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Abstract

Recent zero-shot evaluations have highlighted
important limitations in the abilities of lan-
guage models (LMs) to perform meaning ex-
traction. However, it is now well known that
LMs can demonstrate radical improvements
in the presence of experimental contexts such
as in-context examples and instructions. How
well does this translate to previously studied
meaning-sensitive tasks? We present a case-
study on the extent to which experimental con-
texts can improve LMs’ robustness in perform-
ing property inheritance—predicting seman-
tic properties of novel concepts, a task that
they have been previously shown to fail on.
Upon carefully controlling the nature of the
in-context examples and the instructions, our
work reveals that they can indeed lead to non-
trivial property inheritance behavior in LMs.
However, this ability is inconsistent: with a
minimal reformulation of the task, some LMs
were found to pick up on shallow, non-semantic
heuristics from their inputs, suggesting that the
computational principles of semantic property
inference are yet to be mastered by LMs.

1 Introduction

Carefully controlled behavioral analyses on
meaning-sensitive tasks have revealed holes in the
ability of language models (LMs) to demonstrate
robust meaning extraction and use (Pandia and
Ettinger, 2021; Elazar et al., 2021; Schuster and
Linzen, 2022; Weissweiler et al., 2022; Misra et al.,
2023; Kim and Schuster, 2023, i.a). However, since
a large subset of these investigations uses zero-shot
evaluation as the primary methodology, there are
growing concerns that they do not paint a complete
picture of LMs’ abilities (Lampinen, 2022; Sinha
et al., 2023). Conclusions that LMs lack a par-
ticular ability may be overhasty if it turns out the
ability is easily accessed through in-context learn-
ing, different question formulations, or particular
instructions (Lampinen, 2022; Wei et al., 2022).

A wug is a robin.
A dax is a penguin.
Therefore, a wug can fly

COMPS

{Instruction}

A wug is a robin.
A dax is a penguin.
Q: Which of them can
fly? A: wug 

COMPS- QA

{Instruction}

A toma is a beaver. A bova is a gorilla. Therefore,
a toma/bova has a flat tail.

A toma is a gorilla. A bova is a beaver. Therefore,
a toma/bova has a flat tail.

Heuristic works (FIRST-CORRECT)

Heuristic doesn't work (RECENT-CORRECT)

A toma is a beaver. A bova is a gorilla. Q: Which
of them has a flat tail? A: toma/bova

A toma is a gorilla. A bova is a beaver. Q: Which
of them has a flat tail? A: toma/bova

Heuristic works (FIRST-CORRECT)

Heuristic doesn't work (RECENT-CORRECT)

Reasoning about
Property Inheritance

Position-based
Heuristics

In-context examples

Test Sample

Figure 1: LMs are prompted with in-context examples
that are compatible with both, robust property inheri-
tance, as well as position-based heuristics. At test time,
we evaluate on cases where the heuristics support desir-
able behavior and on cases where they do not. We use
stimuli from COMPS and its reformulation as a QA task.

Our focus 1 in this paper is a particularly chal-
lenging dataset for meaning-sensitive behavior:
COMPS (Misra et al., 2023), which contains min-
imal pair sentences that test the ability of LMs
on property knowledge of everyday concepts (a
beaver/gorilla has a flat tail) and their inheritance
for novel concepts (a wug is a beaver/gorilla. there-
fore, a wug has a flat tail). Contemporary LMs
failed miserably on the hardest subset of the COMPS

stimuli, the examples of which contain two novel
concepts (WUG vs. DAX), where only one of them
inherits the target property (has a flat tail):

1Our code can be found in this repository
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(1) A wug is a beaver. A dax is a gorilla. There-
fore, a wug/dax has a flat tail.

Given the success of LMs on a wide variety of com-
plicated tasks, their utter failure on this seemingly
straightforward task remains puzzling. Here, we
systematically explore COMPS on 12 LMs ranging
from 1.5–13B parameters, varying (a) whether they
are evaluated zero-shot or with multiple examples,
and (b) whether or not instructions are present.

Unlike other minimal-pair datasets, using
COMPS in an in-context learning setting is non-
trivial (and thus potentially informative). This is
because the task can be solved using a position-
based heuristic. For example, in one subset of
COMPS, the target property is always attached to
first novel concept—like in (1). Importantly, LMs’
failures on COMPS were shown to be in part a result
of models’ tendencies towards heuristic behavior:
the performance of autoregressive LMs was found
to be particularly bad when the distractor (a dax
is a gorilla) is recent—i.e., they showed a recency
bias in attributing properties to novel concepts. In
that sense, COMPS follows a rich body of work
in which tasks are set up in a manner that two
types of generalization mechanisms can lead to the
same prediction, but only one of which is desirable
(McCoy et al., 2019, 2020; Warstadt et al., 2020b;
Mueller et al., 2022; Si et al., 2023).

We find that experimental contexts, as opera-
tionalized using in-context examples and instruc-
tions, can in fact demonstrate robust improvements
in LMs’ property inheritance behavior as measured
by COMPS. However, this improvement comes with
a caveat: With a minimal reformulation of COMPS

into a QA task, where there is a direct link between
the LMs’ output space and the features of the in-
put that control the heuristic, many LMs showed a
strong preference towards the heuristic, and were
therefore at chance. Interestingly, LMs that re-
ceive explicit supervision to follow instructions do
show some resistance to positional heuristics, but
not always—occasionally, certain instruction-tuned
LMs also tend to show a preference for one partic-
ular type of heuristic. These discrepancies in LMs’
performance underscore their difficulty of master-
ing the reasoning ability to robustly demonstrate
semantic property inheritance.

2 Methodology

Dataset We use the most difficult subset of
the COMPS dataset (Misra et al., 2023)—COMPS-

WUGS-DIST. This dataset contains 13,828 sentence
pairs of the form similar to (1), constructed using
152 animal concepts and 991 properties.

Stimuli re-design We take a number of steps to
minimize noise from other (likely uninterpretable)
heuristics beyond the ones we have set out to target.
First, we enforce that the concepts and properties
that appear in the in-context examples are disjoint
from ones that are used in tests. To this end, we
sample 50 concepts and their relevant properties
and reserve it for our in-context examples, leav-
ing the rest to be sampled for our test set. We
also enforce this constraint for our novel concepts—
i.e., all in-context examples contain different nonce
words, and the collection of nonce words for the
in-context examples and the test set is disjoint. Fur-
thermore, we counterbalance the nonce words in
the test set in a manner that having a bias towards
one of them would lead to chance performance. We
additionally also use multiple different sets of in-
context examples, to add variability and to ensure
that the results are not only due to one particular
choice of in-context examples. In total, we use
10 different in-context learning example sets, each
containing 6 different COMPS stimuli. For our test
set, we use a constant set of 256 unique pairs sam-
pled from our pool of stimuli containing unused
concepts and properties.

Heuristics Our most important design decision
is to consider two distinct sets of stimuli—each sep-
arately making available the two types of heuristics
that the LMs could rely upon: FIRST-CORRECT and
RECENT-CORRECT, where the property is inherited
by the first and the most recent novel concept, re-
spectively. That is, for the same set of in-context
examples, we have a version where the first con-
cept is correct like in (1), and one where the most
recent concept is correct:

(2) A wug is a gorilla. A dax is a beaver. There-
fore, a wug/dax has a flat tail.

For each type of in-context stimuli, we similarly
have two versions of test stimuli: one that is con-
sistent with the target heuristic, and one that is not.
That is, a test example that is consistent with the
FIRST-CORRECT heuristic will also have its first
concept be the one that inherits the property in
question, while one which is inconsistent will have
the most recent concept be the inheritor of the prop-
erty. Therefore, a model that shows a preference
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for a given heuristic will succeed only on one test
set and succumb on the other, while a model that is
robust to the heuristics will succeed on both.

Reformulation into QA The original COMPS

stimuli test for property inheritance using declar-
ative statements, where models are tested for the
log-probability they asign to the property (has a
flat tail) given either of the two concepts (wug vs.
dax). Here we additionally consider an alternate
formulation of COMPS as a question answering task
(COMPS-QA), where we make the property explicit
in the prompt to the model and instead ask which
of the two concepts possesses it:

(3) A wug is a beaver. A dax is a gorilla. Ques-
tion: Which one of them has a flat tail? An-
swer: wug/dax

Since the shallow heuristics we consider are con-
trolled by the relative ordering of the novel con-
cepts, this formulation of the task directly allows
us to link the models’ output space (the novel con-
cepts) to the heuristics (positions).

Testing setup For the original COMPS setting we
follow Misra et al. (2023) and compare the log-
probability of the property phrase given the correct
vs. the incorrect prefix. For COMPS-QA however,
since we have a constant prefix (same premises and
question), we evaluate the relative log-probability
of the two novel concepts, only one of which is
the correct answer. Accuracy in both cases is the
proportion of cases the correct surface form was
assigned relatively higher log-probability. Since
we use pairwise comparisons throughout, chance
performance is 50%.

Instructions We consider four different kinds of
instruction templates, with varying levels of de-
tail (see appendix B) per formulation (COMPS and
COMPS-QA). In our experiments we report results
on the instruction that gives the best average per-
formance for a given model.

LMs tested We evaluated 8 different open-source
LMs, all of which are decoder-only, and were ac-
cessed using the huggingface hub (Wolf et al.,
2020): GPT-2 XL (Radford et al., 2019); OPT-
6.7b (Zhang et al., 2022); Llama-2 (we used
the 7B and the 13B versions; Touvron et al.,
2023); Mistral-7B (Jiang et al., 2023); Llama-
3-8B (Dubey et al., 2024); OLMo-7B (Groeneveld
et al., 2024); and Gemma-2-9B (Team et al., 2024).

In addition to these 8, we tested the instruct-tuned
versions of OLMo, Llama-3-8B, Mistral-7B (v0.3),
and Gemma-2-9B, to analyze if instruction tuning
affects LMs’ robustness. Details about all 12 LMs
can be found in Appendix A.

3 Analyses and Results

We evaluate on COMPS and COMPS-QA, with and
without instructions. In each case, we progressively
supply 0 through 6 in-context examples, allowing
us to track the dynamics of the models’ perfor-
mance with an increasing amount of demonstra-
tions. Together with our separate types of test sets
and heuristics encoded in the in-context examples,
along with five different instruction settings (four
with and one without) we run 2420 experiments
per LM. We hypothesize that LMs would be more
sensitive to the positional heuristics in COMPS-QA

because of the clear link between their output space
and the relative position of the novel concepts—the
feature that controls our target heuristics.

Figure 2 shows accuracies of the tested LMs on
our four different COMPS settings as a function
of the number of in-context examples provided to
them, for both: cases where the heuristics are
consistent with success on the test set, and cases
where they are not. We also show an additional
curve denoting the average performance across the
two types of test sets to paint an overall picture of
the models’ performance. In this figure, the extent
to which a model relies on heuristic is indicated by
the gap between the dotted ( ) and the dashed (▲)
lines. A model that is robust to the heuristics will
have curves of both colors rise above chance, with
no gap between the two, while one that is prone
to using heuristics will have its dotted ( ) curve
be substantially greater than its dashed (▲) curve.
Following the same format, Figure 3 shows results
on the four instruction-tuned models evaluated. In
all these plots, we also visualize the LMs’ ‘base’
property knowledge, where we compare (in a zero-
shot manner) the LMs’ preference for attributing
the properties in the test set to the correct ‘known’
concepts (i.e., beaver vs. gorilla in our examples).

Experimental context can improve attribution
of properties to concepts... On COMPS, mod-
els unsurprisingly start off at chance performance
on average, corroborating the previous findings
of Misra et al. (2023). However, in the presence
of in-context examples and instructions, they are
able to improve monotonically as the number of
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Figure 2: Overall results from our experiments testing non-instruction tuned LMs on COMPS and COMPS-QA using
in-context examples, with and without instructions. Results are aggregated across both heuristics: FIRST-CORRECT
and RECENT-CORRECT. Error bars are over different sets of in-context examples. Most models start off near chance
in the 0-shot case, but many improve as more examples are given. Solid green line depicts each model’s base
property knowledge performance, while the black dashed line depicts chance performance.

in-context examples increases, reaching similar lev-
els of performance on property inheritance as that
of the models’ base knowledge. It is worth not-
ing Llama-2-13b and OLMo-7B do occasionally
show a preference for heuristics in the absence
of instructions. An intermediate conclusion that
we draw here is that LMs can indeed demonstrate
non-trivial property inheritance on observing a few
examples that reflect that behavior.

...but not the attribution of concepts to prop-
erties While experimental context seems to aid
models in attributing properties to the right con-
cept in context, the same does not hold on COMPS-
QA. Similar to COMPS, models start off at chance
performance on average with a zero-shot set up,
however, unlike in the case of COMPS, many LMs
seem to consistently prefer the heuristics available
in the prompt, showing, at times, worse than chance
performance on cases where the test set does not
follow the heuristic. This is most apparent for GPT-
2 XL, OPT6.7b, Llama-2-7b, OLMo-7B—here
there is a substantial gap between the accuracy for
cases where heuristics support performance on the
test set and the accuracy for cases where they do
not. Other models, like Mistral-7B and Gemma-
2-9B occasionally show behavior compatible with
the heuristics, but this does not hurt their overall
performance, which is consistently above chance,

and close to their base knowledge.
Our results suggest that LMs are more likely

to show behavior that is compatible with the use
of positional heuristics when their output space
(choice between the two novel concepts) has a clear
connection with positional artifacts in their input
(relative ordering of the novel concepts). This is
consistent with our hypothesis in about 11 out of
16 cases (where for 9 of the cases, heuristics end up
drastically hurting performance). When this link
is not clear and models must instead predict likely
properties given a novel concept (i.e., in COMPS),
instructions and in-context examples do seem to
lead to robust performance. It is important to note
that instructions alone do not always account for
the observed improvement—LMs’ performance on
zero-shot settings are consistently still at chance in
all cases, suggesting that it is their interaction with
in-context examples that critically alters models’
output distribution to support desirable property
inference behavior.

Benefits of instruction tuning... Common to the
previous analysis is that the tested LMs were all
pretrained using the standard next-word prediction
objective. While instruction-following capabilities
have been shown to arise in such models, a new
paradigm has emerged in the field that tunes such
pre-trained LMs post-hoc to explicitly follow in-
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Figure 3: Overall results on the four instruction-tuned
models considered. Results are aggregated across both
heuristics: FIRST-CORRECT and RECENT-CORRECT. Er-
ror bars are over different sets of in-context examples.
Solid green line depicts each model’s base property
knowledge performance, while the black dashed line
depicts chance performance.

structions using a plethora of different techniques
not limited to those that leverage feedback from
human-provided labels (Ouyang et al., 2022). How
does instruction tuning interact with the presence of
position-based heuristics? Figure 3 shows results
on four LMs which are instruction-tuned versions
of some of the LMs used in the previous analysis,
for COMPS and COMPS-QA (with instructions). We
find these four LMs to show consistently above-
chance performance on both datasets, suggesting
non-trivial robustness brought about by instruction-
tuning. Interestingly, while most models show im-
provements from zero-shot (often times at chance),
the instruct-tuned Gemma-2-9B model shows no
signs of improvement, instead showing nearly con-
stant performance on both COMPS and COMPS-QA

regardless of the number of in-context examples.

...and its occasional pitfalls While Figure 3
shows that LMs benefit from instruction-tuning
in the context of robust property inheritance, a de-
tailed breakdown of the results offers a few caveats.
In Figure 4 we show OLMo-7B-Instruct’s accu-
racies broken-down by heuristic on COMPS-QA,
the setting where we hypothesized LMs to be
most likely relying on heuristics. For the FIRST-
CORRECT heuristic, the model shows a preference
for the heuristic (greater performance when it sup-
ports success on the test set), while for RECENT-
CORRECT, we see the opposite to be true. Here, we
observe that the LM does better when the heuristic
does not support success on the test set, suggest-
ing that the LM has a bias for preferring entities
mentioned first—a bias so strong that it persists
even when there is ample evidence in the context
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Figure 4: Finer-grained results on Instruct-tuned OLMo-
7B LM demonstrating its preference for selecting the
first concept, regardless of the heuristics.

of the model that favors the opposite heuristic. This
suggests that while instruction tuning leads to con-
sistently above-chance performance on challenging
property inheritance problems, it is not entirely ro-
bust to position-based heuristics.

4 Conclusion

We investigated the extent to which in-context
examples and instructions—key components that
drive impressive performance in contemporary
LMs—can overcome important limitations of LMs
at tests that have poked holes in their ability to
extract conceptual meaning from text. As a case
study, we analyzed how well such experimental
contexts can improve LM abilities to perform prop-
erty inheritance (Murphy, 2002; Misra et al., 2023)
in context: binding of novel concepts to existing
concepts, and endowing them with valid property
inferences as a result.

Our findings suggest that mastery of this abil-
ity has yet to be robustly achieved, and that many
LMs trained on the next-word prediction objective
are still prone to using shallower patterns in their
context rather than systematically extracting con-
ceptual meaning. There are several exceptions to
this, however, for example, modern LMs such as
Mistral-7B and Gemma-2-9b did show heuristic be-
havior, but were also well above chance, especially
in the presence of instructions. Additionally, in-
struction tuned LMs were found to be substantially
more robust than their non-instruction tuned coun-
terparts, suggesting advantages to explicit instruc-
tion tuning. However, they too sometimes showed
counterintuitive behavior, where their strong bias
for a consistent position overcomes the heuris-
tic patterns available in the input. We leave the
nuanced exploration of this behavior induced by
instruction-tuning for future work.
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5 Limitations

Single dataset A clear limitation of this work
is that it exclusively focuses on a single dataset:
COMPS (Misra et al., 2023). So, a question that
arises here is to what extent are our findings local-
ized to the chosen dataset vs. meaning-sensitive
evaluations in general. This would require a further
non-trivial, non-straightforward amount of work,
since: 1) different meaning sensitive evaluations
focus on different (though equally useful) opera-
tionalizations of meaning; and more importantly
2) not all prior work in this area focuses on a stan-
dardized and well-defined usage of heuristics that
is directly transferable to the experimental setup
we have used in this work (following McCoy et al.,
2019, 2020; Warstadt et al., 2020b; Mueller et al.,
2022; Si et al., 2023). We do hope that our work
contributes to the larger-scale vision of carefully
benchmarking different types of meaning extrac-
tion abilities in LMs in a controlled manner.

Lack of mechanistic insight Our work continues
the long-standing precedent of using carefully con-
structed behavioral experiments to conclude about
the competence of LMs (Linzen et al., 2016; Gulor-
dava et al., 2018; Futrell et al., 2019; Ettinger, 2020;
Warstadt et al., 2020a) However, recent works have
made impressive strides in localizing the kinds of
computations that give rise to the observed behav-
ior in LMs (Hanna et al., 2023; Wang et al., 2023,
i.a.) Therefore, it is entirely possible that our con-
clusions about the precise nature of computations
carried out by LMs can be greatly strengthened
when supplemented by the methods developed in
these aforementioned works.

Single Language Finally, this work only focuses
on property inheritance problems stated in the En-
glish language. This does little to contribute to-
wards diversity in NLP research.
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A Dataset and implementation details

Our experiments use the stimuli from COMPS, re-
leased with an MIT License by Misra et al. (2023),
but with a modification that involves changing of
the nonce words to obey the constraint that the
in-context examples all have different nonce word
pairs. To this end, we use the following nonce-
words:

• In-context examples: wug, dax, fep, zek,
blick, toma, kiki, glorp, bova, zup, tufa, flib
(counter-balanced)

• Test examples: gek, wif (counter-balanced)

A.1 Methodological details
Following COMPS, as well as the precedent set by a
number of previous minimal pair analyses (Linzen
et al., 2016; Gulordava et al., 2018; Futrell et al.,
2019; Wilcox et al., 2019; Warstadt et al., 2020a;
Hu et al., 2020), we use a forced choice task to eval-
uate our LM subjects. Like in COMPS, we compare
the log-probability of the property phrase (here, has
a flat tail) given the choice of left contexts (which
indicate whether the right vs. the wrong concept
has the property). For example, we measure:

logPθ(has a flat tail ∣ a gek is a beaver. a wif is a
gorilla. therefore, a gek/wif),

and for COMPS-QA, we compare the relative proba-
bilities of the two novel concepts given a fixed left
prefix which contains a question about the property.
For example, we measure:

logPθ(gek/wif ∣ a gek is a beaver. a wif is a gorilla.
Question: Which one of them has a
flat tail? Answer:)

In both cases above, gek is the concept that should
inherit the property. While these examples show
the zero-shot case, cases with in-context examples
and instructions simply add more context to the
prefix, therefore the surface form of the output
space remains the same regardless of the number of
in-context examples or the presence of instructions.
Similar to the above measures, we measure the
base property knowledge of LMs by comparing
the conditional log-probabilities of the property
phrases given the real, known concepts in question.
That is, we measure:

logPθ(has a flat tail ∣ beaver/gorilla)
The accuracy here, again, is the proportion of

time the correct concept was more likely to inherit
the property than the incorrect one. We measure
this accuracy for all our test items zero-shot, and
use that as the reference base property knowledge
in order to contextualize our main results.

Log-probabilities for all models were accessed
using minicons (Misra, 2022),2 a library that
wraps around transformers (Wolf et al., 2020) by
huggingface, and is written in pytorch. For our ex-
periments with Llama-13B, we quantize the model

2
https://github.com/kanishkamisra/minicons
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to 4-bits in order to fit it onto a single GPU. All
experiments were run on a cluster with 4 NVIDIA
A40 GPUs, though each individual experiment on
a model was computed on a single A40 GPU.

A.2 Model Metadata
Table 1 shows the LMs used in this work, along
with their total parameters, tokens encountered dur-
ing training, and vocabulary size.

B Instructions

Tables 2, 3, 4, 5 show our instruction templates.

C Fine-grained results

While Figure 2 shows results aggregated over both
types of heuristics that we have used in this work,
we additionally display finer-grained results in this
section, broken down by heuristic type. Again, in
each of these plots, the extent to which a model
relies on heuristic is indicated by the gap between
the dotted ( ) and the dashed (▲) lines. This is
now separately shown for each of our heuristics.
Figure 5 shows results for non-instruct tuned LMs
on COMPS with and without instructions for both
the heuristics, and similarly Figure 6 shows results
for those LMs on COMPS-QA with and without
instructions for both the heuristics. Figure 7 and
Figure 8 show analogous results for Instruction
tuned LMs. In all these plots, the solid green line
denotes the base performance of LMs.
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Figure 5: Fine-grained results for non-instruct tuned LMs on COMPS as a function of the number of in-context
examples (with and without instructions).
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Figure 6: Fine-grained results for non-instruct tuned LMs on COMPS-QA as a function of the number of in-context
examples (with and without instructions).
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Figure 7: Fine-grained results for instruct tuned LMs on COMPS as a function of the number of in-context examples
(with and without instructions).
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Figure 8: Fine-grained results for instruct tuned LMs on COMPS-QA as a function of the number of in-context
examples (with and without instructions).
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Model Params Pre-training Tokens Vocab size

GPT-2 XL (Radford et al., 2019) 1.5B 8B 50,257
OPT-6.7b (Zhang et al., 2022) 6.7B 180B 50,272
Llama-2-7B (Touvron et al., 2023) 7B 1.8T 32,000
Mistral-7B (Jiang et al., 2023) 7B ? 32,000
OLMo-7B (Groeneveld et al., 2024) 7B 2.46T 50,304
Llama-3-8B (Dubey et al., 2024) 8B 15T 128,000
Gemma-2-9B (Team et al., 2024) 9B 8T 256,000
Llama-2-13B (Touvron et al., 2023) 13B 1.8T 32,000

Table 1: Overview of the non-instruction tuned LMs used in this work. ‘?’ indicates that the given value was not
made available in the LM’s release. In addition to these, we also report results on instruction-tuned versions of
OLMo-7B, Mistral-7B, Llama-3-8B, and Gemma-2-9B.

COMPS version Instruction Template

COMPS Given a pair of statements that introduce novel entities as types of real world
animals, write a true statement about the properties of the novel entities:

{examples} (omitted in zero-shot)
{test-stimulus}

COMPS-QA Given a pair of statements that introduce novel entities as types of real world
animals, answer the question that follows:

{examples} (omitted in zero-shot)
{test-stimulus}

Table 2: Instructions for COMPS and COMPS-QA with instruction type: “minimal”

COMPS version Instruction Template

COMPS Some aliens have come to earth, and it turns out they have their own language for
talking about our animals here on Earth. Your job is to help the aliens learn about
our Earthling animals by giving them some information about the animals.

Let’s get started:
{examples} (omitted in zero-shot)
{test-stimulus}

COMPS-QA Some aliens have come to earth, and it turns out they have their own language for
talking about our animals here on Earth. Your job is to help the aliens learn about
our Earthling animals by answering some questions about them.

Let’s get started:
{examples} (omitted in zero-shot)
{test-stimulus}

Table 3: Instructions for COMPS and COMPS-QA with instruction type: “aliens”
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COMPS version No. of shots Instruction Template

COMPS
Zero-shot It is important to know and reason about the properties of entities in the world. The

following is a pair of premise statements that introduce novel entities as new types
of real world animals. Your task is to make a conclusion about the properties of one
of the entities by reasoning over the premise statements.

{test_stimulus}

Few-shot It is important to know and reason about the properties of entities in the world. The
following example(s) show a pair of premise statements that introduce novel entities
as new types of real world animals, followed by another statement that attributes a
property to one of the entities introduced in the premise statements.

Examples:
{examples}

Here is another pair of premise statements. Your task is to make a conclu-
sion about the properties of one of the entities by reasoning over the premise
statements.
{test_stimulus}

COMPS-QA
Zero-shot It is important to know and reason about the properties of entities in the world. The

following is a pair of premise statements that introduce novel entities as new types
of real world objects. The statements are followed by a question that asks which
novel entity in the premise can a specific property can be attributed to. Answer the
question by reasoning over the premise statements.

{test_stimulus}

Few-shot It is important to know and reason about the properties of entities in the world. The
following example(s) show a pair of premise statements that introduce novel entities
as new types of real world animals. The statements are followed by a question that
asks which novel entity in the premise can a specific property can be attributed
to, and the answer to the question, obtained by reasoning over the premise statements.

Examples:
{examples}

Here is another pair of premise statements. Answer the question that fol-
lows.
{test_stimulus}

Table 4: Instructions for COMPS and COMPS-QA with instruction type: “Detailed-1”
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COMPS version No. of shots Instruction Template

COMPS
Zero-shot It is important to know and reason about the properties of entities in the world. The

following is a pair of premise statements that introduce novel entities as new types
of real world animals. Your task is to write a true statement about the properties
of the novel entities.

{test_stimulus}

Few-shot It is important to know and reason about the properties of entities in the world. The
following example(s) show a pair of premise statements that introduce novel entities
as new types of real world animals, followed by another statement that attributes a
property to one of the entities introduced in the premise statements.

Examples:
{examples}

Here is another pair of premise statements. Your task is to write a true
statement about the properties of the novel entities.
{test_stimulus}

COMPS-QA
Zero-shot It is important to know and reason about the properties of entities in the world. The

following is a pair of premise statements that introduce novel entities as new types
of real world animals. The statements are followed by a question that asks which
of the introduced entities a specific property can be attributed to. Answer the
question by reasoning over the premise statements.

{test_stimulus}

Few-shot It is important to know and reason about the properties of entities in the world. The
following example(s) show a pair of premise statements that introduce novel entities
as new types of real world animals. The statements are followed by a question
that asks which of the introduced entities a specific property can be attributed
to, and the answer to the question, obtained by reasoning over the premise statements.

Examples:
{examples}

Here is another pair of premise statements. Answer the question that fol-
lows.
{test_stimulus}

Table 5: Instructions for COMPS and COMPS-QA with instruction type: “Detailed-2”
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