532
GB053 0.391 GB140 0.304 GB415 0.233
GB054 0.02 GB147 0.567 GB430 0.013
GB057 0.167 GB148 0.05 GB431 0.331
GB058 0.019 GB149 0.299 GB432 0.263
GB059 0.134 GB151 0.018 GB433 0.389
GB068 0.484 GB152 0.138 GB519 0.168
GB069 0.392 GB155 0.578 GB520 0.094
GB070 0.269 GB156 0.032 GB521 0.05
GB071 0.326 GB158 0.526 GB024a 0.664
GB072 0.538 GB159 0.176 GB024b 0.132
GB073 0.296 GB160 0.6 GB025a 0.678
GB074 0.543 GB165 0 GB025b 0.169
GB075 0.556 GB166 0.004 GB065a 0.644
GB079 0.51 GB167 0.036 GB065b 0.184
GB080 0.69 GB170 0.452 GB130a 0.469
GB081 0.032 GB171 0.179 GB130b 0.332
GB082 0.544 GB172 0.086 GB193a 0.626
GB083 0.647 GB177 0.272 GB193b 0.202
GB084 0.498 GB184 0.507
GB086 0.653 GB185 0.292
GB089 0.523 GB186 0.101
GB090 0.146 GB192 0.098
GB091 0.539 GB196 0.054
GB092 0.106 GB197 0.041
GB093 0.394 GB198 0.409
GB094 0.143 GB257 0.519
GB095 0.054 GB260 0.097
GB096 0.018 GB262 0.095
GB098 0.369 GB263 0.181
GB099 0.113 GB264 0.062
GB103 0.368 GB285 0.009
GB104 0.286 GB286 0.154
GB105 0.517 GB291 0.013
GB107 0.521 GB297 0.059
GB108 0.414 GB298 0.083
GB109 0.107 GB299 0.314
GB110 0.163 GB302 0.131

Table 12: Grambank Feature Averages over Training Set
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