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Abstract

Large language models (LLMs) exhibit re-
markable performance across diverse tasks,
indicating their potential for expansion into
large speech-text models (LSMs) by integrat-
ing speech capabilities. Although unified
speech-text pre-training and multimodal data
instruction-tuning offer considerable benefits,
these methods generally entail significant re-
source demands and tend to overfit specific
tasks. This study aims to refine the use of
speech datasets for LSM training by address-
ing the limitations of vanilla instruction tuning.
We explore the instruction-following dynam-
ics within LSMs, identifying a critical issue
termed speech anchor bias—a tendency for
LSMs to over-rely on speech inputs, mistak-
enly interpreting the entire speech modality as
directives, thereby neglecting textual instruc-
tions. To counteract this bias, we introduce a
self-powered LSM that leverages augmented
automatic speech recognition data generated
by the model itself for more effective instruc-
tion tuning. Our experiments across a range
of speech-based tasks demonstrate that self-
powered LSM mitigates speech anchor bias
and improves the fusion of speech and text
modalities in LSMs. Data, code and scripts
are freely available at https://github.com/
ytf-philp/Self-powered-LSM.

1 Introduction

Recent advances in large language models (LLMs)
(Brown et al., 2020; Touvron et al., 2023a; Anil
et al., 2023) have achieved remarkable performance
across numerous tasks (OpenAI, 2023). To further
extend the capabilities of LLMs, many efforts (Liu
et al., 2023a; Zhang et al., 2023b; Rubenstein et al.,
2023) have been made to integrate LLMs with
multi-modal encoders, aiming to endow models
with multimodal capabilities. Speech, as a typical
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modality, shares similar semantics with text and
has become a widely studied area.

To expand the speech capabilities of LLMs, sev-
eral studies adopt multitask learning (Chu et al.,
2023) or unified speech-text pre-training (Wang
et al., 2023c; Rubenstein et al., 2023). While yield-
ing notable performance, these methods require
extensive computational resources. To address this,
Tang et al. (2023) construct multimodal speech
instruction datasets to fine-tune LLMs for devel-
oping large speech-text models (LSMs). However,
vanilla datasets often reveal LSMs’ deficiencies
in following instructions (Wang et al., 2023a; Pan
et al., 2023). To avoid task-specific overfitting and
enhance generalizability, careful development of
datasets and methodologies is necessary.

Given the prevalence of automatic speech recog-
nition (ASR) datasets, using this data to build mul-
timodal speech instruction datasets is straightfor-
ward. Thus, we question whether LSMs can be
fully developed solely by collecting this type of
training data. To achieve this, this study first ex-
plores the attention dynamics between speech in-
puts and instructions, identifying inherent training
challenges presented by vanilla ASR training. Our
analysis reveals a pronounced tendency for LSMs
trained with speech instructional data to overly con-
centrate on speech, neglecting instructions. This
predisposition causes LSMs to mistakenly interpret
the entire speech modality as instruction, limiting
the model’s responses to scenarios that closely mir-
ror its training data. We define this phenomenon as
speech anchor bias.

Motivated by this finding, we argue that empha-
sizing the role of instructions during the training
process is crucial for enhancing the instruction-
following ability of LSMs. To achieve this, we in-
troduce a novel self-powered LSM that utilizes aug-
mented instructional data generated by the model
itself to facilitate the expansion of modality capa-
bilities. Experiments conducted on ASR, speech
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translation (ST), speech-language understanding
(SLU), and question answering (QA) demonstrate
that our method, even when applied solely to ASR
datasets, effectively improves LSM performance
across diverse tasks, thereby alleviating speech an-
chor bias and enhancing the integration of speech
and text modalities in LSMs

The main contributions of this paper are:

• We unveil a critical issue in LSM train-
ing—speech anchor bias, where direct in-
struction tuning causes excessive reliance on
speech inputs, diminishing the model’s com-
petence with instructions.

• We introduce an innovative self-powered
LSM, which leverages self-generated data to
rapidly enhance the speech modality capabili-
ties of LLMs.

• Further analysis confirms that our method ef-
fectively reduces speech anchor bias, achiev-
ing better alignment between speech and text.

• We publicly release our self-powered augmen-
tation dataset, hoping it will benefit further
research within the community.

2 Related Work

2.1 Pretraining LSMs for Modality Extension
Recent advancements in pretraining LSMs can
be divided into two categories. The first focuses
on self-supervised speech representation learning
without text supervision, enabling unsupervised
learning from extensive unlabeled speech data
(Mohamed et al., 2022; Wu et al., 2023a). This
approach also facilitates the generation of high-
quality speech tokens (Lakhotia et al., 2021; Pop-
uri et al., 2022; Zhang et al., 2023c). The sec-
ond approach unifies speech and text within a
single model, as exemplified by models like Vi-
oLA (Wang et al., 2023c), AudioPalm (Rubenstein
et al., 2023), SpeechGPT (Zhang et al., 2023a),
LauraGPT (Chen et al., 2023b), and Qwen-Audio
(Chu et al., 2023). These models leverage a shared
vocabulary for speech and text, or use a multi-task
training framework to continue training the LLM
with a speech dataset, thereby enhancing their ca-
pabilities across various speech tasks. However,
pretraining an LSM requires more resources and
complex procedures, making it difficult to quickly
adapt to different LLM backbones and rendering it
a challenging endeavor.

Figure 1: Model architecture of LSM.

2.2 Expand LLMs with Speech Capabilities

Following the advancement of ChatGPT, Audio-
GPT (Huang et al., 2024) has enabled LLMs to
process speech by interacting within task-specific
model pipelines. Efforts towards end-to-end inte-
gration include aligning speech and text embed-
dings through connection modules between speech
encoders and LLMs (Chen et al., 2023a; Wu et al.,
2023b; Yu et al., 2023b; Wang et al., 2023a) or
integrating LoRA (Hu et al., 2022) into LLMs,
thereby enhancing their speech capabilities. No-
tably, studies by Tang et al. (2023) and Wang et al.
(2023a) indicate that directly training LLMs with
both speech and target transcripts can lead to over-
fitting on specific speech tasks, potentially caus-
ing modality imbalance in LSM. Despite efforts
to address this issue, previous work still requires
task-specific training adjustments, limiting efficient
adaptation across various LLMs. Our work com-
prehends the model’s behavior through layer-wise
attention and introduces a training framework to
efficiently expand LLMs with speech capabilities.

2.3 Self-distillation for LLM Finetuning

The utilization of self-distillation datasets in train-
ing LLMs has recently emerged as a significant
area of interest. Self-Instruct (Wang et al., 2023e)
and WizardLM (Xu et al., 2024) leverage generated
responses from LLMs to conduct supervised fine-
tuning, while approaches like Self-Refine (Madaan
et al., 2024) and Self-Reward (Yuan et al., 2024)
use these responses as iterative feedback to enhance
output quality. Additionally, Yang et al. (2024)
employ self-distilled responses from LLMs to ad-
dress distribution gaps and combat catastrophic
forgetting during fine-tuning. Diverging from these
studies, our paper ventures into the multi-modality
field, employing instructions as the primary driv-
ing mechanism and significantly augmenting the
speech modality capabilities of LLMs.
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3 Methodology

3.1 Preliminary
Model Architecture The model architecture of
LSM is shown in Figure 1. We use the encoder
component of Whisper-small (Radford et al., 2023)
as the speech encoder and employ Vicuna-7B-1.5
(Chiang et al., 2023) as the large language model.
Q-Former (Li et al., 2023a), serving as the connec-
tion module, employs N trainable queries Q within
its stacked blocks. The output sequence, integrated
with the text instruction, is then fed into the LLM
to generate the text response.

Training Objective We consider a set of model
parameters parameterized by θ for training. Let
s represent the speech input and t its correspond-
ing target text sentence. The whisper encoder re-
ceives the original sequence s as input and produces
its contextual representation H. To equip the Q-
Former with the ability to handle variable-length
general speech inputs, we use the window-level
segment strategy (Tang et al., 2023) to segment H
into L-sized window representations and utilize Q-
Former at the window level to output textual tokens
Z. The log-likelihood training objective for the
parallel speech-text pair (s, t) is:

θ̂ = argmin
θ

(− logP (t|s, i; θ))

= argmin
θ

(
−

M∑

m=1

logP (tm|t<m, s, i; θ)

)
,

(1)

where M is the length of the target text, tm is
the m-th target token, and i is the text embedding
of instruction. The loss is a standard causal lan-
guage modeling loss, which predicts the next token
based on prior tokens. We use the same prompt
template as vicuna (Chiang et al., 2023) to keep
training consistent and do not compute the loss for
the instruction during training (Wang et al., 2023a).

3.2 Modality Imbalance for LSMs
To enhance the speech capabilities of LLMs, a com-
mon approach involves fine-tuning these models
using multimodal instructional samples and orga-
nizing data into a structured format that includes
textual instructions, speech inputs, and text re-
sponses. However, existing research (Tang et al.,
2023; Wang et al., 2023a) has highlighted a sig-
nificant deficiency in LSM’s ability to adhere to
instructions when trained with vanilla speech in-
structional data. We illustrate this challenge in

Figure 2: The left shows a well-trained LSM should
possess the capability to follow instructions, whereas
the right displays directly fine-tuned model with speech
instructional data does not enable the acquisition of
speech modality expansion capability.

Figure 2. To investigate the reason behind this
modality imbalance during LSM training, we con-
duct analysis by examining the attention mecha-
nisms across both speech and instructional inputs,
exploring information interaction.

Attention Comparision Attention weights is a
common interpretation tool that aims to discover
the inherent patterns in the attention interaction
to ascertain which input vectors contribute (Clark
et al., 2019b; Liu et al., 2021). For multi-modal
inputs, the features themselves also affect critical
token interactions. Meanwhile, numerous studies
argue that analyzing the attention mechanism with
only attention weights overlooks the effect of the
transformed vector (Wiegreffe and Pinter, 2019;
Bibal et al., 2022). To gain a more in-depth anal-
ysis of attention interaction, we refer the norm of
the weighted transformed vector (Kobayashi et al.,
2020) and define the metric Aj

1denoting the aver-
age attention score from the j-th input token to the
model’s output2.

Inspired by Wang et al. (2023b), we introduce
quantitative metrics derived from A to elucidate
the information flow from speech inputs and text in-
structions to the generated sequence. These metrics
are expressed as:

SInstruction =
1

|I|
∑

Ij∈I

Aj , Sspeech =
1

|Z|
∑

Zj∈Z

Aj , (2)

1The more details of the definition are provided in Ap-
pendix A.1.

2During the generation of the m-th token, decoder-only
model appends the preceding m− 1 tokens to the end of the
input sequence as part of its next token prediction process.
To simplify our analysis, we focus on computing the scores
exclusively for the tokens within the initial input’s length when
generating the m-th token.
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Unbiased Unbiased

Speech Anchor Bias Speech Anchor Bias

Figure 3: The comparison of the layer-wise behavior in instruction-following LLM versus instruction-ignoring
LSM.“Source” refers to text input for LLMs, whereas denotes speech input for LSM. As the layer deepens, the
proportion of instructions diminishes in LSM while increasing in LLM. The red borders show that LSMs excessively
focus on speech representations and ignore instructions.

Figure 4: Process of self-powered data augmentation: Self-Powered data is generated by prompting the LLM with
instructions alongside the text from the vanilla ASR dataset. The self-powered data is then used to train the LSM.

where Sinstruction and Sspeech mean the informa-
tion flow from instruction part I and speech part Z
to output sequence. To assess the relative focus on
instruction versus speech components within input
features, we calculate the proportion η for each
layer as SInstruction

SInstruction+SSpeech
. The η value indicates

the relative contributions of speech and instruc-
tion to model predictions, offering insights into the
model’s attention allocation during generation.

Differences between LLMs and LSMs By us-
ing quantitative metrics, we conducted a compara-
tive analysis of layer-wise behavior between differ-
ent types of instruction-tuning in LLMs and LSMs
regarding how they handle instruction and source
inputs. Detailed training and evaluation informa-
tion is available in Appendix A.1. Figure 3 shows
that after training, LLMs such as Alpaca and Vi-
cuna exhibit dynamic attention shifts: the early
layers distribute attention evenly between instruc-
tions and source inputs; the middle layers prioritize
source information; and the deeper layers refocus
on instructions, integrating them into the outputs.
In contrast, LSMs, after vanilla training, especially

those trained on ASR and ST tasks like LSM-ASR
and LSM-ST, consistently favor speech inputs over
instructions across all layers.

Speech Anchor Bias Although LSMs are in-
herently designed to process dual-modal in-
puts—speech and text—our understanding reveals
a significant bias toward speech inputs during train-
ing, resulting in the model’s complete oversight
of textual instructions. During inference, this ten-
dency causes LSMs to interpret the entire speech
modality as the instructions that appeared in the
training stage, limiting the model’s responses to
more diverse text instructions. We term this issue
“speech anchor bias”, which is the main reason for
causing modality imbalance when using LLMs to
expand speech capacity for LSMs.

3.3 Modality Expansion via Self-Powered
Augmentation

Building on insights from § 3.2, it is imperative to
avert modality imbalance during LSM training by
emphasizing the role of instructions in the training
process. To achieve this, we propose self-powered
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LSM, which capitalizes on self-powered data to en-
hance the speech modality capabilities of LLMs for
LSMs. A comprehensive process of our proposed
method is illustrated in Figure 4.

Self-Powered Data Generation Given an LSM
θ, we delineate it into three components: the speech
encoder θs, the Q-former θq, and LLM θl. We or-
ganize an instruction pool I into K distinct tasks
I1, I2, . . . , IK . Each task is associated with m spe-
cific types of instances. For each speech-text paired
ASR data (s, t), we select a task from a pool of
tasks with equal probability, then randomly employ
a specific instruction idiv from m instances. This
instruction is used along with the text t to prompt
θl, resulting in the generation of a self-powered text
output t̂, as described by the following equation:

t̂ = argmax
t̂

P (̂t|t, idiv; θl). (3)

Subsequently, the vanilla ASR training sample
(s, t) is supplanted with the newly generated self-
powered augmentation sample (s, t̂, idiv). It is im-
portant to highlight that any form of instruction
instance can contribute to the generation of self-
powered text. To diversify and specify the types of
instructions, we craft distinctive categories within
the speech domain and generate multiple instances
of instructions for each category.

Self-Powered Model Training We use con-
structed self-powered augmentation data for LSM
training. During training, the speech encoder is
frozen to ensure the stability of speech features
while the Q-former and LLM are fine-tuned for
alignment. The training objective can be formu-
lated as:

θ̂q, θ̂l = arg min
(θq,θl)

(
− logP (t̂|s, idiv; θs , θq , θl )

)
. (4)

By employing self-powered augmentation data,
we can significantly enhance the model’s focus on
instructions during the training process. In the sub-
sequent section, we provide a theoretical exposition
of how self-powered augmentation data effectively
avoids modality imbalance during LSM training.

3.4 Discussion
When training LSMs with vanilla speech instruc-
tional data, speech anchor bias causes models to
disregard textual instructions, potentially skew-
ing the distribution P (t|s, i; θ) to closely align
with P (t|s; θ). Then the training objective is de-
graded into − logP (t|s; θ), restricting the model’s
response to the tasks within the training dataset.

Task Label Type #Num. #Samples

Speech Recognition Ground-truth 5 237,480
Content Repetition Self-Powered 5 237,471
Intent Recognition Self-Powered 5 237,428
Sentiment Analysis Self-Powered 5 237,434
Keyword Extract Self-Powered 5 237,353
Continuation Self-Powered 5 237,391
Speech Translation Self-Powered (5,5,5,5) 237,466

Table 1: Statistic of training dataset. “#Num.” refers to
the number of instructions per task. We use the En-{De,
Zh, Fr, Es} tasks for speech translation.

Conversely, training LSMs with self-powered
augmentation data effectively redirects the train-
ing objectives to maximize the likelihood of an
nstruction-constrained distribution and then strate-
gically shifts the model’s focus toward closer align-
ment with the instruction i.

L(θ) = − logP (t|s, i; θ)
.
= − logP (t|s; θ) (Speech Anchor Bias)
.
= − logP (̂t|s; θ) (Self-Powered Generation)
.
= − logP (M(t, i)|s; θ) (Modified Objective)

where M(t, i) = argmax
t̂

P (̂t|t, i; θ).

As a result, self-powered model training can im-
prove the model’s responsiveness to instructional
inputs and effectively mitigate speech anchor bias.

4 Experiment

4.1 Training Data
We trained the LSM using several well-established
ASR datasets: LibriSpeech-960h (Panayotov et al.,
2015), GigaSpeech-L (Chen et al., 2021), and Com-
mon Voice 4.0 (Ardila et al., 2020), totaling 4,500
hours of training data. Six task types were em-
ployed to construct the instruction pool. GPT-4
(OpenAI, 2023) was utilized to generate unique
instructional instances for each task, which were
then used to generate self-powered data from the
ASR datasets. Additionally, we randomly selected
230k samples from the vanilla ASR dataset and in-
tegrated them with the self-powered data for model
training. Table 1 provides detailed statistics of the
training data.

4.2 Training Setup
Self-powered LSM employs the encoder part of
Whisper (Radford et al., 2023) model as the speech
encoder, and Vicuna-7B-1.5 (Chiang et al., 2023)
as the backbone LLM. In the Q-former block, we
set N = 1 for a single trainable query and L =
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ID Method #Para
ASR↓ ST↑ ER↑ KE↑ IC↑ QA↑

Clean Other CoVoST MuSTC MELD Light Water FSC WebQ BoolQ

Existing Method
1 Qwen-Audio* (Chu et al., 2023) 8.4B 2.6 5.1 24.5 22.0 49.1 0.4 1.1 38.4 71.4 12.2
2 BLSP* (Wang et al., 2023a) 6.9B 16.8 22.3 7.5 14.7 32.1 3.0 57.7 60.8 70.0 60.4

Implemented Method
3 Vanilla IT 6.9B 7.8 13.1 0.2 0.0 0.0 0.0 0.0 0.0 44.3 0.0
4 BLSP 6.9B 26.6 35.6 8.8 14.6 30.0 4.6 10.3 41.9 71.1 33.6

Our Method with BackBone Model: Vicuna-7B-1.5
5 Self-Powered LSM with Whisper-small 6.9B 3.8 8.0 17.5 21.4 51.4 30.7 34.9 47.2 72.4 59.8
6 Self-Powered LSM with Whisper-medium 7.1B 4.0 7.9 19.2 23.7 49.6 32.3 42.5 58.2 73.4 60.4
7 Self-Powered LSM with Whisper-large 7.4B 3.3 6.1 20.7 23.8 51.5 36.2 47.1 61.0 73.6 61.4

Table 2: Results span all tasks. “Small”, “Medium”, and “Large” refer to the sizes of the whisper encoders equipped
on our method. “*” means we test the open-sources 7B model with the same instruction. The ST outcomes represent
an average from En-to-X. More details of ST results are provided in Appendix A.2.

17 to represent approximately 0.33 seconds per
window. We freeze the parameters of the speech
encoder and train the Q-former and LLM using a
batch size of 512, a learning rate of 2e−5, a weight
decay of 0.05, and warmup steps totaling 100. All
the models are trained on eight 80GB A800 GPUs
across 2 epochs.

4.3 Evaluation

For ASR, we evaluated the model using the Lib-
riSpeech test-clean and test-other sets, adopting
word error rate (WER) as the performance met-
ric. The efficacy of ST was assessed on the CoV-
oST (Wang et al., 2020) test set for English (En)-
{Chinese (Zh), German (De)} translations, and the
MuST-C (Di Gangi et al., 2019) tst-COMMON
dataset for En-{French (Fr), Spanish (Es)} trans-
lations, employing the SacreBLEU score (Post,
2018) as the evaluation. For SLU, we evaluated the
model’s capabilities through several tasks. Emo-
tion recognition (ER) was assessed on the MELD
dataset (Poria et al., 2019) using the Micro-F1
score. Keyword extraction (KE) was evaluated
using the SNIP Smart-light and SNIP Washing-
machine datasets (Coucke et al., 2019), and intent
classification (IC) was tested on the FSC dataset
(Lugosch et al., 2019). Accuracy (ACC) served as
the metric for both KE and IC tasks. To evaluate
the model’s QA capabilities, we utilized TTS3 to
convert the Webglm-QA (Liu et al., 2023b) dataset
and the BoolQA (Clark et al., 2019a) dataset into a
speech format. For the WebQA dataset, BertScore
(Zhang et al., 2019) was used as the evaluation met-
ric, and for BoolQA, ACC was used as the evalua-
tion metric. All the instructions used for evaluation

3https://www.xfyun.cn/service/offline_tts

are present in Appendix A.3.

4.4 Baseline
We conducted a comparative analysis of the self-
powered LSM, benchmarking it against baseline
models trained on vanilla ASR speech instructional
data as well as previous methodologies, Qwen-
Audio (Chu et al., 2023) and BLSP (Wang et al.,
2023a). The core idea of BLSP, which involves
aligning model behavior using a continuation task,
can be seen as an instance of our method. To en-
sure comparability, we replicated it using identical
datasets and architectural frameworks. All the mod-
els we evaluated share the same instructions.

4.5 Main Result
Our results, as presented in Table 2, substanti-
ate that our methodology effectively enhances the
speech modality capabilities of LLMs for LSMs.

Compared with Vanilla IT Initially, we eval-
uated a baseline model trained on vanilla speech
instructional data (Model “3”), noting substantial
overfitting in ASR tasks. This finding supports
our hypothesis in Section 3.2 that the direct fine-
tuning of LSMs induces significant speech anchor
bias, leading to modality imbalance when LLMs
are employed to augment the speech capabilities
of LSMs. In contrast, training with self-powered
data (Model “5”) significantly enhances ASR per-
formance and bolsters the model’s ability to exe-
cute instructions across a variety of speech-driven
tasks. These findings confirm that our proposed
method efficiently imparts speech comprehension
and instruction-following abilities to the LSMs.

Compared with Prior Related Studies Com-
pared to Qwen-Audio (Model “1”), which trained
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Method
ASR↓ ST↑ ER↑ KE↑ IC↑ QA↑

Clean Other CoVoST MuST-C MELD Light Water FSC WebQ BoolQ

Self-Powered LSM 3.8 8.0 17.5 21.4 51.4 30.7 34.9 47.2 72.4 59.8
w/o LLM FT 8.5 14.5 16.8 20.2 35.4 6.9 5.9 76.2 68.5 44.4
w/ LoRA FT 16.1 24.3 11.3 16.0 36.8 25.4 56.7 39.0 70.8 58.8

Table 3: Results span all tasks with different training strategies.

Method
ASR↓ ST↑ ER↑ KE↑ IC↑ QA↑

Clean Other CoVoST MuST-C MELD Light Water FSC WebQ BoolQ

Emotion + Intent 100.0 100.0 0.0 0.0 71.7 0.0 0.0 99.6 43.2 0.0
Translation 100.0 100.0 4.5 0.0 0.0 0.0 0.0 0.0 42.2 0.0
w/ Self-Powered Aug. 90.8 94.1 10.2 6.2 29.4 15.5 15.1 2.0 50.7 48.6

Self-Powered LSM 3.8 8.0 17.5 21.4 51.4 30.7 34.9 47.2 72.4 59.8

Table 4: Comparison of the LSM training on diverse ground-truth and self-powered datasets.

using ground-truth data including ASR and CoV-
oST ST datasets, our method—employing a lim-
ited subset of ASR data and no ground-truth trans-
lation data—demonstrated superior performance
across all SLU and QA tasks. Although this re-
sulted in slightly lower in-domain performance,
self-powered LSM excelled in ST tasks on the
out-of-domain MuST-C dataset, showcasing its
enhanced generalization capabilities derived from
training on generated pseudo-data. Compared to
models like BLSP (Model “4”), our method ex-
hibited notable improvements in all assessed tasks,
particularly in ASR. This underscores our method’s
superiority over using continuation instructions to
augment the dataset, highlighting the self-powered
augmentation method’s comprehensive enhance-
ment of model training and task performance.

Compared across Different Speech Encoders
To further investigate the impact of varying
speech encoder sizes, we employed self-powered
LSM across three whisper encoder scales: small,
medium, and large-v2. The results (Model “5”,
Model “6” and Model “7”) demonstrate that em-
ploying more powerful speech encoders enhances
LSM performance. With the implementation of
whisper-large, self-powered LSM achieves the su-
perior results especially on SLU and QA tasks.

5 Analysis

5.1 Ablation Study on Self-Powered LSM
Impact of Different Training Strategy Table 3
details the performance of self-powered LSM un-
der various training strategies. Omitting LLM fine-
tuning significantly reduces performance across

Alleviate Speech Anchor Bias

Figure 5: Layer-wise behaviors in self-powered LSM.

speech-related tasks, particularly impacting QA
capabilities, thus underscoring the crucial role of
LLM fine-tuning in achieving instruction align-
ment. Improvements were observed in SLU and
QA tasks when employing LoRA for LLM. How-
ever, performance declined notably in ASR and
ST tasks. As discussed by Tang et al. (2023),
training the LSM model using fine-tuned LoRA
involves intricate design and adjustments of LoRA
rank. In contrast, our training method not only
simplifies training but also achieves superior per-
formance, demonstrating that full fine-tuning re-
mains the simplest and most superior strategy for
expanding LLM with speech capabilities.

Impact of Self-Powered Data To assess the effi-
cacy of self-powered data in augmenting the speech
modal capabilities of LLMs, we conducted experi-
ments using various ground-truth and self-powered
datasets. As indicated in Table 4, the LSM, when
fine-tuned with ground-truth datasets for specific
SLU tasks (“Emotion + Intent”) and the CoVoST
En-Zh training set (“Translation”), exhibited profi-
ciency only in in-domain tasks. This limitation sug-
gested a lack of instruction-following capabilities,

12407



ID Method
ASR↓ ST↑ ER↑ KE↑ IC↑ QA↑

Clean Other CoVoST MuST-C MELD Light Water FSC WebQ BoolQ

Vanilla IT 40.0 42.6 0.0 0.0 0.2 0.0 0.0 0.0 42.2 0.0
Self-Powered Llama3 50.9 49.1 15.3 14.1 51.4 56.5 35.8 86.8 67.0 60.6

Table 5: Results of the Llama3-8B-Instruct as the backbone LLM.
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Figure 6: T-SNE visualization of representations from
LSMs trained with vanilla IT and self-powered methods.

as the model failed to generalize beyond its train-
ing conditions. In contrast, training the LSM with
self-powered En-Zh translation data of equivalent
size endowed the model with nascent instruction
generalization abilities. Further extensive training
exclusively with fully self-powered data signifi-
cantly enhanced performance across all tasks.

5.2 Effectiveness of Self-Powered LSM

Mitigating Speech Anchor Bias In Section 3.4,
we posit that using self-powered data can enhance
the salience of instructional inputs in LSM train-
ing. To substantiate this hypothesis, we conducted
a layer-wise behavioral analysis of self-powered
LSM. Figure 5 shows that utilizing augmenta-
tion data in LSM training markedly improves the
model’s sensitivity to instructional cues, especially
in the terminal layers (where instruction proportion
rises from 0.2 to 0.4). This pattern aligns closely
with that observed in instruction-following LLMs,
Alpaca and Vicuna, showing that its efficacy in
mitigating the speech anchor bias on LSM.

Boosting Speech-Text Alignment We devel-
oped a specialized test set of 1,200 examples us-
ing five instructional templates (detailed in Ap-
pendix A.3) to explore representation alignment be-
tween speech and text with the vanilla IT approach
and the self-powered LSM. The models processed
speech or transcription inputs following identical
instructions and extracted averaged representations
from the hidden states of the final layer. We applied
bivariate kernel density estimation (Parzen, 1962)
and utilized the T-SNE technique to reduce data

Model STEM Humanities Society Other Avg.

LLM 39.5 45.7 58.1 57.4 49.8
LSM 38.7 45.9 57.8 56.4 49.4

Table 6: Text-only results on MMLU benchmark.
“LSM” denotes our Self-Powered LSM and “LLM”
refers to its backbone LLM, Vicuna-1.5-7B.

dimensions to a two-dimensional space (Van der
Maaten and Hinton, 2008). The findings, depicted
in Figure 6, indicate that the self-powered LSM
approach significantly improves the proximity be-
tween the representations of paired speech and text
inputs compared to the vanilla IT method, thereby
demonstrating the effectiveness of our methodol-
ogy in modality fusion.

Maintaining General Textual Performance To
explore how the text-only performance of LSM
has been affected as a result of the fine-tuning of
LLM, we supplemented this with a comparison of
the self-powered LSM against Vicuna-7B 1.5 on
the MMLU benchmark. We conducted tests us-
ing an open-instruction (Wang et al., 2023d) script
on the MMLU test set. The experimental results,
as shown in Table 6, demonstrate that even after
training with self-powered speech data, the model
achieves comparable results on MMLU, indicating
that the LLM’s general capabilities are not com-
promised and signaling that there is no issue of
catastrophic forgetting. This shows that our method
can efficiently expand the model’s speech capabili-
ties without adversely affecting its original textual
question-answering proficiency.

5.3 Various Model Adapting
To assess the generalizability of our approach, we
utilized the Llama3-8B-Instruct as the backbone
LLM and implemented self-powered data gener-
ated by Llama3-Instruct for training. As shown in
Table 5, our method consistently delivers high per-
formance across ST, SLU, and QA tasks. This un-
derscores the effectiveness and adaptability of our
self-powered method. Furthermore, we find that
both vanilla ASR data and self-powered data con-
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Method ST SLU QA

Result Speed Result Speed Result Speed

Cascade 23.1 1.0× 33.2 1.0× 68.9 1.0×
End-to-End 22.3 3.8× 49.0 3.0× 67.5 3.1×

Table 7: Comparison of performance and speed between
our end-to-end LSM and a cascaded approach that uses
Whisper for speech transcription, followed by Vicuna-
1.5-7B for responding to instructions.

tribute minimally to enhancing ASR performance.
Although Llama3-Instruct has enhanced capabili-
ties, it often produces additional content and detail,
leading to mismatches with the WER evaluation
metric in ASR scenarios. We leave this issue for
further research to explore deeper evaluations.

5.4 Cascade vs. End-to-End LSMs

We compare our end-to-end LSM with a cascade
pipeline. The cascade pipeline employs a two-step
approach, initially utilizing Whisper to transcribe
speech into text, then leveraging Vicuna-1.5-7B
to respond to instructions. Table 7 reveals that al-
though the cascade method can achieve slightly
better results in ST and QA, its performance in
SLU is limited. In contrast, our end-to-end LSM
delivers decent performance on all tasks, with su-
perior inference speed. This distinction highlights
the efficiency and potential application benefits of
the end-to-end approach. We aim to clarify that
the goal of this research is not to outperform the
pipeline method but rather to explore the poten-
tial of end-to-end models and offer new insights,
paving the way for future advancements.

6 Conclusion

In this study, we aim to expand the capabilities
of LLMs in speech modalities by exclusively uti-
lizing ASR data. To achieve this, we explore the
instruction-following dynamics within LSMs, iden-
tifying a significant issue that we term speech an-
chor bias. This bias highlights LSMs’ tendency to
unduly emphasize speech inputs. To rectify this,
we developed a novel self-powered method that
leverages augmented ASR data generated by the
models to enhance LSMs’ instruction-following ca-
pabilities. Our experiments across multiple speech
tasks demonstrate that the self-powered LSM sig-
nificantly mitigates the speech anchor bias, sub-
stantially improving LSMs’ fidelity to instructions.

Limitations

We acknowledge several limitations in our ap-
proach to understanding and enhancing large
speech models: (1) We employ a norm-based at-
tention metric to comprehensively consider the at-
tention mechanism and multimodal input features,
aiming to explore the intrinsic information flow
mechanisms within LSM. However, this numeri-
cal interpretation is often superficial. In the future,
we plan to analyze from deeper and more diverse
perspectives (Yu et al., 2023a) to further investi-
gate the causes of overfitting during the training of
LSM. (2) While we aim for a comprehensive evalu-
ation, our assessments are limited to specific tasks
and may lack robustness due to the metrics and
datasets used, highlighting the need for further re-
search under broader conditions. (3) Although our
method enhances the end-to-end speech capabili-
ties of LSMs, a performance gap remains compared
to the cascaded approach, particularly in ST tasks.
However, we believe our method provides valuable
insights and encourages the development of end-
to-end multimodal large models. (4) Concurrent
research indicates that carefully curated, smaller,
high-quality datasets can significantly enhance a
model’s ability to follow instructions (Zhou et al.,
2023; Li et al., 2023b; Xu et al., 2023; Liu et al.,
2024). Despite its size, our dataset offers signifi-
cant opportunities for refinement. We will make
all data publicly available to promote ongoing aca-
demic exploration.
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Model CoVoST MuST-C

en-zh en-de en-es en-fr

Qwen-Audio 30.8 18.2 20.7 23.2
Vanilla IT 0.1 0.2 0.0 0.0
BLSP* 1.3 13.7 12.2 17.0
BLSP 10.8 6.7 14.8 14.5
Self-Powered LSM Small 20.2 14.8 18.9 23.9
Self-Powered LSM Medium 22.7 16.2 21.1 26.3
Self-Powered LSM Large 23.9 17.4 20.7 26.8

Table 8: CoVoST-2 and MuST-C ST results.

A Appendix

A.1 Attention as Explanation

Formulation Attention weights are a widely
used interpretation tool that identifies patterns in
attention interactions to determine which input
vectors are most influential. Each self-attention
weight αi,j is computed from the corresponding
input X = [xi]

I
i=1 ∈ RI×d:

αi,j = softmax
xj∈X

(
q(xi) k(xj)

⊤
√
d

)
∈ R, (5)

where q(·), k(·) are the query and key transfor-
mations, respectively. For multi-modal inputs, the
features themselves also affect critical token inter-
actions. We define the norm of the weighted trans-
formed vector as a(i, j), which compute from the
self-attention weight αi,j and the j-th input vector
xj :

a(i, j) = ∥αi,j

(
v(xj)W

O
)
∥, (6)

where v(·) is value transformations, WO was
introduced in Vaswani et al. (2017) which integrate
the output of multi-heads applied to each atten-
tion. Here, a(i, j) can represent the norm-based
attention score from the j-th word to the i-th word.
When the model generates a M -sized text for every
layer, we compute the average attention scores A:

Aj =
1

M

M∑

m=1

a(m, j). (7)

Here, a(m, j) represents the attention score from
the j-th token to the m-th generated token, with
Aj denoting the average attention score from the
j-th token to the model’s output.

Experiments Setup We conduct a comparative
analysis of layer-wise behavior between LLMs and
LSMs regarding their handling of instruction and
source inputs. For LLMs, our analysis includes

Llama2-base (Touvron et al., 2023b), Vicuna-1.5-
7B (Chiang et al., 2023), and Alpaca-7B (Taori
et al., 2023). For LSMs, we evaluate an untrained
model, a model trained on the ASR task using the
LibriSpeech-960h dataset, and a model trained on
En-Zh ST task using the CoVoST2 dataset. Each
model comprises 32 layers, which we categorize
and average into six levels for enhanced visualiza-
tion clarity.

Instructions Used for Visualization The instruc-
tions used for attention and speech-text represen-
tation visualization are presented in Table 9. To
enhance the reliability of our analysis, we diversify
it by including five distinct instruction types, cov-
ering a broad spectrum of tasks: speech translation,
automatic speech recognition, speech summariza-
tion, keyword extraction, and question generation.
For each of these categories, we randomly select
240 samples from three different datasets: Lib-
riSpeech test set, the CoVoST2 En-Zh test set, and
the MuST-C En-Zh tst-COMMON dataset, result-
ing in a total test set of 1,200 samples.

A.2 Details of Experimental Results
Detail ST Results Table 8 showcases the out-
comes of our ST results for a range of language
pairs, including CoVoST En-{De, Zh}, as well as
MUST-C English-to-{Es, Fr} ST tasks. The result
shows that the Self-Powered LSM achieves com-
parable performance to existing baseline models,
confirming the efficacy of our method.

A.3 Instructions for Self-Powered LSM
Instructions Used for Data Generation The in-
structions utilized for data generation are detailed
in Table 11. We employ six distinct types of tasks
spanning various tasks: content repetition, keyword
extraction, intent recognition, sentiment analysis,
continuation, and translation. These instructions
are used to prompt LLM to generate self-powered
data and to expand the speech ability of LLM. For
the ground-truth ASR dataset, the instructions we
used are presented in Table 12.

Instructions Used for Evaluation The instruc-
tions used for evaluation are presented in Table 10.
For all LSMs evaluated, we use the same instruc-
tions to ensure a fair comparison.
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Speech Translation
Provide the translation text from English to Chinese according to the speech.
Speech Recognition
Provide the transcription according to the speech.
Speech Summarization
Listen to the speech and provide a summary, capturing the main points in no more than three
sentences.
Keyword Extraction
Identify and list the keywords or phrases from the speech, focusing on the most relevant terms
used.
Question Generation
Based on the content of the speech, generate a relevant question.

Table 9: Instructions used for attention and representation analysis

Speech Recognition
Provide the transcription according to the speech.
Speech Translation
Provide the translation text from {source} to {target} according to the speech. (Do not generate
extra information)
Emotion Recognition
Classify the emotion of the speech from {’neutral’, ’joy’, ’sadness’, ’anger’, ’surprise’, ’fear’,
’disgust’}. Ensure your response strictly adheres to this format: {’xxx’}.
Intent Recognition
Classify one of the intent label in [’activate lamp’, ’activate lights’, ’activate music’, ’bring
juice’, ’bring newspaper’, ’bring shoes’, ’bring socks’, ’change language Chinese’, ’change
language English’, ’change language German’, ’change language Korean’, ’change language
none’, ’deactivate lamp’, ’deactivate lights’, ’deactivate music’, ’decrease heat’, ’decrease volume’,
’increase heat’, ’increase volume’] according to the speech.
Keyword Extraction - Light
Please listen carefully to the SPEECH provided and extract two keywords from the following list:
’bedroom’, ’brightness’, ’decrease’, ’increase’, ’kitchen’, ’living room’, ’turn off’, ’turn on’. Your
response should strictly follow this format: [’keyword1’, ’keyword2’].
Keyword Extraction - Water
Please listen carefully to the SPEECH provided and extract three keywords from the following list:
’bedroom’, ’brightness’, ’decrease’, ’increase’, ’kitchen’, ’living room’, ’turn off’, ’turn on’. Your
response should strictly follow this format: [’keyword1’, ’keyword2’, ’keyword3’].
BoolQA
Answer the questions in speech based on the CONTEXT given,your answer is only true or false,
you don’t need to answer anything else. CONTEXT: {references}
WebQA
Answer the questions in speech based on the CONTEXT given: CONTEXT: {references}

Table 10: Instructions used for evaluation.
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Content Repetition
1. Repeat the provided text, ensuring to maintain its original meaning and details
2. Rephrase the text without altering its initial intent and key information
3. Paraphrase the provided text while preserving all original facts and nuances
4. Echo the content of the text, maintaining its exact purpose and details
5. Retell the given information without changing its meaning or losing any critical data
Translation
1. Provide the translation from English to {target}
2. Translate the given English content into {target}
3. Render the English text into {target}
4. Convert the specified English text into {target}
5. Translate the provided English material into the {target} language
Keyword Extraction
1. Extract the most frequently occurring words or phrases in the text, excluding common stopwords,
to identify main topics
2. Identify and list the most common words or phrases from the text, omitting typical stopwords,
to highlight central themes
3. Determine the key words or phrases frequently used in the text, removing all usual stopwords,
to discern the main topics
4. Find the recurring words or phrases in the text, ignoring common stopwords, to ascertain the
primary themes
5. Extract significant words or phrases that appear often in the text, exclude basic stopwords, to
uncover the main subjects
Intent Recognition
1. Determine the primary purpose of the speech and evaluate how clearly and effectively the
message is conveyed
2. Identify the main intent of the speech and assess the clarity and effectiveness of its delivery
3. Ascertain the fundamental objective of the speech and critique the transparency and efficiency
of its presentation
4. Figure out the aim of the speech and judge how lucidly and effectively the ideas are presented
5. Assess the central purpose of the speech and evaluate the directness and impact of its expression
Sentiment Analysis
1. Determine the sentiment of the text and identify which sections contribute most to sentiment
2. Analyze the overall mood of the text and pinpoint the parts that heavily influence the sentiment
3. Evaluate the emotional tone of the text and determine which segments primarily affect the
sentiment
4. Identify the feeling conveyed by the text and specify which portions substantially shape this
sentiment
5. Assess the sentiment expressed in the text and highlight which areas contribute most to this
feeling
Continuation
1. Please write a coherent and engaging English continuation of the given English text with less
than 50 words
2. Compose a logical and captivating follow-up to the provided English text within 50 words
3. Craft a coherent extension for the English text, ensuring it does not exceed 50 words
4. Develop a consistent and attractive continuation of the English text, keeping it under 50 words
5. Write a fluent and engaging continuation of the English text, limited to 50 words

Table 11: Instructions used for data generation.
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Speech Recognition
1. Provide the English transcription according to the speech
2. Transcribe the spoken words into written English text
3. Convert the spoken English into a written transcript
4. Create a written transcription of the spoken English
5. Write down the English speech as a text transcript

Table 12: Instructions used for ground-truth ASR datasets.
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