
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 12375–12400
November 12-16, 2024 ©2024 Association for Computational Linguistics

Unveiling In-Context Learning:
A Coordinate System to Understand Its Working Mechanism

Anhao Zhao
Southwest Jiaotong University
zhaoanh@my.swjtu.edu.cn

Fanghua Ye
University College London
fanghua.ye.19@ucl.ac.uk

Jinlan Fu
National University of Singapore

jinlanjonna@gmail.com

Xiaoyu Shen
Digital Twin Institute

Eastern Institute of Technology, Ningbo
xyshen@eitech.edu.cn

Abstract

Large language models (LLMs) exhibit re-
markable in-context learning (ICL) capabili-
ties. However, the underlying working mech-
anism of ICL remains poorly understood. Re-
cent research presents two conflicting views
on ICL: One emphasizes the impact of sim-
ilar examples in the demonstrations, stress-
ing the need for label correctness and more
shots. The other attributes it to LLMs’ inher-
ent ability of task recognition, deeming label
correctness and shot numbers of demonstra-
tions as not crucial. In this work, we pro-
vide a Two-Dimensional Coordinate System
that unifies both views into a systematic frame-
work. The framework explains the behavior of
ICL through two orthogonal variables: whether
similar examples are presented in the demon-
strations (perception) and whether LLMs can
recognize the task (cognition). We propose
the peak inverse rank metric to detect the task
recognition ability of LLMs and study LLMs’
reactions to different definitions of similarity.
Based on these, we conduct extensive experi-
ments to elucidate how ICL functions across
each quadrant on multiple representative classi-
fication tasks. Finally, we extend our analyses
to generation tasks, showing that our coordi-
nate system can also be used to interpret ICL
for generation tasks effectively. 1

1 Introduction

Large language models (LLMs) have demonstrated
impressive in-context learning (ICL) capabilities
(Brown et al., 2020), i.e., when provided with few-
shot examples, LLMs can effectively perform a
broad range of tasks without requiring parameter
updates (Zhao et al., 2021; Min et al., 2022a; Su
et al., 2022; Wei et al., 2023a). The simplicity of
this method, combined with its zero training cost
and the versatility of applying a single model across

1Our code is publicly available at: https://github.com/
plclmezboss/2D-Coordinate-System-for-ICL.
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Figure 1: An overview of the proposed two-dimensional
coordinate system for ICL. The y-axis represents cognition,
indicating the model’s ability to recognize tasks during ICL,
while the x-axis represents perception, reflecting whether sim-
ilar examples are included in the demonstrations.

various tasks, has made ICL a promising approach
to fully leveraging the potential of LLMs.

However, the underlying working mechanism of
ICL remains an open question (Dai et al., 2022;
Akyürek et al., 2022; Olsson et al., 2022; Panwar
et al., 2024). Existing works hold two conflict-
ing views to explain ICL: The first view argues
LLMs explicitly learn from similar examples in
the demonstrations during the inference stage (Liu
et al., 2021). Selecting demonstrations similar to
the test sample and ensuring their label correctness,
or increasing the number of demonstration shots
can both improve the performance (Rubin et al.,
2022; Ye et al., 2023; Levy et al., 2023; Bertsch
et al., 2024; Liu et al., 2024). The second view, on
the contrary, suggests that LLMs implicitly learn
tasks required for downstream applications during
the pre-training stage, and in-context demonstra-
tions simply provide cues for them to recognize the
task (Xie et al., 2022). There have been empirical
supports for this hypothesis which show that the
performance of ICL is insensitive to label correct-
ness of demonstrations, or the number of demon-
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stration shots (Min et al., 2022b; Chen et al., 2023;
Zhang et al., 2024; Zhu et al., 2024).

Although both of the above views hold in spe-
cific cases, neither can fully explain the working
mechanism of ICL from a holistic perspective. In
this work, we seek a unified framework encom-
passing both views to systematically unveil ICL.
To do so, we first introduce the peak inverse rank
metric to accurately identify the task recognition
capability of LLMs. Based on this metric, we ob-
serve that LLMs do not always recognize tasks
during ICL, even when correct labels and similar
examples are provided in the demonstrations. Con-
versely, successful task recognition also does not
necessarily require the presence of similar exam-
ples and correct labels. Hence, we suggest that the
effectiveness of ICL should be described through
the interactions of these two orthogonal variables,
resulting in four distinct ICL scenarios. To concep-
tualize this intuitively, we represent each variable
along two axes: The x-axis denotes perception,
indicating the model’s dependence on similar ex-
amples for reference. This mirrors human percep-
tion, where recognizing similar observed patterns
and drawing analogies is crucial for interpreting
new information. The y-axis represents cognition,
reflecting the model’s task recognition ability. Sim-
ilar to human cognition, this involves recognizing
the right logic learnt from past tasks and reasoning
over it to draw the answer, rather than simply repli-
cating observed patterns. Consequently, all ICL
scenarios are visualized within a two-dimensional
coordinate system, as depicted in Figure 1. In
each quadrant of the coordinate system, we sys-
tematically analyze 8 models spanning up to 40B
parameters across three major LLM families. We
examine a wide range of classification tasks and
have the following main findings:

• In the first quadrant, models are able to recog-
nize the task and similar examples are included in
the demonstrations. In this situation, models can
not only leverage their pre-trained knowledge to
make predictions but also refer to the labels from
similar examples if their pre-trained knowledge
is insufficient. However, if the labels of similar
examples are incorrect, smaller models tend to
replicate these incorrect labels, while larger mod-
els tend to rely on their pre-trained knowledge
for making predictions.

• In the second quadrant, models are able to rec-
ognize the task but similar examples are not

included in the demonstrations. In this situa-
tion, models primarily leverage their pre-trained
knowledge to make predictions. Moreover, given
that each input-label pair plays an identical role
in helping models recognize the task, increas-
ing the number of demonstration shots does not
significantly enhance the effectiveness of ICL.

• In the third quadrant, models cannot recognize
the task and similar examples are also not in-
cluded in the demonstrations. In this situation,
ICL fails to work. Models fail to properly lever-
age the demonstrations and tend to blindly pre-
dict the label of the first example.

• In the fourth quadrant, models cannot recognize
the task but similar examples are included in the
demonstrations. In this situation, models directly
replicate the labels of similar examples. There-
fore, the performance of ICL depends entirely on
whether the labels of similar examples match the
ground truth labels of test samples. Additionally,
larger models are better at recognizing similar
examples, which increases their tendency to copy
the labels from those examples.

In general, our findings indicate that for similar
examples, their label correctness has a consistent
and significant impact on ICL, especially in sce-
narios where the model cannot recognize the task
and relies heavily on similar examples for infer-
ence (below the x-axis). Increasing the number of
demonstration shots substantially improves ICL, as
it raises the likelihood of matching similar exam-
ples. For dissimilar examples, label correctness
primarily affects the model’s confidence in task
recognition (above the x-axis), but once the task is
properly recognized, the effect becomes marginal.

Finally, considering the wide application of ICL
in generation tasks (Agrawal et al., 2022; Sia and
Duh, 2023; Garcia et al., 2023), we extend our anal-
yses beyond classification tasks by conducting a
thorough case study on a machine translation task.
This study demonstrates that our coordinate system
can also effectively capture the behavior of ICL in
generation tasks. In summary, our proposed coor-
dinate system provides a principled and universal
way to understand the working mechanism of ICL.

2 A 2D Coordinate System for ICL

2.1 The Coordinate Axes
Example Similarity. Recent works have shown
that including similar examples to the test sample
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in the ICL demonstrations can lead to improved per-
formance outcomes (Liu et al., 2021; Rubin et al.,
2022; Ye et al., 2023; Levy et al., 2023; Bertsch
et al., 2024). Inspired by this finding, we believe
that the presence of examples similar to the test
sample in the demonstrations is an important vari-
able for distinguishing different ICL scenarios.

Given the broad concept of similarity, we seek
to explore whether the similarity in ICL leans more
towards semantic similarity or lexical similarity. To
investigate this question, we perform comprehen-
sive experiments in Appendix A, where we con-
struct three different types of examples, including
semantically similar but lexically dissimilar exam-
ples, lexically similar but semantically opposite
examples, and randomly selected examples. We
assign different semantically unrelated label words
to these three elements and observe which semanti-
cally unrelated word the model predicts. We find
that although ICL tends to slightly favor semanti-
cally similar examples over lexically similar ones,
the preference for both is significantly greater than
randomly selected examples. Thus, regardless of
whether the similarity is lexical or semantic, as long
as demonstrations contain examples of either type,
we consider them to contain similar examples.

Task Recognition. Instead of capitalizing on sim-
ilar examples, some previous research has demon-
strated that in-context demonstrations simply pro-
vide information for the model to identify the task
to deal with, after which prior knowledge obtained
from pretraining data is leveraged to make predic-
tions (Xie et al., 2022; Min et al., 2022b). This
indicates that task recognition is also a crucial fac-
tor for ICL. However, whether models can always
recognize tasks when performing ICL remains an
open question. Hence, there is an urgent need for
a method to quantitatively determine the model’s
task recognition ability.

A recent work by Wang et al. (2023) reveals that
label words act as semantic anchors, accumulat-
ing information of corresponding demonstrations
in the shallow layers. The information associated
with these anchors is then aggregated in the deeper
layers to form the model’s final predictions. In-
spired by this, we find that examining whether the
hidden states of label tokens at internal layers pos-
sess task semantics can serve as an indicator of if
ICL has recognized the task. We use a technique
called the logit lens (nostalgebraist, 2020; Geva
et al., 2021; Dar et al., 2023), which projects trans-

former representations into the vocabulary space,
thereby enabling us to interpret abstruse represen-
tations in a human-interpretable manner. Specif-
ically, we project the hidden states of each layer
corresponding to the label tokens into the vocabu-
lary space by multiplying them with the pre-trained
language modeling head E, thus decoding the hid-
den states of each layer. After obtaining the vo-
cabulary distribution of the hidden states for each
layer, we calculate the inverse of the rank of the
task-representative token within the vocabulary dis-
tribution for each layer. We use the peak inverse
rank (PIR) across all layers as our metric to de-
termine whether ICL has recognized the task. For
clarity, we provide the formal definition of PIR in
Appendix K. A high PIR indicates that ICL has
successfully recognized the task, while a low PIR
suggests a lack of task understanding capabilities.

To illustrate this, we consider an ICL scenario
for the World Capital task: "Word: France Label:
Paris Word: Germany Label: Berlin Word: Italy
Label:". We select the last label word "Berlin"
to report the PIR of the task-representative token
"capital" in Figure 2, where the PIR reaches 1 at
layer 17. For the same task, we replace all labels
with semantically irrelevant words to prevent ICL
from recognizing the task. This setting, called task
learning, was first introduced by Pan (2023). Con-
cretely, we replace the first label "Paris" with "bar"
and the second label "Berlin" with "foo". We still
select the last label "foo" to report the PIR of "cap-
ital" in Figure 2, where the PIR drops to 0.

Based on PIR, we observe that models do not
always recognize tasks during ICL, even when the
demonstrations are entirely composed of correct
input-label pairs (refer to Appendix C). Further-
more, we demonstrate that the presence of similar
examples and the ability of task recognition are
orthogonal to each other (refer to Appendix D).
Given this, we take whether models can recognize
tasks during the execution of ICL as the second
variable to distinguish different ICL scenarios. We
will use PIR as the criterion to select datasets for
ICL that can and cannot recognize tasks.

2.2 ICL Scenario Exploration
Following the above discussions, ICL scenarios can
be described comprehensively using two variables:
task recognition and example similarity. These two
variables result in four combinations, which can be
visualized in a two-dimensional coordinate system
(see Figure 1). In the positive half of the y-axis,
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Figure 2: The PIR of "capital" at the last
label token using Llama-2-7B, before and
after replacing labels.
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Figure 3: The average ICL accuracy for
Similiar(T) with correct and incorrect
labels, and ICL without similar examples.
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Figure 4: The PIR of "color" at the label
token of Similiar(T), when the label of
Similiar(T) is correct and incorrect.

the model is capable of recognizing tasks, while in
the negative half, it is not. Similarly, the positive
half of the x-axis signifies the presence of similar
examples, whereas their absence is indicated in the
negative half.

Importantly, we establish this two-dimensional
coordinate system not only to conceptualize the
four possible combinations of ICL scenarios but
also to consider the two variables on a continuous
scale. Specifically, as the model’s confidence in rec-
ognizing tasks increases, denoted by PIR approach-
ing one, the y-coordinate value rises. Likewise, as
the similarity between the provided examples and
the test sample increases, the x-coordinate value
rises. In the following section, we will provide a
detailed description of how ICL works within each
quadrant of the coordinate system.

3 Experiments and Results

3.1 Experimental Settings

Given that it is not intuitively clear whether mod-
els can recognize the task in a particular dataset,
which in fact must be verified using the metric PIR,
we directly enumerate the classification datasets in
which models can and cannot recognize the task.
For detailed proofs, please refer to Appendix C.

Datasets in Which Models Can Recognize Tasks.
These datasets are used for the upper part of the x-
axis. We employ the Stanford Sentiment Treebank
Binary (SST-2) (Socher et al., 2013) for sentiment
analysis. In addition, we create two datasets for the
World Capitals and Reasoning about Colored
Objects tasks, which contain 50 hand-crafted pairs
of country-capital and object-color, respectively.
The detailed data are provided in Appendix F.

Datasets in Which Models Cannot Recognize
Tasks. These datasets are used for the lower part
of the x-axis. We utilize the Text REtrieval Con-
ference (TREC) Question Classification dataset

(Li and Roth, 2002; Hovy et al., 2001) for ques-
tion type classification and the EmoContext (emo)
(Chatterjee et al., 2019) for emotion classification.

Models. We adopt a comprehensive suite of mod-
els, including GPT2-XL (1.61B) (Radford et al.,
2019) and GPT-J (6B) (Wang, 2021) from the
GPT series; Llama-2-7B, Llama-2-13B, and their
instruction-tuned counterparts from the Llama se-
ries (Touvron et al., 2023); and Falcon-40B, along
with its instruction-tuned variant from the Falcon
series (Almazrouei et al., 2023).

Prompt Format. We use neutral delimiters to
avoid providing task-specific information. See Ap-
pendix E for details.

Accuracy Metric. We consider an individual pre-
diction correct only when the token with the highest
logit within the entire vocabulary matches the label
of the test sample. Accuracy is the proportion of
correct predictions across the whole dataset.

3.2 First Quadrant
In this quadrant, models can recognize tasks when
performing ICL, and the demonstrations con-
tain examples similar to the test sample. In this
situation, since models can rely not only on their
pre-trained knowledge after task recognition but
also on the labels of similar examples to make pre-
dictions, we aim to determine how these two factors
work together.

Implementation Details. Here, we consider an
extreme setup where we artificially add the test
sample into the demonstration, identifying it as
a similar example with the highest similarity, de-
noted as Similiar(T). We consider three settings:
Similiar(T) with an incorrect label, Similiar(T)
with the correct label, and ICL without similar ex-
amples. For the first setting, we select a label from
the label space that differs from the test sample’s
label and assign it to the Similiar(T). For the
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Figure 5: In the 20th layer, the attention
scores of the last token ":" for all tokens.
All label tokens are marked in red.

GPT2-XL GPT-J
Llama-2-7B

Llama-2-7B-chat
Llama-2-13B

Llama-2-13B-chat
Falcon-40B

Falcon-40B-instruct0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0-shot
1-shot
3-shot
6-shot
12-shot

Figure 6: Averaged accuracy of zero-
shot and ICL with varying numbers of
demonstrations in the second quadrant.

1 2 3 4
The position of the label token

0
10
20
30
40
50
60
70

Pr
ed

ict
ed

 p
ro

po
rti

on
 (%

)

GPT2-XL
GPT-J
Llama-2-7B
Llama-2-7B-chat
Llama-2-13B
Llama-2-13B-chat
Falcon-40B
Falcon-40B-instruct

Figure 7: For the emo dataset, the prefer-
ence of different models for label tokens
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second setting, we select the label from the label
space that matches the test sample’s label and as-
sign it to the Similiar(T). For the third setting,
we select examples from the training dataset with
no similarity to the test sample to serve as demon-
strations. We use k = 6 in-context examples. The
results reflect averages from five random seeds and
all datasets in which models can recognize tasks.

Experimental Results. Figure 3 shows that (1)
adding Similiar(T) with the correct label in the
demonstrations generally improves performance
compared to ICL without similar examples (i.e.,
ICL falling within the second quadrant), although
there is a slight performance decline for Llama-
2-7B-chat and Llama-2-13B-chat. This indicates
that models can not only utilize their pre-trained
knowledge but also refer to the correct label of
Similiar(T) when their pre-trained knowledge is
insufficient. (2) However, including Similiar(T)
with an incorrect label in the demonstrations in-
duces a state of "confusion", making models nei-
ther completely rely on their pre-trained knowledge
for predictions (performing worse than ICL without
similar examples) nor completely overwrite their
predictions with the label of Similiar(T).

In-Depth Analysis. To comprehend the causes
of "confusion" experienced by models, we present
insights through a case study on the Reasoning
about Colored Objects task using Llama-2-7B.
We first consider the scenario when the label of
Similiar(T) is correct: "Word: apple Label: red
Word: lime Label: green Word: grape Label: pur-
ple Word: lime Label:". We report the PIR of
the task-representative token "color" at the label
"green" of "lime", as shown in Figure 4. Next, we
substitute the label token "green" with the incorrect
color "gold", thereby constructing a Similiar(T)
with an incorrect label in the demonstrations. Simi-
larly, we report the PIR of the task-representative
token "color" at the label "gold" of "lime", also

depicted in Figure 4. As illustrated, replacing the
correct label with an incorrect one decreases the
model’s confidence in the Reasoning about Colored
Objects task at the label token of Similiar(T). Ad-
ditionally, due to Similiar(T) having the highest
semantic and lexical similarity, the last token of the
input at the intermediate layer assigns the highest
attention score to "gold" among all label tokens.
For instance, consider the 20th layer, as shown in
Figure 5. Consequently, at this layer, the hidden
state for "gold" contributes more significantly to
the residual stream of the last token compared to
the hidden states of other label tokens. This leads to
a reduction of task semantics and an increase of the
semantics associated with the word "gold" within
the hidden states of the last token. As a result, the
model faces uncertainty about whether to rely on
pre-trained knowledge for making predictions or
to directly output the "gold" token, leading to the
"confusion" phenomenon.

Additionally, as observed in Figure 3, when en-
countering the "confusion" phenomenon, models
with smaller parameter sizes tend to output incor-
rect labels, whereas models with larger parameter
sizes are more likely to rely on their pre-trained
knowledge for the output. This indicates that when
the label of Similiar(T) is incorrect, the confi-
dence in the task at that label token increases as the
model size increases.

In the first quadrant, models can leverage their
pre-trained knowledge to make predictions once
they recognize the task and can also refer to the
labels from similar examples if their pre-trained
knowledge is insufficient. However, if the labels
of similar examples are incorrect, smaller mod-
els tend to replicate these incorrect labels, while
larger models tend to rely on their pre-trained
knowledge for making predictions.

Conclusion
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3.3 Second Quadrant

In this quadrant, models can recognize tasks when
performing ICL, but the demonstrations do
not contain examples similar to the test sample.
Due to the absence of similar examples, the phe-
nomenon described in the first quadrant—where
the incorrect label semantics of similar examples
significantly affect the hidden states of the last to-
ken—does not occur. Therefore, randomly replac-
ing labels in this quadrant does not substantially
impact ICL performance, which is consistent with
existing work (Min et al., 2022b). The detailed
experimental results can be found in Appendix G.

Here, we would like to discuss a new question:
Since the label token of each example provides
the same task semantics (because all examples are
dissimilar to the test sample), does this imply that
we can achieve good ICL performance with only a
very small number of examples?

Implementation Details. We use the "zero-shot"
approach as our baseline, where the model is only
given an instruction that specifies the task. Detailed
instructions for each dataset can be found in Ap-
pendix I. Subsequently, we remove the instruction
and provide the model with only demonstrations,
then incrementally increase the number of shots.
The results are averaged over five random seeds
and datasets in which models can recognize tasks.

Experimental Results. The experimental results
are shown in Figure 6. It can be observed that with
only a single input-label pair, the performance of
ICL significantly surpasses that of the zero-shot set-
ting. Further increasing the number of demonstra-
tion shots results in very limited performance im-
provement. These results confirm our hypothesis:
The roles of each label token overlap, and adding
more examples merely reinforces the model’s con-
fidence in correctly identifying the task.

In the second quadrant, models primarily lever-
age their pre-trained knowledge to make predic-
tions. Moreover, given that each input-label pair
plays an identical role in helping models recog-
nize tasks, increasing the number of in-context
examples does not significantly enhance the ef-
fectiveness of ICL.

Conclusion

3.4 Third Quadrant

In this quadrant, models cannot recognize tasks
when performing ICL, and the demonstrations
also do not contain examples similar to the test
sample. This represents the worst-case scenario
among all quadrants. As illustrated in Figure 9, the
performance of one-shot ICL in this quadrant is
significantly worse than the zero-shot setting for
all models. In this quadrant, what do the models
rely on to make predictions when performing ICL?

Implementation Details. We consider an ICL
setting where each example’s label corresponds to
a different label class from the dataset, covering all
labels of the dataset (i.e., 4-shot ICL for emo and
6-shot ICL for TREC), to observe the predictive
behavior of ICL. To ensure that the ICL output
remains within the label space, we prefix the input
with instructions to limit the output range without
specifying the task. We select an equal number of
samples from each label class in the dataset to serve
as the set of test samples. For each test sample, we
manually select demonstration examples that have
virtually no semantic similarity or lexical similarity.
Instead of focusing on whether the output matches
the ground truth, we focus on the absolute position,
specifically which position’s label token will be
predicted. Here we report the experimental results
on the emo dataset in Figure 7. The results for
TREC can be found in Appendix H.

Experimental Results. As shown in Figure 7,
we find that models exhibit a strong positional bias
in this quadrant. Specifically, we observe that for
almost all models, there is a significantly high pro-
portion of instances for which the label of the first
input-label pair is predicted. In contrast, the pro-
portion of predictions for the labels of other pairs
is notably lower. We attribute this to the attention
sink phenomenon discovered by Xiao et al. (2024),
where models tend to allocate more attention to the
initial tokens during prediction.

In the third quadrant, ICL fails to work. Specif-
ically, models fail to leverage the ICL content
for making predictions and tend to predict the
label of the first example.

Conclusion
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3.5 Fourth Quadrant

In this quadrant, models cannot recognize tasks
when performing ICL, but the demonstrations
contain examples similar to the test sample.
Since models in this context can only reference
similar examples, we hypothesize that the accuracy
of ICL predictions hinges on whether the labels of
these similar examples align with the ground-truth
label of the test sample.

Implementation Details. Similar to the exper-
imental setup in the first quadrant, during each
ICL inference, we randomly select a label from the
dataset that differs from the test sample’s label and
assign it to Similiar(T). Since we aim to verify
whether models in this quadrant rely on the labels
of similar examples to make predictions, we use
the proportion of predictions for the incorrect label
assigned to Similiar(T) as our accuracy metric.
We adopt k = 12 in-context examples. The results
reflect averages from five random seeds and all
datasets in which models cannot recognize tasks.

Experimental Results. As illustrated in Figure 8,
the proportion of the model’s predictions being the
same as the incorrect label of Similiar(T) is high.
Notably, as the model size increases, this propor-
tion reaches an exceptionally high level, indicating
that the model almost entirely relies on the label
of Similiar(T) for its predictions. We posit that
this phenomenon arises because, as the model size
increases, its ability to discern the similarity of ex-
amples improves, thereby directing more attention
to similar examples.

In the fourth quadrant, models directly replicate
the labels of similar examples. Therefore, the
performance of ICL depends heavily on whether
the labels of similar examples match the ground
truth labels of test samples. Additionally, larger
models are better at recognizing similar exam-
ples, which increases their tendency to copy the
labels from these examples.

Conclusion

4 Effects of Label Correctness and
Demonstration Shot Number

As previous research presents two conflicting views
about the effects of label correctness and shot num-
ber to ICL, in this section, we provide a brief sum-

mary about how our proposed coordinate system
can explain this conflict in a more principled way.

Label Correctness. As long as similar examples
are present in the demonstrations, the correctness of
their labels consistently plays a crucial role in deter-
mining ICL performance, as discussed in Section
3.2 and Section 3.5. For dissimilar examples, when
the ICL scenario is positioned above the x-axis, la-
bel correctness can impact the models’ confidence
in task recognition. Conversely, when positioned
below the x-axis, label correctness does not deci-
sively influence the models’ predictions. In the
third quadrant, models predominantly predict the
label of the first example, whereas in the fourth
quadrant, models are more likely to replicate the
labels of similar examples.

Demonstration Shot Number. Above the x-axis,
increasing the shot number does not significantly
affect ICL performance, as the models primarily
rely on their pre-trained knowledge to make pre-
dictions once they recognize the task. Additional
shots merely reinforce the models’ confidence in
correctly identifying the task. However, below the
x-axis, increasing the shot number significantly im-
pacts ICL performance. The more shots there are,
the higher the likelihood that the models will find
more similar examples to refer to. This approach
can transition ICL from the third quadrant to the
fourth quadrant and enhance the likelihood of in-
cluding more similar examples for reference within
the fourth quadrant.

5 How to Make ICL Work Effectively?

From our proposed ICL coordinate system, it is
evident that the effectiveness of ICL improves as
the values of the x and y coordinates increase, mov-
ing towards the upper right quadrant. Conversely,
as the values of the x and y coordinates decrease,
moving towards the lower left quadrant, the effec-
tiveness of ICL diminishes. These observations pro-
vide valuable insights into the enhancement of ICL
performance. Specifically, improvements can be
made by: (1) strengthening the confidence in task
recognition, and (2) providing examples with
higher similarity in the demonstrations. We se-
lect the most challenging third quadrant to demon-
strate how ICL can be made effective through these
two directions.

Including a task description instruction before
ICL examples can facilitate task recognition.
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Figure 8: The proportion of predictions
for the incorrect label corresponding to
Similiar(T) on various models.
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Figure 9: The average accuracy of
(1,6,12)-shot ICL w/o instructions and
(0,1)-shot ICL with instructions.
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Figure 10: The PIR of "question" at
the label token "Human" on Llama-2-7B-
chat, before and after adding instruction.

As illustrated in Figure 10, we conduct a one-shot
ICL case study on the TREC dataset using Llama-
2-7B-chat (for specific instructions and details on
the one-shot ICL, refer to Appendix J). Without
the task description instruction, the PIR of the task-
representative token "question" at the label is nearly
zero. However, after adding the task description
instruction, the PIR increases to 0.083 (ranking
12th in the vocabulary distribution), suggesting that
the model recognizes the task to a certain extent.
This demonstrates that instructions can promote
task recognition. This finding provides method-
ological support for the implementation of the first
direction. As shown in Figure 9, the effectiveness
of instruction one-shot ICL is significantly better
than that of one-shot ICL without instructions.

Both retrieval and long-context ICL can provide
examples with higher similarity. For the second
direction, a commonly utilized method in recent
research is to retrieve a highly similar subset of ex-
amples to serve as demonstrations for each test set
example, which has been shown to be effective (Liu
et al., 2021; Rubin et al., 2022). Additionally, as
the context lengths of LLMs continue to increase,
another method to achieve this goal is to continu-
ously increase the number of input-label pairs in
the demonstrations. The more input-label pairs in-
cluded, the higher the likelihood that the model
will find more similar examples to refer to during
ICL. As shown in Figure 9, the performance of
one-shot ICL is consistently worse than zero-shot
for all models. However, each time we increase the
number of shots, the performance of ICL improves
significantly. This aligns with the conclusions of
Bertsch et al. (2024), who find that long-context
ICL can be surprisingly effective, with most of the
improvement stemming from attending to similar
examples rather than task recognition.

6 Extension to Generation Tasks

Given the recent success of ICL in generation tasks
(Agrawal et al., 2022; Sia and Duh, 2023; Garcia
et al., 2023), we aim for our two-dimensional coor-
dinate system to enhance the understanding of ICL
behavior not only in classification tasks but also in
generation tasks. This is non-trivial, as almost no
prior work has conducted an in-depth analysis of
in-context generation tasks.

To extend our coordinate system to generation
tasks, we face two main challenges: (1) In clas-
sification tasks, predicting a single label token is
sufficient, whereas generation tasks require predict-
ing an entire sentence. (2) We determine whether
ICL recognizes the task by examining if the hidden
states of label tokens at internal layers possess task
semantics. However, for generation tasks, the label
for each example in the demonstrations is not a sin-
gle word but a complete sentence. To address these
challenges, we formulate a hypothesis, H:

We treat a generation task as multiple smaller
sub-classification tasks focused on predicting
each token. In each sub-classification task, ev-
ery label sentence contains a token that serves
as the label token. However, the position of
the label token in each label sentence changes
when predicting different tokens.

According to this hypothesis, each ICL sub-
classification task in generation tasks is equivalent
to the standard ICL in classification tasks we previ-
ously studied, as both involve predicting a single
token, with the label token still represented by a
single token. However, verifying our hypothesis H
for most generative tasks is challenging. In clas-
sification tasks, the task of predicting each token
(i.e., a label token) is very clear and specific. For
instance, in SST-2, it is a "sentiment" task. In con-
trast, for generative tasks, predicting a token may
involve mimicking the abstract style of a segment
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(a) PIR of "subject" on each token of
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(b) PIR of "verb" on each token of the
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(c) PIR of "object" on each token of
the final label when predicting "book".

Figure 11: For the in-context translation task with a strict subject-verb-object structure: "Sentence: 她喝水。 Label: She
drinks water. Sentence: 我们吃米饭。 Label: We eat rice. Sentence: 他们看电视。 Label: They watch TV. Sentence: 他读
书。 Label:" , the PIR of "subject," "verb," "object" at each token of the final label sentence when respectively predicting "He,"
"reads," "book," on Llama-2-7B.

of an input-label pair, or in more extreme cases,
predicting just a complete article. Explicitly de-
scribing all the tasks that are involved in predicting
these tokens is very difficult.

For this reason, we consider an in-context trans-
lation task, with all examples in the demonstrations
adhering to a strict subject-verb-object structure, as
illustrated in Figure 11. If the ICL output also con-
forms to this strict subject-verb-object structure, it
indicates that the tokens "He", "reads", and "book"
are generated by performing the explicit sub-tasks
of "subject", "verb", and "object", respectively. We
analyze the label sentence of the last example in
the demonstration. Figure 11 illustrates that for
the subject token "He", the label token is "They",
with the other tokens rarely generating "subject"
semantics. For the verb token "reads", the label
token is "watch", with the other tokens seldom gen-
erating "verb" semantics. Similarly, for the object
token "book", the label token is "TV", and the other
tokens rarely generate "object" semantics. This
phenomenon of label token sliding within the label
sentence provides evidence supporting the plausi-
bility of our hypothesis H .

Therefore, by decomposing the entire generative
task into multiple sub-classification tasks, our co-
ordinate system can help understand the working
mechanisms of in-context generative tasks.

7 Related Work

Current research on ICL mechanisms mainly falls
into the following categories:

Theoretical Framework. Recently, numerous
studies have employed theoretical frameworks to
enhance the understanding of ICL. Xie et al. (2022)
describe ICL as implicit Bayesian inference. Garg
et al. (2023) demonstrate that transformers can
learn linear functions through ICL. Additionally,

several studies conceptualize ICL as gradient de-
scent on an implicit internal model (Akyürek et al.,
2022; Von Oswald et al., 2023; Dai et al., 2022).
Wei et al. (2023b) and Pan (2023) disentangle ICL
into task recognition and task learning.

Empiricism. Various factors affecting ICL have
been studied, such as the order of examples (Lu
et al., 2022), the choice of label words (Min et al.,
2022b; Yoo et al., 2022), and the selection of
demonstrations (Liu et al., 2021; Rubin et al., 2022).
Effective demonstration strategies (Ye et al., 2023;
Li et al., 2023) can notably boost ICL performance.

Logit Lens. Recently, some studies use the logit
lens technique (nostalgebraist, 2020; Geva et al.,
2021) to project complex feature representations
into the vocabulary space to study the mechanisms
of ICL. Merullo et al. (2023) discover three distinct
stages of processing by decoding the next token
prediction at each layer. Todd et al. (2024) find
that a small number of attention heads transport a
compact representation of the demonstrated task.
Yu and Ananiadou (2024) provide insights into the
mechanisms of ICL in the context of task learning.

8 Conclusion

In this paper, we map two variables whether LLMs
can recognize the task and the presence of similar
examples in the demonstrations onto the y-axis and
x-axis of a 2D coordinate system, to visualize ICL
scenarios. First, for classification tasks, we con-
duct a systematic study of the proposed coordinate
system and describe in detail the working mecha-
nisms of ICL in each quadrant. Then, we extend
our analyses beyond classification tasks through a
thorough case study on a machine translation task.
Our proposed coordinate system offers a universal
framework to better understand ICL.
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Limitations

Our extensive studies, despite offering a princi-
pled and universal approach to understanding the
working mechanism of ICL, have several limita-
tions. First, our research primarily focused on con-
ventional ICL paradigms, leaving other paradigms
such as chain of thought prompting (CoT) (Wei
et al., 2023a) unexplored. Second, for genera-
tive tasks, we conducted a case study solely on
in-context machine translation tasks adhering to a
strict subject-verb-object structure. Third, due to
hardware constraints, our investigation was primar-
ily limited to models with up to 40 billion parame-
ters. Further research replicating our study could
use larger models with our 2D coordinate system
to uncover more interesting findings.
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A Lexical Similarity or Semantical
Simlarity

In this section, we explore whether models give
significantly more attention to semantically simi-
lar examples (which delve into deeper meanings)
or to lexically similar examples (which may have
opposite semantics but share superficial similari-
ties). We also consider randomly selected dataset
examples as a baseline. For this purpose, in the
context of task learning (a setup first introduced
by Pan (2023), which replaces all labels with se-
mantically irrelevant words to prevent ICL from
recognizing the task), we include three elements in
the demonstrations, each representing a different
type of similarity to the test sample, and observe
which element’s label the model predicts. The defi-
nitions of these three elements are as follows:

• Examplelexical: An example that largely over-
laps lexically with the test sample, yet differs
semantically and carries a distinct label.

• Examplesemantic: An example that is semanti-
cally similar to the test sample, but has mini-
mal lexical overlap and carries the same label.
Specifically, we achieve this by paraphrasing
the test sample.

• Examplebaseline: A randomly selected exam-
ple from the dataset, with minimal lexical and
semantic similarity to the test sample.

Notably, we find that when each element appears
only once in the demonstrations, as in a 3-shot
ICL scenario, models tend to generalize the pattern
of label changes. For instance, if the three labels
are sequentially "a," "b," and "c," the models are
likely to predict "d." To mitigate this phenomenon,
we replicate each element multiple times (in our
experiments, three times). Empirical experiments
show that this approach can ensure the models’
predictions stay within the intended label space.

Models. We employ various models from the
GPT series, including GPT2-Medium (355M) and
GPT2-XL (1.61B) (Radford et al., 2019), as well
as GPT-J (6B) (Wang, 2021). To investigate the
impact of instruction-tuning on similarity pref-
erences, we also employ Llama-2-7B (Touvron
et al., 2023), Llama-3-8B (AI@Meta, 2024), and
Mistral-7B-v0.1 (Jiang et al., 2023), along with
their instruction-tuned versions. All checkpoints
of these models are sourced from the transformers
library (Wolf et al., 2019).

Datasets. We adopt the Stanford Sentiment Tree-
bank Binary (SST-2) (Socher et al., 2013) for senti-
ment analysis, Text REtrieval Conference Question
Classification (TREC) (Li and Roth, 2002; Hovy
et al., 2001) for question type classification, Emo-
Context (emo) (Chatterjee et al., 2019) for emo-
tion classification, and hate_speech18 (de Gibert
et al., 2018) for hate speech detection. For each
dataset, we leverage GPT-4 (OpenAI et al., 2024) to
generate 20 triplets, formatted as (Test Sample,
Examplesemantic, Examplelexical), that are tai-
lored to the style of the dataset. After genera-
tion, these triplets undergo a manual selection pro-
cess to ensure quality. In addition, for each triplet,
we randomly select an example from the original
dataset to serve as Examplebaseline, thereby form-
ing a complete demonstration. For detailed infor-
mation on the triplets generated for each dataset,
please refer to Appendix B.

Implementation Details. In our experiments, the
prompts consist solely of demonstrations without
incorporating instructions. We employ neutral de-
limiters, specifically "Sentence:" and "Label:", to
clearly separate the components of the demon-
strations. This approach ensures that the models
do not receive any task-specific information that
could be inferred from the delimiters. Although
previous works in the task learning setting typi-
cally employ semantically irrelevant words as la-
bels, such as "foo" and "bar," we choose to label
the elements with the initial letters of "lexical,"
"semantic," and "baseline" for ease of distinction.
Consequently, the labels used for Examplelexical,
Examplesemantic, and Examplebaseline are "l," "s,"
and "b," respectively. For each ICL prediction, we
document the token that ranked the highest in the
model’s output distribution. Subsequently, across
all predictions, we calculate the proportions of the
tokens "l," "s," and "b" respectively. The experi-
mental results are averaged over five random seeds
and all datasets.

Results and Analysis. The experimental results,
as shown in Figure 12, reveal that: (1) Models pay
significantly more attention to examples with lex-
ical similarity or semantic similarity compared to
randomly selected examples with minimal lexical
similarity and semantic similarity. (2) Across all
models, attention to semantic similarity is higher
than to lexical similarity. (3) As the model size
increases, models are more likely to predict tokens
outside the label space, indicating that larger mod-
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Figure 12: The proportion of each element’s corresponding label in all predictions. Although we adopt the method
of repeating each example in the demonstrations to mitigate the models’ tendency to summarize patterns of label
changes when performing ICL, for some models, it is still inevitable that tokens outside the label space are predicted.
We use "others" to represent all tokens outside the label space.

els place greater weight on summarizing patterns
of label changes in the context of task learning.
(4) Instruction-tuned models tend to favor exam-
ples with semantic similarity, possibly due to the
emphasis on semantic understanding during the
instruction-tuning training process.

B GPT-4 Generated Triplets

Refer to Tables 1 and 2 for the 20 triplets generated
by GPT-4 on the SST-2 dataset. Refer to Tables
3 and 4 for the 20 triplets generated by GPT-4 on
the emo dataset. Refer to Tables 5 and 6 for the 20
triplets generated by GPT-4 on the TREC dataset.
Refer to Tables 7 and 8 for the 20 triplets generated
by GPT-4 on the hate_speech18 dataset.

C Detailed Proofs of Models’ Task
Recognition on Classification Datasets

We employ one-shot ICL with correct input-label
mapping to investigate the models’ task recognition
abilities across various datasets. Considering that
the PIR metric involves the number of model layers
and that different models have varying layer counts,
we select the Llama-2-7B model as a representative
for our analysis.

For the World Capitals task, we use the prompt
"Word: Germany Label: Berlin Word: Japan La-

bel:" to examine whether the label token "Berlin"
triggers the task token "capital." For the Reason-
ing about Colored Objects task, we use the prompt
"Word: Apple Label: Red Word: Banana Label:" to
examine whether the label token "Red" triggers the
task token "color." For the SST-2 dataset (Socher
et al., 2013), we use the prompt "Sentence: the
part where nothing ’s happening , Label: negative
Sentence: a smile on your face Label:". It is note-
worthy that ICL performed on the SST-2 dataset
does not very conspicuously generate the task token
"sentiment." We employ another label, "positive,"
from the SST-2 dataset. If the demonstration in-
cludes only a "negative" label but the model is able
to infer a "positive" meaning at the label token lo-
cation, we still consider that ICL has successfully
identified the type of task. For the TREC dataset
(Li and Roth, 2002; Hovy et al., 2001), we use the
prompt "Sentence: Who killed Gandhi ? Label:
Human Sentence: What is a fear of shadows ? La-
bel:" to examine whether the label token "Human"
triggers the task token "question." For the emo
dataset (Chatterjee et al., 2019), we use the prompt
"Sentence: talk you later sure d baby Label: oth-
ers Sentence: really yep i"m i that bad Label:" to
examine whether the label token "others" triggers
the task token "emotion."

All results are presented in Figure 13. It is evi-
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Test sample Examplesemantic Examplelexical

The soundtrack enriches the en-
tire movie. Label: Positive

The music significantly enhances
the film’s appeal. Label: Posi-
tive

The soundtrack diminishes the
entire movie. Label: Negative

The actor’s performance is truly
mesmerizing. Label: Positive

The actor’s portrayal captivates
the audience completely. Label:
Positive

The actor’s performance is truly
forgettable. Label: Negative

The plot twists were unexpected
and thrilling. Label: Positive

The story developments were sur-
prising and exciting. Label: Pos-
itive

The plot twists were predictable
and dull. Label: Negative

The cinematography is breathtak-
ing and innovative. Label: Posi-
tive

The visual direction offers stun-
ning and groundbreaking visuals.
Label: Positive

The cinematography is uninspir-
ing and outdated. Label: Nega-
tive

The dialogue was witty and de-
lightful. Label: Positive

The conversation was sharp and
enjoyable. Label: Positive

The dialogue was humorless and
disappointing. Label: Negative

The direction is masterful and
precise. Label: Positive

The film’s guidance shows excep-
tional skill and accuracy. Label:
Positive

The direction is clumsy and im-
precise. Label: Negative

The special effects are spectacu-
lar and memorable. Label: Posi-
tive

The visual effects stand out as
extraordinary and unforgettable.
Label: Positive

The special effects are unimpres-
sive and forgettable. Label: Neg-
ative

The pacing keeps you engaged
from start to finish. Label: Posi-
tive

The rhythm maintains your atten-
tion throughout the entire movie.
Label: Positive

The pacing loses your interest
from start to finish. Label: Neg-
ative

The characters are richly devel-
oped and relatable. Label: Posi-
tive

The portrayal of characters is
deeply crafted and connects well
with the audience. Label: Posi-
tive

The characters are poorly devel-
oped and unrelatable. Label:
Negative

The film’s creativity is both re-
freshing and inspiring. Label:
Positive

The movie’s originality offers a
new and motivational perspec-
tive. Label: Positive

The film’s creativity is both stale
and uninspiring. Label: Nega-
tive

Table 1: For the SST-2 dataset, 20 triplets generated by GPT-4 (Part 1).

dent that for the World Capitals, Reasoning about
Colored Objects, and SST-2 datasets, the PIR is
1. This suggests that for these datasets, models
can recognize the task during ICL execution. Con-
versely, for the TREC and emo datasets, the PIR
is close to 0. This indicates that models fail to
recognize the task during ICL for these datasets.

D Detailed Proof: The Orthogonality of
Similar Examples Presence and LLMs’
Task Recognition Ability

From Appendix C, we can observe that for the
World Capitals, Reasoning about Colored Objects,

and SST-2 datasets, models can recognize the task
even without the presence of similar examples in
the demonstrations. Consequently, to substantiate
the claim that the presence of similar examples is
orthogonal to task recognition, it is imperative to
determine whether the provision of similar exam-
ples enhances the ability of models to recognize
tasks within the TREC and emo datasets during
ICL execution.

Implementation Details. For the TREC and emo
datasets, we utilize the test samples as outlined
in Appendix C. However, for the demonstrations,
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Test sample Examplesemantic Examplelexical

I despise this show for its lack of
originality. Label: Negative

The series annoys me with its
derivative content. Label: Nega-
tive

I adore this show despite its lack
of originality. Label: Positive

The ending was predictable and
boring. Label: Negative

The conclusion was foreseeable
and tedious. Label: Negative

The ending was unpredictable
and exciting. Label: Positive

Their service was slow and frus-
trating. Label: Negative

The customer service was slug-
gish and irritating. Label: Nega-
tive

Their service was quick and sat-
isfying. Label: Positive

It’s utterly pointless and dull. La-
bel: Negative

Completely meaningless and un-
interesting. Label: Negative

It’s utterly purposeful and engag-
ing. Label: Positive

The plot twists were contrived
and unconvincing. Label: Nega-
tive

The storyline turns felt forced
and unbelievable. Label: Neg-
ative

The plot twists were natural and
convincing. Label: Positive

The movie was generally unin-
spiring. Label: Negative

The film rarely evoked any ex-
citement. Label: Negative

The movie was generally inspir-
ing. Label: Positive

The soundtrack is hardly notice-
able. Label: Negative

You barely hear the music
throughout. Label: Negative

The soundtrack is highly notice-
able. Label: Positive

The pacing is slow and tedious.
Label: Negative

The tempo drags and feels
monotonous. Label: Negative

The pacing is quick and engaging.
Label: Positive

The narrative lacks depth and co-
herence. Label: Negative

The story misses complexity and
clarity. Label: Negative

The narrative has depth and co-
herence. Label: Positive

The performance was overly dra-
matic and false. Label: Negative

The acting was excessively the-
atrical and inauthentic. Label:
Negative

The performance was subtly dra-
matic and genuine. Label: Posi-
tive

Table 2: For the SST-2 dataset, 20 triplets generated by GPT-4 (Part 2).

we substitute the original examples with correctly
labeled test samples that have the highest seman-
tic and lexical similarity. We subsequently inves-
tigate whether the label token can trigger task-
representative tokens when similar examples are
provided in these two datasets.

Experimental Results. The experimental results
are shown in Figure 14. It can be observed that,
for these two datasets, the PIR remains close to 0.
This suggests that the model’s ability to recognize
the task is not influenced by the presence of similar
examples but is rather determined by the intrinsic
characteristics of the task itself.

E Delimiters Used for Each Dataset

For SST-2, TREC, and emo, we use "Sentence:"
and "Label:"; for the World Capitals and Reasoning
about Colored Objects tasks, we use "Word:" and

"Label:" to clearly separate the components of the
demonstrations.

F Detailed Data for World Capitals and
Reasoning about Colored Objects Tasks

Detailed data for the World Capitals and Reasoning
about Colored Objects tasks are shown in Table 9.

G Impact of Random Label Replacement
in the Second Quadrant

Implementation Details. We consider two set-
tings: correct input-label mapping and random
input-label mapping. In the former, all input-label
pair mappings in the demonstration are correct. In
the latter, for each input-label pair, the label is ran-
domly selected from the label space. We use k = 6
in-context examples without instructions. The re-
sults reflect averages from five random seeds and

12391



Test sample Examplesemantic Examplelexical

It seems like a regular day at the
office. Label: Others

Just another normal workday.
Label: Others

Today, the office feels unset-
tlingly quiet. Label: Sad

I need to go grocery shopping
later. Label: Others

Later today, I have some grocery
shopping to do. Label: Others

I’m frustrated about having to go
grocery shopping later. Label:
Angry

I’m so happy we’re going on a
vacation! Label: Happy

I’m thrilled about our upcoming
vacation! Label: Happy

I’m stressed about all the packing
needed for our vacation. Label:
Angry

That birthday party was a blast!
Label: Happy

I truly enjoyed the fun at that
birthday party! Label: Happy

That birthday party was too loud
and overwhelming for me. La-
bel: Sad

Losing my pet has left me heart-
broken. Label: Sad

I am deeply saddened by the loss
of my pet. Label: Sad

Dealing with my pet’s loss has
made me irritable and upset. La-
bel: Angry

It’s so gloomy outside today, it
makes me feel down. Label:
Sad

The dreary weather today really
dampens my spirits. Label: Sad

The gloomy weather outside is
irritating. Label: Angry

I can’t believe how unfair that de-
cision was! Label: Angry

I’m really upset about that unjust
decision! Label: Angry

That decision was so disappoint-
ing and unfair. Label: Sad

This constant noise is driving me
crazy! Label: Angry

I’m getting furious over the in-
cessant noise! Label: Angry

This constant noise is really get-
ting on my nerves. Label: Oth-
ers

I can’t believe I got promoted at
work! Label: Happy

I am so excited about my promo-
tion at work! Label: Happy

I can’t believe how stressed I am
at work. Label: Sad

Missing the bus has ruined my
day. Label: Sad

Missing the bus completely ru-
ined my entire day. Label: Sad

Missing the bus has made me fu-
rious. Label: Angry

Table 3: For the emo dataset, 20 triplets generated by GPT-4 (Part 1).

all datasets in which models can recognize tasks.

Experimental Results. The experimental results
are shown in Figure 15. It can be observed that ran-
domly replacing labels does not significantly im-
pact ICL performance. This is due to the following
reasons: (1) Although some input-label pair map-
pings are incorrect, the effect is limited to weaker
task semantics generated by these labels. (2) The
absence of similar examples prevents the incorrect
label semantics of similar examples from signifi-
cantly affecting the hidden states of the last token.

H Positional Bias of the TREC Dataset

The results for TREC in the third quadrant are
shown in Figure 16. It can be observed that, sim-
ilar to the emo dataset, the models exhibit strong

positional bias when performing ICL on the TREC
dataset. Specifically, they tend to predict the label
of the first example.

I Detailed Instructions for Each Dataset

Detailed instructions for each dataset when models
perform zero-shot tasks are shown in Table 10.

J Specific Instructions and Details on
One-Shot ICL for Section 5

For the ICL case study on the TREC dataset con-
ducted in Section 5, the task description instruction
is as follows:

The task involves categorizing questions
into specific categories based on their
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Test sample Examplesemantic Examplelexical

My friend surprised me with a
gift. Label: Happy

I was delighted when my friend
gave me a gift. Label: Happy

My friend surprised me with a
rude comment. Label: Angry

The news of the accident left me
in tears. Label: Sad

I cried when I heard about the
accident. Label: Sad

The news of the accident left me
feeling numb. Label: Others

I’m so angry that my computer
crashed again! Label: Angry

It’s infuriating that my computer
crashed again! Label: Angry

I’m so sad that my computer
crashed again. Label: Sad

It’s a beautiful day outside, I feel
great. Label: Happy

The nice weather outside makes
me feel wonderful. Label:
Happy

It’s a beautiful day outside, but I
feel anxious. Label: Others

The way they treated me was so
disrespectful. Label: Angry

Their treatment of me was incred-
ibly disrespectful. Label: Angry

The way they treated me was so
kind. Label: Happy

I’m feeling down because I didn’t
get the job. Label: Sad

I’m feeling really sad because I
didn’t get hired. Label: Sad

I’m feeling great because I got
the job. Label: Happy

This project has been so reward-
ing. Label: Happy

Working on this project has
been incredibly fulfilling. Label:
Happy

This project has been so frustrat-
ing. Label: Angry

I can’t stand the traffic jam every
morning. Label: Angry

The daily traffic jam every morn-
ing drives me nuts. Label: An-
gry

I love the peaceful mornings
without traffic jams. Label:
Happy

I’m ecstatic about the new oppor-
tunities ahead! Label: Happy

I’m thrilled about the upcom-
ing new opportunities! Label:
Happy

I’m anxious about the new chal-
lenges ahead. Label: Sad

I can’t believe they forgot my
birthday. Label: Sad

It’s disappointing that they forgot
my birthday. Label: Sad

I can’t believe they remembered
my birthday. Label: Happy

Table 4: For the emo dataset, 20 triplets generated by GPT-4 (Part 2).

content. Please classify each given ques-
tion into one of the following broad class
labels: Abbreviation, Entity, Description,
Human, Location, or Number.

The specific content of the one-shot ICL is as
follows:

Question: Who killed Gandhi?
Label: Human
Question: What is a fear of shadows?
Label:

K Formal Mathematical Definition of PIR

The PIR metric quantifies a model’s ability to rec-
ognize tasks. For a given layer l corresponding
to the label token, we begin by projecting the hid-
den state hl into the vocabulary space by multi-
plying it with the pre-trained language modeling
head E. The rank of the task-representative token

within this projected distribution is then denoted as
ranktask(hl, E). The PIR is formally defined as:

PIR = max
l

1

ranktask(hl, E)
. (1)

L Additional Experiments on the
Reuters-21578 Dataset

To further enhance the comprehensiveness of our
study, we conduct additional experiments on the
Reuters-21578 dataset (Apt’e et al., 1994), which
comprises eight label classes. This dataset is val-
idated through PIR as one in which models are
unable to recognize tasks.

Experimental Results. We employ the same ex-
perimental setup as outlined in Section 3.4. The
results presented in Table 11 corroborate our exist-
ing findings, highlighting the tendency of models
to frequently predict the label of the initial example.
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Test sample Examplesemantic Examplelexical

What does ’CPU’ stand for? La-
bel: ABBR

What is the meaning of ’CPU’?
Label: ABBR

Where is the ’CPU’ located? La-
bel: LOC

What is the capital of France?
Label: LOC

Which city is the capital of
France? Label: LOC

What is the population of France?
Label: NUM

Who discovered electricity? La-
bel: HUM

Name the person who discovered
electricity. Label: HUM

When was electricity discovered?
Label: NUM

What is the boiling point of wa-
ter? Label: NUM

At what temperature does water
boil? Label: NUM

Who discovered the boiling point
of water? Label: HUM

Who is the CEO of Tesla? Label:
HUM

Identify the current CEO of Tesla.
Label: HUM

Where is the headquarters of
Tesla? Label: LOC

What does ’HTTP’ mean? La-
bel: ABBR

Explain the term ’HTTP’. Label:
ABBR

Who invented ’HTTP’? Label:
HUM

Name a famous painter from
Spain. Label: HUM

Who is a renowned Spanish
painter? Label: HUM

What is a famous painting from
Spain? Label: ENTY

Describe the process of photosyn-
thesis. Label: DESC

Explain how photosynthesis
works. Label: DESC

Who discovered photosynthesis?
Label: HUM

Where is the Great Wall of China
located? Label: LOC

Locate the Great Wall of China.
Label: LOC

When was the Great Wall of
China built? Label: NUM

How many continents are there?
Label: NUM

How many continents exist? La-
bel: NUM

What is the largest continent?
Label: ENTY

Table 5: For the TREC dataset, 20 triplets generated by GPT-4 (Part 1), where ENTY stands for Entity, HUM stands
for Human being, NUM stands for Numeric value, LOC stands for Location, ABBR stands for Abbreviation, and
DESC stands for Description and abstract concept.

Furthermore, we confirm the insights discussed in
Section 4. Table 12 shows that while 1-shot ICL
initially underperforms compared to instruction-
based 0-shot ICL, it surpasses it as the shot count
increases, and instruction-based 1-shot ICL proves
more effective than 1-shot ICL without instructions.
These results affirm the efficacy of the two pro-
posed directions for improving ICL performance
within the third quadrant.

12394



Test sample Examplesemantic Examplelexical

What is the full form of
’UNICEF’? Label: ABBR

What does the abbreviation
’UNICEF’ represent? Label:
ABBR

Who founded ’UNICEF’? Label:
HUM

Who won the Nobel Peace Prize
in 2020? Label: HUM

Who was awarded the Nobel
Peace Prize in 2020? Label:
HUM

What is the prize money for
the Nobel Peace Prize? Label:
NUM

What is the meaning of ’quantum
physics’? Label: DESC

Define ’quantum physics’. La-
bel: DESC

Who coined the term ’quantum
physics’? Label: HUM

Name the author of ’Pride and
Prejudice’. Label: HUM

Identify the writer of ’Pride and
Prejudice’. Label: HUM

When was ’Pride and Prejudice’
published? Label: NUM

What is the largest ocean on
Earth? Label: ENTY

Which ocean is the largest on
Earth? Label: ENTY

Where is the largest ocean lo-
cated? Label: LOC

How tall is Mount Everest? La-
bel: NUM

What is the height of Mount Ever-
est? Label: NUM

Who measured the height of
Mount Everest? Label: HUM

What does ’DNA’ stand for? La-
bel: ABBR

Explain what ’DNA’ stands for.
Label: ABBR

Where is ’DNA’ found? Label:
LOC

What type of animal is a tiger?
Label: ENTY

What species does a tiger belong
to? Label: ENTY

Where are tigers commonly
found? Label: LOC

Explain the theory of relativity.
Label: DESC

Describe the concept of relativity.
Label: DESC

Who developed the theory of rel-
ativity? Label: HUM

Who was the first woman to fly
solo across the Atlantic? Label:
HUM

Who was the first female to fly
solo across the Atlantic? Label:
HUM

When did the first woman fly
solo across the Atlantic? Label:
NUM

Table 6: For the TREC dataset, 20 triplets generated by GPT-4 (Part 2), where ENTY stands for Entity, HUM stands
for Human being, NUM stands for Numeric value, LOC stands for Location, ABBR stands for Abbreviation, and
DESC stands for Description and abstract concept.
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Test sample Examplesemantic Examplelexical

You are such an inspiration to ev-
eryone around you. Label: no-
Hate

You inspire everyone around you.
Label: noHate

You are such a burden to every-
one around you. Label: hate

I hate it when people like you try
to ruin everything. Label: hate

I can’t stand it when people like
you mess everything up. Label:
hate

I love it when people like you
try to make things better. Label:
noHate

Your kindness and generosity
know no bounds. Label: noHate

Your endless kindness and gen-
erosity are remarkable. Label:
noHate

Your selfishness and greed know
no bounds. Label: hate

People like you make this world
a terrible place. Label: hate

People like you make this world
worse. Label: hate

People like you make this world a
wonderful place. Label: noHate

I’m so grateful for your support
and friendship. Label: noHate

I’m deeply thankful for your sup-
port and friendship. Label: no-
Hate

I’m so resentful of your support
and friendship. Label: hate

You are nothing but a waste of
space. Label: hate

You are completely useless. La-
bel: hate

You are everything but a waste of
space. Label: noHate

Your efforts are making a signifi-
cant difference. Label: noHate

Your contributions are having a
major impact. Label: noHate

Your efforts are making no differ-
ence at all. Label: hate

You don’t belong here, go back
to where you came from. Label:
hate

You should leave and never come
back. Label: hate

You belong here, stay where you
are. Label: noHate

Thank you for always being there
for me. Label: noHate

Thanks for always being support-
ive. Label: noHate

Thank you for never being there
for me. Label: hate

You are the reason why nothing
ever gets better. Label: hate

You are why things never im-
prove. Label: hate

You are the reason why every-
thing gets better. Label: noHate

Table 7: For the hate_speech18 dataset, 20 triplets generated by GPT-4 (Part 1).
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Test sample Examplesemantic Examplelexical

Your dedication to helping others
is commendable. Label: noHate

Your commitment to helping oth-
ers is admirable. Label: noHate

Your dedication to harming oth-
ers is commendable. Label:
hate

I can’t stand people like you. La-
bel: hate

People like you are unbearable.
Label: hate

I can’t stand people like you mak-
ing a positive impact. Label: no-
Hate

You have a heart of gold and it
shows in everything you do. La-
bel: noHate

Your golden heart is evident in
all your actions. Label: noHate

You have a heart of stone and it
shows in everything you do. La-
bel: hate

Why don’t you just disappear al-
ready? Label: hate

Why don’t you just go away? La-
bel: hate

Why don’t you just stay and
make things better? Label: no-
Hate

I’m amazed by your talent and
hard work. Label: noHate

Your talent and hard work are
truly impressive. Label: noHate

I’m amazed by your lack of talent
and hard work. Label: hate

You’re nothing but a burden to
everyone. Label: hate

You’re a burden to everyone
around you. Label: hate

You’re nothing but a blessing to
everyone. Label: noHate

Your positive attitude is conta-
gious. Label: noHate

Your positive outlook is infec-
tious. Label: noHate

Your negative attitude is conta-
gious. Label: hate

You are a disgrace to your family.
Label: hate

You are a shame to your family.
Label: hate

You are an honor to your family.
Label: noHate

I appreciate your thoughtful ad-
vice and guidance. Label: no-
Hate

I value your wise advice and
guidance. Label: noHate

I despise your thoughtful advice
and guidance. Label: hate

You are the worst kind of person.
Label: hate

You are the worst person I’ve
ever met. Label: hate

You are the best kind of person.
Label: noHate

Table 8: For the hate_speech18 dataset, 20 triplets generated by GPT-4 (Part 2).
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(a) The PIR of "capital" at the label token "Berlin" in Llama-
2-7B for the Capital World task.
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(b) The PIR of "color" at the label token "Red" in Llama-2-7B
for the Reasoning about Colored Objects task.
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(c) The PIR of "positive" at the label token "negative" in
Llama-2-7B for the SST-2 dataset.
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(d) The PIR of "question" at the label token "Human" in
Llama-2-7B for the TREC dataset.
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(e) The PIR of "emotion" at the label token "others" in Llama-
2-7B for the emo dataset.

Figure 13: The PIR values across different datasets.
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(a) When the correctly labeled test sample is included as a
similar example in the demonstration, PIR of "question" at
the label token "Description" for the TREC dataset.
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(b) When the correctly labeled test sample is included as a
similar example in the demonstration, PIR of "emotion" at
the label token "sad" for the emo dataset.

Figure 14: When the correctly labeled test sample is included as a similar example in the demonstration, the PIR
values across different datasets.

Tasks Detailed Data

World Capital task Canada-Ottawa, Australia-Canberra, Brazil-Brasília, China-
Beijing, France-Paris, Germany-Berlin, India-New Delhi,
Italy-Rome, Japan-Tokyo, Mexico-Mexico City, Russia-
Moscow, South Africa-Pretoria, South Korea-Seoul, Spain-
Madrid, Turkey-Ankara, United Kingdom-London, United
States-Washington, D.C., Argentina-Buenos Aires, Egypt-
Cairo, Nigeria-Abuja, Sweden-Stockholm, Norway-Oslo,
Denmark-Copenhagen, Finland-Helsinki, Poland-Warsaw,
Ukraine-Kyiv, Netherlands-Amsterdam, Belgium-Brussels,
Austria-Vienna, Switzerland-Bern, Portugal-Lisbon, Greece-
Athens, Hungary-Budapest, Czech Republic-Prague, Romania-
Bucharest, Thailand-Bangkok, Vietnam-Hanoi, Malaysia-Kuala
Lumpur, Singapore-Singapore, Indonesia-Jakarta, Saudi Arabia-
Riyadh, Israel-Jerusalem, Chile-Santiago, Colombia-Bogotá,
Peru-Lima, New Zealand-Wellington, Ireland-Dublin, Pakistan-
Islamabad, Bangladesh-Dhaka, Philippines-Manila.

Reasoning about Colored Ob-
jects task

Apple-red, Banana-yellow, Cherry-red, Lemon-yellow, Sky-
blue, Grass-green, Grape-purple, Orange-orange, Strawberry-
red, Blueberry-blue, Cloud-white, Rose-red, Sunflower-
yellow, Snow-white, Coal-black, Pumpkin-orange, Water-
blue, Chocolate-brown, Gold-gold, Silver-silver, Carrot-orange,
Lime-green, Eggplant-purple, Flamingo-pink, Ocean-blue,
Forest-green, Cranberry-red, Peach-pink, Sunset-orange, Night-
black, Butter-yellow, Olive-green, Sand-yellow, Violet-purple,
Tangerine-orange, Cherry blossom-pink, Coral-orange, Ash-
grey, Emerald-green, Sapphire-blue, Ruby-red, Cotton-white,
Ivory-white, Charcoal-black, Peacock-blue, Jade-green, Amber-
orange, Hazelnut-brown, Lavender-purple, Cinnamon-brown.

Table 9: Detailed data for World Capitals and Reasoning about Colored Objects tasks.
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Figure 15: The impact of random label replacement
in the second quadrant.
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Figure 16: For the TREC dataset, the preference of different
models for label tokens at different absolute positions.

Datasets Instructions for Zero-Shot Tasks

World Capital Please identify the capital city for the given country.

Reasoning about Colored Objects Please identify the color of the given object.

SST-2 The task involves classifying sentences based on their expressed
sentiment. Please classify each given sentence into one of the
following sentiment labels: positive or negative.

TREC The task involves categorizing questions into specific categories
based on their content. Please classify each given question into
one of the following broad class labels: Abbreviation, Entity,
Description, Human, Location, or Number.

emo Please classify the given utterance into one of the following
emotion classes: happy, sad, angry, or others.

Table 10: Detailed instructions for each dataset in the zero-shot setting.

Table 11: Preference (%) of different models for label tokens at different absolute positions on the Reuters-21578.

Models First Label Second Label Third Label Fourth Label Fifth Label Sixth Label Seventh Label Eighth Label

GPT2-XL 33.1 16.55 15.86 13.79 10.34 10.34 0 0
GPT-J 34.67 13.33 12 6.67 10 23.33 0 0
Llama2-7B 45.65 23.91 10.14 8.7 6.52 5.07 0 0
Llama2-7B-chat 27.4 20.55 10.27 10.96 15.07 15.75 0 0
Llama2-13B 34.75 6.78 14.41 19.49 15.25 9.32 0 0
Llama2-13B-chat 24.66 17.81 14.38 16.44 15.07 11.64 0 0

Table 12: For the Reuters-21578 dataset, the average accuracy (%) of (1, 4, 8, 12)-shot ICL without instructions and
(0, 1)-shot ICL with instructions.

Models 1-shot 4-shot 8-shot 12-shot Instruction 0-shot Instruction 1-shot

GPT2-XL 2.67 2.44 4.44 23.78 14 14.44
GPT-J 3.33 5.33 12.67 69.56 18 38.44
Llama2-7B 2 4.67 24.22 50.67 26 39.78
Llama2-7B-chat 3.33 22 42.22 78.67 66 48
Llama2-13B 2 3.78 11.11 83.56 26 27.11
Llama2-13B-chat 4 21.33 37.56 84.67 76 35
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