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Abstract

Interpreting and understanding the predic-
tions made by deep learning models poses a
formidable challenge due to their inherently
opaque nature. Many previous efforts to ex-
plain these predictions rely on input features,
specifically, the words within NLP models.
However, such explanations are often less infor-
mative due to the discrete nature of the words
and their lack of contextual verbosity. To ad-
dress this limitation, we introduce Latent Con-
cept Attribution (LACOAT), which generates ex-
planations for predictions based on latent con-
cepts. Our intuition is that a word can exhibit
multiple facets depending on the context in
which it is used. Therefore, given a word in
context, the latent space derived from our train-
ing process reflects a specific facet of that word.
LACOAT functions by mapping the representa-
tions of salient input words into the training la-
tent space, enabling it to provide latent context-
based explanations of the prediction. 1

1 Introduction

The opacity of deep neural network (DNN) models
is a major challenge in ensuring a safe and trustwor-
thy AI system. Extensive research works have at-
tempted to interpret and explain these models. One
major line of work strives to understand and explain
the prediction of a neural network model using the
attribution of input words to prediction (Sundarara-
jan et al., 2017a; Denil et al., 2014).

However, the explanation based solely on input
words is less informative due to the discrete na-
ture of words and the lack of contextual verbosity.
A word consists of multifaceted aspects, such as
semantic, morphological, and syntactic roles in a
sentence. Consider the word “trump” in Figure 1.
It has several facets such as a verb, a verb with spe-
cific semantics, and a named entity representing a

1The codebase is available at https://github.com/
xuemin-yu/eraser_movie_latentConcept.

Figure 1: An example of various facets of word “trump”

certain aspect such as tower names, family names,
etc. We argue that given various contexts of a word
in the training data, the model learns these diverse
facets during training. Given a test instance, de-
pending on the context a word appears, the model
uses a particular facet of the input words in making
the prediction. The explanation based on salient
words alone does not reflect the facets of the word
the model has used in the prediction and results in
a less informed explanation.

Dalvi et al. (2022) showed that the latent space of
DNNs represents the multifaceted aspects of words
learned during training. The clustering of training
data contextualized representations provides access
to these multifaceted concepts, hereafter referred to
as latent concepts. Given an input word in context
at test time, we hypothesize that the alignment of
its contextualized representation to a latent concept
represents the facet of the word being used by the
model for that particular input. We further hypoth-
esize that this latent concept serves as a correct
and enriched explanation of the input word. To
this end, we propose the LAtent COncept ATtribu-
tion (LACOAT) method that generates an explanation
of a model’s prediction using the latent concepts.
LACOAT discovers latent concepts of every layer
of the model by clustering contextualized repre-
sentations of words in the training corpus. Given
a test instance, it identifies the most salient input
representations of every layer with respect to the
prediction and dynamically maps them to the latent
concepts of the training data. The shortlisted latent
concepts serve as an explanation of the prediction.
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Lastly, LACOAT integrates a plausibility module that
generates a human-friendly explanation of the la-
tent concept-based explanation.
LACOAT is a local explanation method that pro-

vides an explanation of a single test instance. The
reliance on the training data latent space makes the
explanation reliable and further reflects on the qual-
ity of learning of the model and the training data.
We perform qualitative and quantitative evaluation
of LACOAT using four classification tasks across
four pre-trained models. LACOAT generates an en-
riched explanation that is useful in understanding
the model’s reasoning for a prediction. We also
conduct a human evaluation to measure the utility
of LACOAT with a human-in-the-loop. Moreover,
we measure the faithfulness of the most salient la-
tent concept to the prediction using representation
manipulation and show that it alters the prediction
up to 46% of the time.

2 Methodology

LACOAT consists of the following four modules:
• The first module, ConceptDiscoverer, discov-

ers latent concepts of a model given a corpus.

• PredictionAttributor, the second module, se-
lects the most salient words (along with their con-
textual representations) in a sentence with respect
to the model’s prediction.

• Thirdly, ConceptMapper, maps the representa-
tions of the salient words to the latent con-
cepts discovered by ConceptDiscoverer and
provides a latent concept-based explanation.

• PlausiFyer takes a latent concept explanation
as input and generates a plausible and human-
understandable explanation of the prediction.

Consider a sentiment classification dataset and
a sentiment classification model as an example.
LACOAT works as follows: ConceptDiscoverer
takes the training dataset and the model as input and
outputs the model’s latent concepts. At test time,
given an input sentence, PredictionAttributor
identifies the most salient input representations re-
lated to the prediction. ConceptMapper maps these
salient input representations to the training data’s
latent concepts and provides them as an explana-
tion for the prediction. PlausiFyer takes the test
sentence along with its concept-based explanation
to generate a human-friendly and insightful inter-
pretation of the prediction.

Consider M as the DNN model being interpreted,
which has L layers, each of size H . Let −→z wi be the
contextual representation of a word wi in an input
sentence w1, w2, ..., wi, .... The representation can
belong to any layer in the model, and LACOAT will
generate explanations with respect to that layer.

2.1 ConceptDiscoverer

The words are grouped in the high-dimensional
space based on various latent relations such as se-
mantic, morphology, and syntax (Mikolov et al.,
2013; Reif et al., 2019). With the inclusion of
context, i.e. contextualized representations, these
groupings evolve into dynamically formed clusters
that represent a unique facet of the words called
latent concept (Dalvi et al., 2022). Figure 1 shows
a few examples of latent concepts that capture dif-
ferent facets of the word “trump”.

The goal of ConceptDiscoverer is to discover
latent concepts given a model M and a dataset D.
We follow an identical procedure to Dalvi et al.
(2022) to discover latent concepts. Specifically,
for every word wi in D, we extract contextual
representations −→z wi . We then cluster these rep-
resentations using agglomerative hierarchical clus-
tering (Gowda and Krishna, 1978). The distance
between any two representations is computed us-
ing the squared Euclidean distance, and Ward’s
minimum-variance criterion is used to minimize
total within-cluster variance.

Each cluster represents a latent concept. Let
C = C1, C2, ..., CK represent the set of latent
concepts extracted by ConceptDiscoverer, where
each Ci = w1, w2, ... is a set of words in a par-
ticular context. For sequence classification tasks,
we also consider the [CLS] token (or a represen-
tative classification token) from each sentence in
the dataset as a “word” and discover the latent con-
cepts. In this case, a latent concept may consist of
words only, [CLS] tokens only, or a mix of both.

2.2 PredictionAttributor

Given an input instance s, the goal of
PredictionAttributor is to extract salient
input representations with respect to the prediction
p from model M. Gradient-based methods have
been effectively used to compute the saliency of
the input features for the given prediction, such
as pure Gradient (Simonyan et al., 2014), Input x
Gradient (Shrikumar et al., 2017) and Integrated
Gradients (IG) (Sundararajan et al., 2017b). In this
work, we use IG as our gradient-based method as
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it is a well-established method from the literature.
However, LACOAT is agnostic to the choice of the
attribution method, and any other method that
identifies salient input representations can be used
while keeping the rest of the pipeline unchanged.
Formally, we first use IG to get attribution scores
for every token in the input s, and then select the
top tokens that make up 50% of the total attribution
mass (similar to top-P sampling).

2.3 ConceptMapper

At test time, given an input sentence
PredictionAttributor provides the salient
input representations. ConceptMapper maps each
salient representation to a latent concept Ci of the
training latent space. These latent concepts high-
light a particular facet of the salient representations
used by the model and serve as an explanation
of the prediction. ConceptMapper uses a logistic
regression classifier that maps a representation
−→z wi to one of the K latent concepts. The model
is trained using the representations of words from
D that are used by ConceptDiscoverer as input
features and the concept index (cluster id) as their
label. Hence, for a concept Ci and a word wj ∈ Ci,
a training instance of the classifier is the input
x = −→z wj and the output is y = i.

2.4 PlausiFyer

Interpreting latent concepts can be challenging due
to the need for diverse knowledge, including lin-
guistic, task-specific, worldly, and geographical
expertise (as seen in Figure 1). PlausiFyer of-
fers a user-friendly summary and explanation of
the latent concept and its relationship to the input
instance using a Large Language Model (LLM).
Our intuition of natural language explanation is
similar to Singh et al. (2023), however, similar to
Mousi et al. (2023) we relied on latent concepts
compared to most activated ngrams. For a given in-
put sentence and the corresponding latent concept,
we prompt an LLM to elucidate the relationship
between the two. We use the following prompt for
the sequence classification task:

Do you find any common semantic, structural, lexi-
cal and topical relation between these sentences
with the main sentence? Give a more specific and
concise summary about the most prominent relation
among these sentences.

main sentence: {sentence}
{sentences}
No talk, just go.

and the following prompt for the sequence labeling
task:
Do you find any common semantic, structural, lexi-
cal and topical relation between the word highlig-
hted in the sentence (enclosed in [[ ]]) and the
following list of words? Give a more specific and
concise summary about the most prominent relation
among these words.

Sentence: {sentence}
List of words: {words}
Answer concisely and to the point.

We did not provide the prediction or the gold
label to LLM to avoid biasing the explanation.

3 Experimental Setup

Data We use Parts-of-Speech (POS) tagging, tox-
icity classification (Toxicity), sentiment classifica-
tion (Sentiment), and natural language inference
(NLI) tasks for our experiments. POS is a sequence
labeling task, while the other tasks are sequence
classification tasks. We use the Penn TreeBank
dataset (Marcus et al., 1993) for POS, the Jigsaw
Toxicity dataset (cjadams et al., 2017) for toxic-
ity, the ERASER Movie Reviews dataset (Pang
and Lee, 2004) for sentiment, and the MNLI
dataset (Wang et al., 2019) for the NLI task. Ap-
pendix A provides information about each dataset.

Models We fine-tune 12-layered pre-trained mod-
els; BERT-base-cased (Devlin et al., 2019),
RoBERTa-base (Liu et al., 2019) and XLM-
Roberta (Conneau et al., 2020) using the training
datasets of the tasks considered. For Llama-2-7b-
chat-hf (Touvron et al., 2023), we use the base
model without finetuning with zero-shot prompting
for each task. We use transformers (Wolf et al.,
2020) with the default settings and hyperparame-
ters. Task-wise performance of the models is pro-
vided in Appendix (Tables 6, 7, 13, and 17).

Module-specific hyperparameters When ex-
tracting the activation2 and/or attribution of a word,
we average the respective value over the word’s sub-
word units. We optimize the number of clusters K
for each dataset as suggested by Dalvi et al. (2022).
We use K = 600 (POS, Toxicity) and K = 400
(Sentiment, MNLI) for ConceptDiscoverer.

Since the number of words in D can be very
high, and the clustering algorithm is limited by the
number of representations it can efficiently cluster,
we filter out words with frequencies less than 5
and randomly select 20 contextual occurrences of

2We used the NeuroX toolkit (Dalvi et al., 2023).
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Figure 2: Sentiment task: Latent concepts of the most attributed words in Layers 0, 6 and 12

every word with the assumption that a word may
have a maximum of 20 facets. These settings are in
line with Dalvi et al. (2022). In the case of [CLS]
tokens, we keep all of the instances.

We use a zero-vector as the baseline vector in
PredictionAttributor’s IG, using 500 approx-
imation steps. For ConceptMapper, we use the
cross-entropy loss with L2 regularization and train
the classifier with ‘lbfgs’ solver and 100 maximum
iterations. To optimize the classifier and to evaluate
its performance, we split the dataset D into train
(90%) and test (10%). ConceptMapper used in the
LACOAT pipeline is trained using the full dataset D.
Finally, for PlausiFyer, we use ChatGPT with a
temperature of 0 and a top_p value of 0.95.

4 Evaluation

We perform a qualitative evaluation, a human eval-
uation and a module-level evaluation of LACOAT to
measure its correctness and efficacy. We find con-
sistent results across all tasks and models. Due to
space limitation, we mainly present the results of
POS and Sentiment using the BERT and RoBERTa
models in the main paper. The full set of results
are presented in Apps. F, G, H.

4.1 Qualitative Evaluation

In this section, we qualitatively evaluate the useful-
ness of the latent concept-based explanation and
the generated human-friendly explanation.

4.1.1 Evolution of Concepts
LACOAT generates the explanation for each layer
with respect to a prediction. The layer-wise expla-
nation shows the evolution of concepts in making
the prediction. Figure 2 shows layers 0, 6 and 12’s
latent concept of the most attributed input token
for RoBERTa fine-tuned on the sentiment task (see
Figure 5 in Appendix for more examples). We
found that the initial layer latent concepts do not
always align with the sentiment of the input in-

stance and may represent a general language con-
cept. For instance, Figure 2(a) shows the concept
of comparative and superlative adjectives of both
positive and negative sentiments and is not limited
to representing the negative sentiment of the most
attributed word. In the middle layers, the latent con-
cepts evolved into concepts that align better with
the sentiment of the input sentence. For instance,
the latent concept of Figure 2(b) shows a mix of
adjectives and adverbs of negative sentiment, i.e.
aligned with the sentiment of the input sentence.
In the sentiment task, the most attributed word in
the last layer is [CLS] which resulted in latent con-
cepts consisting of [CLS] representations of the
most related sentences to the input. In such cases,
we randomly pick five [CLS] instances from the
latent concept and show their corresponding sen-
tences in the figure (see Figure 2(c)). We found
that the last layer’s latent concepts are best aligned
with the input instance and its prediction and are
the most informative explanation of the prediction.
In the rest of the paper, we focus our analysis on
the explanations generated using the last layer only
and perform a human evaluation to evaluate their
efficacy and correctness.

4.1.2 Analyzing Last Layer Explanations
Figure 3 presents various examples of LACOAT for
both POS tagging and sentiment tasks using BERT.
The sentence refers to the input sentence, predic-
tion is the model’s output, and true label is the gold
label. The explanation is the final output of LACOAT.
Cluster X denotes the latent concept aligned with
the most salient word representation at the 12th
layer, where X is the cluster ID. For sentiment,
we randomly select five [CLS] instances from the
latent concept and show their corresponding sen-
tences in the figure.

Correct prediction with correct gold label Fig-
ures 3a and 3c present a case of correct predic-
tion with latent-concept explanation and human-
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(a) Sentiment: A positive labeled test instance cor-
rectly predicted by the model.

(b) Sentiment: A negatively labeled test instance that is
incorrectly predicted as positive.

(c) POS: An adverb with semantics showing degree and
intensity of an action

(d) POS: An incorrect prediction that can be de-
tected from the latent concept

Figure 3: A few examples of LACOAT explanations for BERT using POS and Sentiment tasks

friendly explanation. The former is harder to inter-
pret especially in the case of sentence-level latent
concepts as in Figure 3a compared to latent con-
cepts consisting of words (Figure 3c). However,
in both cases, PlausiFyer highlights additional
information about the relation between the latent
concept and the input sentence. For example, it cap-
tures that the adverbs in Figure 3c have common
semantics of showing degree or frequency. Simi-
larly, it highlights that the reason for the positive
sentiment in Figure 3a arises from praising differ-
ent aspects of a film and its actors and actresses.

Wrong prediction with correct gold label Fig-
ures 3b and 3d show rather interesting scenarios
where the predicted label is wrong. In Figure 3b,
the input sentence has a negative sentiment but the
model predicted it as positive. The instances of
latent concepts show sentences with mixed senti-
ments such as “manages to charm” and “epitome
of twist endings” is positive, and “never quite lives
up to its promise” is negative. This provides the

domain expert an evidence of a possible wrong
prediction. The PlausiFyer’s explanation is even
more helpful as it clearly states that “there is no
clear ... relation between these sentences ...". Sim-
ilarly, in the case of POS (Figures 3d) while the
prediction is Noun, the majority of words in the
latent concepts are plural Nouns, giving evidence
of a possibly wrong prediction. In addition, the
explanation did not capture any morphological re-
lationship between the concept and the input word.

To study how the explanation would change if it
is a correct prediction, we employ TextAttack (Mor-
ris et al., 2020) to create an adversarial example of
the sentence in Figure 3b that flips its prediction.
The new sentence replaces “laughing” with “kid-
ding” which has a similar meaning but flipped the
prediction to a correct prediction. Figure 6 in the
Appendix. shows the full explanation of the aug-
mented sentence. With the correct prediction, the
latent concept changed and the explanation clearly
expresses a negative sentiment “... all express neg-
ative opinions and criticisms ...” compared to the
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Figure 4: Comparing explanation of XLMR (top) and
RoBERTa (bottom)

explanation of the wrongly predicted sentence.

Cross model analysis LACOAT provides an op-
portunity to compare various models in terms of
how they learned and structured the knowledge
of a task. Figure 4 compares XLMR (top) and
RoBERTa (bottom) for identical inputs. Both mod-
els predicted the correct label. However, their latent
concept based explanation is substantially different.
XLMR’s explanation shows a large and diverse con-
cept where many words are related to finance and
economics. RoBERTa’s latent concept is rather a
small focused concept where the majority of tokens
are units of measurement. It is worth noting that
both models are fine-tuned on identical data.

4.2 Human Evaluation

We perform two human evaluations; one aimed at
evaluating the usefulness of LACOAT’s explanation
in understanding a prediction (LACOAT Effective-
ness) and the other compares LACOAT with other
explanation methods.

LACOAT Effectiveness We conduct a human eval-
uation using four annotators across 50 test samples.
Specifically, given an explanation (e.g. Figure 3),
all annotators are asked to answer five questions
(Q1-Q5) that aimed at evaluating the usefulness

of LACOAT.3 Specifically, Q1 evaluates whether
LACOAT attributes the correct concept to a given
prediction, while Q2 and Q3 measure the efficacy
of LACOAT’s output in helping a user understand
the prediction. Q4 and Q5 evaluates the output
of PlausiFyer. They specifically separate out the
cases where the explanation was accurate but irrel-
evant to the task at hand.

Table 1 shows the consolidated labels by picking
the majority label in case of Yes/No questions and
averaging the annotations in case of the rest. The
evaluation shows that the latent concept itself was
not only relevant to the task at hand, but also helped
the user understand the model’s prediction. The
results for the helpfulness of the explanation text
were mixed, with the majority of the annotations
stating that it did not help or hinder their process.
However upon inspection, we see that the explana-
tion was mostly helpful in all the cases where the
model made the correct prediction, and not helpful
when the prediction was incorrect. Qualitatively
analyzing the explanation text for incorrect predic-
tion shows that PlausiFyer mostly outputs “There
is no relationship between the sentences and the
concepts”, which was deemed as hindering by most
of the annotators. While such an explanation may
serve as an indicator of a potential problem in the
prediction, improving the prompt may result in a
response that is indicative of the issue with the pre-
diction. We leave this exploration for the future.
Table 1 also shows the agreement between the an-
notators using Fleiss’ Kappa. Since not all samples
were annotated by all annotators, we compute the
average Fleiss’ kappa of each annotator with the
consolidated annotation. The agreement ranges
from Fair to Substantial across the five questions.

Comparison with other Methods Despite the
numerous proposed explanation methods compar-
ing them due to the difference in granularity, type
of explanations, and methodology. We design a
human evaluation where evaluators assign a score
between 1 to 3 to each of three explanations gener-
ated by IG, LACOAT and Cockatiel (Jourdan et al.,
2023). The annotation setup allows for ranking
multiple methods with the same usefulness rating.
A total of 400 annotations were collected using four
evaluators, each evaluating all test instances. We
provide the details of the evaluation setup and the
results in Appendix E. The second part of Table 1
shows the percentage of samples for which each

3We provide the evaluation questions in Appendix E.
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Top
Labels

Correct
Samples

Incorrect
Samples

All Samples

Annotation Fleiss κ

Q1 Yes/No 28 / 0 20 / 2 48 / 2 0.35
Q2 Helps/Neutral/Hinders 27 / 1 / 0 17 / 5 / 0 44 / 6 / 0 0.41
Q3 Helps/Neutral/Hinders 16 / 10 / 2 1 / 19 / 2 17 / 29 / 4 0.61
Q4 Yes/No 17 / 11 5 / 17 22 / 28 0.47
Q5 Yes/No 17 / 11 6 / 16 23 / 27 0.80

Bottom A1 A2 A3 A4 Consolidated Average Cohen’s κ

LACOAT ↑ 85% 72% 77% 87% 89% 0.37

Table 1: Top: Consolidated label distribution for Q1-
Q5. Fleiss’ κ scores are computed by averaging each
annotator with the consolidated annotation. The con-
solidated labels and agreement scores are shown for all
the samples, as well as partitioned into those where the
model prediction was correct/incorrect. Bottom: Per-
centage of samples where LACOAT is ranked similar or
better than other methods. A∗ represents the average
preference of LACOAT per annotator.

POS Sentiment
Layers BERT RoBERTa BERT RoBERTa Llama2

9 (/20) 92.38 86.97 31.94 99.59 70.63
10 (/24) 92.79 89.64 99.57 99.69 75.64
11 (/28) 93.39 89.95 99.71 99.48 71.30
12 (/32) 93.95 90.04 99.25 99.27 71.02

Table 2: Accuracy of PredictionAttributor in map-
ping a representation to the correct latent concept. The
layer number in the parentheses corresponds to the
Llama2-chat model.

annotator ranked LACOAT as the same or better than
both IG and Cockatiel. The consolidated ranking is
computed by averaging the ranks across users. The
average Cohen’s κ indicates Fair agreement be-
tween each annotator and the consolidated ranking,
demonstrating that the LACOAT explanation is more
useful for understanding predictions compared to
other methods.

4.3 Module Specific Evaluation

The correctness of LACOAT depends on the perfor-
mance of each module it comprised off. The ideal
way to evaluate the efficacy of these modules is
to consider gold annotations. However, they are
not available for any module. To mitigate this lim-
itation, we design various constrained scenarios
where certain assumptions can be made about the
representations of the model. For example, the
POS model optimizes POS tags so it is highly prob-
able that the last layer representations form latent
concepts that are a good representation of POS tags
as suggested by various previous works (Kovaleva
et al., 2019; Durrani et al., 2022). One can as-
sume that for ConceptDiscoverer, the last layer
latent concepts will form groupings of words based
on specific tags and for PredictionAttributor,

the input word at the position of the predicted tag
should reside in a latent concept that is dominated
by the words with the same tag. In the following,
we evaluate the correctness of these assumptions.

Latent Concept Annotation For the sake of
evaluation, we annotated the latent concepts auto-
matically using the class labels of each task. Given
a latent concept, we annotate it with a certain class
if more than 90% of the words in the latent con-
cept belong to that class. In the case of POS, the
latent concepts will be labeled with one of the 44
tags. For sentiment, the class labels, Positive and
Negative, are at sentence level. We tag a latent
concept as Positive/Negative if 90% of its tokens
([CLS] or words) belong to sentences labeled as
Positive/Negative in the training data. The latent
concepts that do not fulfill the criteria of 90% for
any class are annotated as Mixed.

4.3.1 ConceptDiscoverer

ConceptDiscoverer identifies latent concepts by
clustering the representation. We question whether
the discovered latent concepts are a true reflection
of the properties that a representation possesses.
Using ConceptDiscoverer, we form latent con-
cepts of the last layer and automatically annotate
them as described above. We found 87%, 83% and
86% of the latent concepts of BERT, RoBERTa and
XLMR that perfectly map to a POS tag respectively.
We further analyzed other concepts where 90% of
the words did not belong to a single tag. We found
them to be of compositional nature i.e. a concept
consisting of related semantics like a mix of ad-
jectives and proper nouns about countries such as
Swedish and Sweden (Appendix:Figure 9). For sen-
timent, we found 78%, 95%, 94%, and 67% of the
latent concepts of BERT, RoBERTa, XLMR, and
Llama2-chat to consist of either Positive or Neg-
ative sentences. The high number of class-based
clusters of RoBERTa and XLMR show that at the
last layer, the majority of their latent space is sepa-
rated based on these two classes (see Table 8 and
Table 21 for detailed results).

4.3.2 PredictionAttributor

We question whether the salient input repre-
sentation correctly represents the latent space
of the output. This specifically evaluates
PredictionAttributor. We calculate the num-
ber of times the representation of the most salient
word/[CLS] token maps to the latent concept of
the identical label as that of the prediction. We
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Layers (BERT) 0 2 5 10 12

POS Top 1 100 100 99.03 92.67 84.19
Top 2 100 100 99.75 97.89 94.15
Top 5 100 100 99.94 99.68 99.05

Sentiment Top 1 100 100 97.19 83.09 68.24
Top 2 100 100 99.63 92.67 83.24
Top 5 100 100 99.94 97.75 94.24

Layers (Llama2-chat) 0 8 16 24 32

Sentiment Top 1 97.55 49.46 61.86 63.95 66.47
Top 2 97.55 68.06 80.97 82.26 82.84
Top 5 97.55 86.37 95.03 94.23 94.88

Table 3: BERT & Llama2-chat: Accuracy of
ConceptMapper in mapping a representation to the cor-
rect latent concept. See Table 11, 12 and 23 in the
Appendix for detailed results.

expect a high alignment at the top layers for
PredictionAttributor to be correct. We do not
include ConceptMapper when evaluating this and
conduct the experiment using the training data
only where we already know the alignment of a
salient representation and the latent concept. Ta-
ble 2 shows the results from the last four layers
of 12-layered models, as well as the latter four
layers of the Llama2-chat model (See Appendix
Tables 9, 10, and 22 for detailed results). For POS,
we observed a successful match of above 90% for
all models. We observed the mismatched cases and
found them to be also of a compositional nature i.e.
latent concepts comprised of semantically related
words (see Appendix:Figure 9 for examples).

For sentiment, more than 99% of the time, the
last layer’s salient representation maps to the pre-
dicted class label in 12-layered models, confirming
the correctness of PredictionAttributor. The
performance drop for the lower layer is due to the
absence of class-based latent concepts in the lower
layers i.e. concepts that comprised more than 90%
of the tokens belonging to sentences of one of the
classes. By comparison, the Llama2-chat model
performs worse than the 12-layer model; however,
it still achieves over 70% accuracy in its last layer.

4.3.3 ConceptMapper

We evaluate the correctness of ConceptMapper in
mapping a test representation to the training data
latent concepts. ConceptMapper trains using rep-
resentations and their cluster IDs as labels. We
randomly split this training data into 90% train and
10% test where the test data serves as the gold anno-
tation of latent concepts. We train ConceptMapper
using the train instances and measure the accuracy
of the test instances. Table 3 presents the accuracy
of POS using BERT, as well as for the Sentiment
tasks using both BERT and Llama2-chat models

(See Appendix Tables 11, 12, 23). Observing Top-
1 accuracy, the performance of ConceptMapper
starts high (100%) for lower layers and drops to
84.19% and 68.24% for the last layer of BERT. A
similar trend is observed for Llama2-chat, which
exhibits 97.55% accuracy in the lower layer and
decreases to 66.47% in the last layer. We found that
the latent space becomes dense on the last layer.
This is in line with Ethayarajh (2019) who showed
that the representations of higher layers are highly
anisotropic. This causes concepts to be close in the
space. If true, the correct label should be among
the top predictions of the mapper. We empirically
tested it by considering the top two and top five pre-
dictions of the mapper, achieving a performance
of up to 99.05% (BERT) for POS, 94.24% (BERT)
and 94.88% (Llama2-chat) for Sentiment.

4.4 Faithfulness Evaluation
We consider a salient latent concept highlighted
by LACOAT to be faithful to the prediction if the
ablation of that latent concept causes a change in
prediction performance. We define ablation of a
latent concept as removing the information of that
latent concept from the prediction vector i.e. [CLS].
We calculate the vector of a latent concept by av-
eraging the training representations that belong to
the latent concept. At inference time, we ablate the
most salient latent concept for a prediction by sub-
tracting the latent concept vector from the [CLS]
representation of the last layer and then perform
the prediction. The prediction change represents
the percentage of predictions that were altered after
the manipulation. As a baseline, we manipulate
using a random vector of the same magnitude to
that of the salient latent concept vector and report
the change in prediction.

Table 4 reports the model’s accuracy and the per-
centage of altered predictions across all metrics.
The results show that manipulating the [CLS] to-
ken representation using the LACOAT vector leads
to significant performance drops and prediction
changes across all datasets. In contrast, random
vector manipulations have minimal impact on the
model’s performance and predictions. These find-
ings suggest that the LACOAT vector plays a cru-
cial role in the model’s decision-making process.
Comparing the results across different datasets,
MNLI shows a relatively smaller drop in accuracy
when manipulating the salient latent concept vec-
tor. We suspect this is due to the nature of the
MNLI task, which requires reasoning over multiple
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Faithfulness Metrics

Dataset Setting Accuracy % Label Flip

Sentiment
Original 96.31 -
LACOAT 55.91 43.98
Random 96.09 0.14

Toxicity
Original 91.55 -
LACOAT 51.78 46.44
Random 91.93 0.13

MNLI
Original 87.69 -
LACOAT 82.08 8.83
Random 88.12 0.55

Table 4: Faithfulness evaluation using the RoBERTa
model. Original refers to the model’s performance with-
out any manipulation, LACOAT represents the perfor-
mance after subtracting the most salient latent concept
vector from the [CLS] vector, and Random is the av-
erage performance of the model after subtracting five
random vectors from the [CLS] vector.

sentences, with relevant information spread across
multiple latent concepts. Nevertheless, the differ-
ence in results between the original accuracy and
random vector confirms our hypothesis about the
faithfulness of latent concepts.

5 Related work

The explainability methods can be approached by
local explanations and global explanations target-
ing post-hoc analysis or introducing interpretability
in the architecture (Madsen et al., 2023; Sundarara-
jan et al., 2017a; Denil et al., 2014; Selvaraju et al.,
2020; Kapishnikov et al., 2021; Zhao and Aletras,
2023; Kim et al., 2018; Ghorbani et al., 2019; Jour-
dan et al., 2023; Zhao et al., 2023; Ribeiro et al.,
2016; Rajagopal et al., 2021). Lyu et al. (2023)
provides a survey of explainability methods in NLP.
LACOAT is a local explanation method providing
post-hoc explanations given an input instance.

Previous work attempted to explain and interpret
NLP models using human-defined concepts (Kim
et al., 2018; Abraham et al., 2022) and concepts
extracted from hidden representations (Zhao et al.,
2023; Ghorbani et al., 2019; Rajani et al., 2020;
Geva et al., 2022). Zhao et al. (2023); Kim et al.
(2018) worked on the global explanation based on
a surrogate model. We provide local explanations
and we ensure the faithfulness of latent concepts by
extracting them directly from the hidden represen-
tation without any supervised training. Rajani et al.
(2020) used k-nearest neighbors of the training data
to identify erroneous correlations and misclassified
instances. Dalvi et al. (2022); Sajjad et al. (2022)

analyzed latent concepts in their ability to represent
linguistic knowledge. Our ConceptDiscoverer
module is motivated by them. However, we pro-
pose a method to explain a model’s prediction using
latent concepts.

6 Conclusion
We presented LACOAT that provides a faithful and
human-friendly explanation of a model’s prediction.
The qualitative evaluation and human evaluation
showed that LACOAT explanations are insightful in
explaining a correct prediction, in highlighting a
wrong prediction and in comparing the explana-
tions of models. The reliance on training data la-
tent space enables interpreting how knowledge is
structured in the network. Similarly, it enables the
study of the evolution of predictions across lay-
ers. LACOAT promises human-in-the-loop in the
decision-making process and is a step towards trust
in AI.

7 Limitations

We discussed the limitations of LACOAT as follows:

• While hierarchical clustering is better than near-
est neighbor in discovering latent concepts as
established by Dalvi et al. (2022), it has com-
putational limitations and it can not be easily
extended to a corpus of say 1M tokens. How-
ever, the assumptions that are taken in the ex-
perimental setup e.g. considering the maximum
20 occurrences of a word (supported by Dalvi
et al. (2022)) work well in practice in terms
of limiting the number of tokens and covering
all facets of a majority of the words. More-
over, the majority of the real-world tasks have
limited task-specific data and LACOAT can ef-
fectively be applied in such cases. In a con-
temporary work, Hawasly et al. (2024) recently
targeted this limitation by exploring alternative
algorithms such as leaders and k-means, demon-
strating that these are viable, cheaper alterna-
tives to the expensive agglomerative hierarchi-
cal clustering. Future explorations are needed
to evaluate the correctness of the resulting clus-
ters. For instance, k-means assume clusters to
be spherical and similar assumption is enforced
with the fixed distance threshold used in leaders.
This limits their usefulness to identify clusters
with irregular boundaries.

• The concept discoverer is also constrained by a
very small dataset. We conducted experiments
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to discover latent concepts with varying data
sizes. The results indicate that when the data
size is below 1000 instances, the discovered
latent concepts tend to be sparse and lack coher-
ence to form a clear concept.

• The computational cost of LACOAT is
higher than that of the IG method alone.
While ConceptDiscoverer runs once per
dataset as a pre-processing step, minimiz-
ing its impact on runtime during model
inference, it still adds additional demand.
Moreover, ConceptMapper is a linear classifier
with an inference time of O(d ∗ c), where d is
the number of features and c is the number of
clusters. All other processes, aside from the IG
part, have a linear cost.

• For tasks requiring reasoning over multiple sen-
tences, we observe that sometimes the LACOAT
explanation’s are not clearly indicative of the
reason of a prediction which might be based
on some syntactic and semantic similarity be-
tween multiple input sentences. A possible so-
lution to this is to consider hierarchical relation-
ship between latent concepts in contrast to con-
sidering a flat structure among latent concepts.
The underlying setup of ConceptDiscoverer
supports this. However, comparing hierarchi-
cal structures requires further investigation be-
yond the scope of current work which provides
a strong evidence towards faithful and human
friendly explanations using training data latent
space.

• The human friendly explanations generated by
PlausiFyer are prone to errors due to the in-
herent limitations of generative models such
as positional bias (Zheng et al., 2023; Khan
et al., 2024), verbosity bias (Huang et al., 2024),
sensitivity to prompt style which hinders repro-
ducibility. For instance, in this work, we ob-
served that if we provide the predicted label
to PlausiFyer, it generates an explanation de-
scribing the relationship between input, latent
concept and label irrespective of whether the la-
bel is correct or not. A possible solution is to use
multiple LLMs (Verga et al., 2024; Wang et al.,
2023; Badshah and Sajjad, 2024) and LLMs
agents (Chen et al., 2024; Tan et al., 2024) that
reasons over diverse explanations and reach to
a better precise explanation of a latent concept.
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A Datasets

Task Train Dev Tags

Sentiment 13878 856 2
POS 36557 1802 48
Toxicity 9000 800 2
MNLI 9000 1200 3

Table 5: The data statistics of each dataset used in the
evaluation experiments and the number of tags to be
predicted. POS (Marcus et al., 1993), Jigsaw Toxicity
dataset (cjadams et al., 2017), the ERASER Sentiment
dataset (Pang and Lee, 2004; Zaidan and Eisner, 2008)
and the MNLI dataset (Wang et al., 2019)

B Finetuning Performance

We tuned several transformers BERT-base-cased,
RoBERTa and XLM-RoBERTa. We used standard
splits for training, development and test data that
we used to carry out our analysis. The splits to
preprocess the data are available through git repos-
itory.4 See Table 6 and Table 7 for statistics and
classifier accuracy. We present the results of Toxic-
ity and MNLI in Appendix F and G.

4https://github.com/nelson-liu/
contextual-repr-analysis

Task Train Dev Test Tags BERT RoBERTa XLM-R

POS 36557 1802 1963 48 96.81 96.70 96.75

Table 6: The fine-tuned performance of models, data
statistics (number of sentences) on training, develop-
ment, and test sets used in the finetuning, and the num-
ber of tags to be predicted for the POS tagging task.
Model: BERT, RoBERTa, XLM-R

Task Train Dev Test Tags BERT RoBERTa XLM-R

Sentiment 13878 1516 2726 2 94.53 96.31 93.80

Table 7: The fine-tuned performance of models, data
statistics (number of sentences) on training, develop-
ment, and test sets used in the finetuning, and the num-
ber of tags to be predicted for the sentiment classifica-
tion task. Model: BERT, RoBERTa, XLM-R

C Qualitative Evaluation - More
Examples

C.1 Example for the Evolution of Concepts
Figure 5 presents the other example of latent con-
cepts of the salient words in layers 0, 6, and 12.
Similarly to the example shown in Figure 2, the
latent concept of this example shows that the dif-
ferent forms of the verb “sit” are not aligned with
its usage in the input instance. The concept in the
middle layer aligns better with the sentiment of the
input sentence (Figure 5(b)). Most words of layer
6’s latent concept match the sentiment of the input
sentence. We also randomly pick five [CLS] in-
stances from the latent concept and show their cor-
responding sentences in the figure (see Figure 5(c)).
The concept of the last layer is best aligned with
the input sentence.

C.2 Adversarial Example of the Sentence in
Figure 3b

The augmented sentence has a similar meaning
word “kidding” instead of “laughing” (See Fig-
ure 6). The predicted label of the sentence becomes
Positive, which is matched to the gold label. The
latent concept of the “kidding” is more aligned with
the sentence than the original one.

C.3 Correct Predicted Label with Incorrect
Gold Label

The automatic labeling of latent concepts based
on the model’s class provides an opportunity to
analyze the wrong predictions of the model with
respect to the concept labels. We specifically ob-
serve the wrong predictions of test instances. We
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Figure 5: Sentiment task: Examples of the latent concepts of the most attributed words in layers 0, 6 and 12

Figure 6: An augmented example for the test instance
in Figures 3b: The augmented sentence replaced the
“laughing” with “kidding” which has a similar meaning.
The label of the augmented sentence becomes positive,
which is matched with the gold label. The new predicted
latent concept is more closely aligned with the main
sentence. The model may not learn the implicit meaning
of the “laughing stock” in the sentence.

discovered that many of the wrong prediction cases
were not caused by misclassification of the models
but were due to the fact that the gold label was an-
notated incorrectly. Figure 7 shows an example in
which the main sentence and the explanation sen-
tence share the same sentiment. We can see that the
sentence provides critiques of the different aspects
of the film. But the gold label of this sentence is
positive. We think the gold label for this sentence
is incorrect.

C.4 Incorrect Prediction in POS tagging Task
Figure 8 presents an incorrect prediction in the
POS tagging task. The prediction is aligned with
a mixed concept that consists of nouns and adjec-
tives. According to the latent concept explanation,
we know that the model may not learn to distin-
guish the “noun” and “adjective”, which causes the
incorrect prediction.

Figure 7: A correct prediction but incorrect gold label:
The test instance emphasizes the movie’s shortcomings
and uses the word "especially" to highlight the flaws.
The explanation is rather long but it correctly highlights
that the sentences are about “critiques or opinions"

D Module Specific Evaluation

D.1 ConceptDiscoverer - Compositional
Concept Examples

We found that the concepts are not always formed
aligning to the output class. Some concepts are
formed by combining words from different classes.
For example in Figure 9a, the concept is composed
of nouns (specifically countries) and adjectives that
modify these country nouns. Similarly, Figure 9b
describes a concept composed of different forms of
verbs.

D.2 ConceptDiscoverer - Number of
Clusters For Each Polarity in the
Sentiment Classification Task

Table 8 provides the number of clusters for each po-
larity in the sentiment classification task. It shows
that the majority of latent concepts are class-based
clusters at the last layer for the BERT, RoBERTa,
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Sentiment
BERT RoBERTa XLM-R

Layer Neg Pos Mix Neg Pos Mix Neg Pos Mix
Layer 0 49 1 350 45 0 355 55 0 345
Layer 1 53 1 346 50 0 350 58 0 342
Layer 2 51 1 348 49 0 351 62 0 338
Layer 3 53 0 347 60 0 340 62 0 338
Layer 4 57 0 343 52 0 348 69 0 331
Layer 5 56 0 344 51 0 349 68 0 332
Layer 6 57 0 343 45 1 354 59 1 340
Layer 7 51 0 349 56 2 342 68 0 332
Layer 8 49 0 351 116 25 259 71 0 329
Layer 9 66 4 330 226 126 48 82 7 311
Layer 10 125 31 244 235 140 25 257 92 51
Layer 11 174 49 177 258 120 22 256 110 34
Layer 12 230 81 89 254 126 20 105 270 25

Table 8: Number of clusters for each polarity: “Neg” for negative Label, “Pos” for positive, and “Mix” for mix label.
The total number of clusters is 400.

and XLMR models.

Figure 8: An incorrect prediction (noun vs adjective)
based on a latent concept made up of a mixture of nouns
and adjectives: the “deputy” in this case is an adjective.
The prediction aligns with a mixed cluster that contains
both nouns and adjectives and the model may not learn
to distinguish the “noun” and “adjective” in this case.
The latent concept explanation is useful for the user to
know that the model has used a mixed latent space for
the prediction. The Explanation is rather wrong since it
mentions that all these words are nouns.

(a) (b)

Figure 9: Compositional concepts: (a) A cluster rep-
resenting countries (NNP) and their adjectives (JJ), (b)
Different form of verbs (Gerunds, Present and Past par-
ticiples).

POS

Layer BERT RoBERTa XLM-R

Layer 0 13.76 11.13 11.97
Layer 1 12.75 13.58 11.91
Layer 2 15.51 15.60 12.99
Layer 3 17.61 17.25 22.88
Layer 4 23.81 20.30 32.08
Layer 5 37.03 23.28 48.44
Layer 6 64.83 32.52 67.94
Layer 7 77.90 48.61 80.11
Layer 8 86.96 73.88 85.83
Layer 9 88.98 82.56 89.30
Layer 10 89.99 83.24 89.94
Layer 11 90.68 84.61 90.19
Layer 12 92.16 85.67 90.18

Table 9: Saliency-based method (95%): accuracy of
PredictionAttributor in mapping a representation
to the correct latent concept in the POS tagging task.
Model: BERT-base-cased, RoBERT-base, XLM-R
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Sentiment

Layer BERT RoBERTa XLM-R

Layer 0 6.40 12.08 7.46
Layer 1 7.12 12.46 5.57
Layer 2 7.66 17.29 6.36
Layer 3 7.13 22.00 8.03
Layer 4 12.18 20.08 9.71
Layer 5 13.24 24.25 8.88
Layer 6 11.18 17.26 8.75
Layer 7 12.80 39.87 14.05
Layer 8 4.06 92.84 15.75
Layer 9 31.94 99.59 32.63
Layer 10 99.57 99.69 92.06
Layer 11 99.71 99.48 94.97
Layer 12 99.25 99.27 99.08

Table 10: Saliency-based method: accuracy of
PredictionAttributor in mapping a representation
to the correct latent concept in the sentiment classifica-
tion task. The reason of very low values for the lower
layers is mainly due to the absence of class-based latent
concepts in the lower layers i.e. concepts that comprised
more than 90% of the tokens belonging to sentences of
one of the classes.

D.3 ConceptMapper - Accuracy of
ConceptMapper for the Sentiment
Classification and POS Tagging task

We validate ConceptMapper by measuring the ac-
curacy of the test instances for both the sentiment
classification and POS tagging tasks based on the
BERT, RoBERTa, and XLMR models. The top 1,
2, and 5 accuracy of ConceptMapper in mapping a
representation to the correct latent concept for each
layer is shown in Table 11 and Table 12. For all
models, the performance of the top-5 is above 99%
for the POS tagging task and above 90% for the
sentiment classification task.
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POS

BERT RoBERTa XLM-R

Layer Top-1 Top-2 Top-5 Top-1 Top-2 Top-5 Top-1 Top-2 Top-5

Layer 0 100 100 100 99.91 99.95 99.98 99.99 100 100
Layer 1 100 100 100 99.92 99.94 99.98 100 100 100
Layer 2 100 100 100 99.76 99.92 99.98 99.72 99.98 100
Layer 3 99.85 99.98 100 99.38 99.85 99.98 98.25 99.60 99.98
Layer 4 99.72 99.92 99.97 98.67 99.58 99.87 97.72 99.60 99.98
Layer 5 99.03 99.75 99.94 97.69 99.15 99.73 97.05 99.23 99.91
Layer 6 97.76 99.34 99.83 96.52 98.71 99.59 95.8 98.95 99.76
Layer 7 96.51 98.91 99.68 94.72 98.11 99.57 93.92 98.31 99.80
Layer 8 95.27 98.52 99.79 92.56 97.55 99.52 94.20 98.52 99.80
Layer 9 94.54 98.25 99.70 92.24 97.48 99.55 92.79 97.82 99.73
Layer 10 92.67 97.89 99.68 91.61 97.19 99.55 92.03 97.66 99.60
Layer 11 90.86 97.34 99.64 90.72 96.77 99.58 90.40 97.28 99.67
Layer 12 84.19 94.15 99.05 86.88 95.13 99.15 85.07 94.57 99.08

Table 11: Top 1, 2, and 5 accuracy of ConceptMapper in mapping a representation to the correct latent concept
for the POS tagging task. The top-5 performance reaches above 99% for all models demonstrating that the correct
latent concept is among the top probable latent concepts of ConceptMapper.

Sentiment

BERT RoBERTa XLM-R

Layer Top-1 Top-2 Top-5 Top-1 Top-2 Top-5 Top-1 Top-2 Top-5

0 100 100 100 99.95 100 100 100 100 100
1 100 100 100 99.86 99.98 100 100 100 100
2 100 100 100 99.89 99.98 100 99.9 100 100
3 98.80 100 100 99.44 99.83 99.96 99.57 99.99 100
4 97.84 99.85 99.99 99.28 99.73 99.91 99.4 99.96 100
5 97.19 99.63 99.94 98.4 99.5 99.84 99.12 99.84 99.96
6 96.44 99.30 99.89 97.35 99.15 99.82 98.9 99.84 99.96
7 94.86 98.97 99.90 96.13 98.74 99.63 98.22 99.62 99.9
8 93.26 97.99 99.67 87.42 95.14 98.43 98.13 99.48 99.84
9 90.42 96.97 99.20 75.38 88.14 96.07 96.37 98.77 99.66
10 83.09 92.67 97.75 65.84 81.13 93.46 89.12 95.2 98.61
11 76.84 88.02 96.01 65.91 81.36 93.43 70.99 84.31 94.18
12 68.24 83.24 94.24 70.83 84.54 95.67 55.3 75.08 91.74

Table 12: Top 1, 2, and 5 accuracy of ConceptMapper in mapping a representation to the correct latent concept for
the sentiment classification task. The top-5 performance reaches above 90% for all models demonstrating that the
correct latent concept is among the top probable latent concepts of ConceptMapper.
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E Human Evaluation

E.1 LACOAT Effectiveness
We conduct a human evaluation using four anno-
tators across 100 test samples. Specifically, given
an explanation (e.g. Figure 3), three annotators are
asked to answer the following five questions:

1. Regardless of the prediction, can you see any
relation between the original input and the con-
cept used by the model? (Yes/No)

2. Given the prediction, does the latent concept
help you understand why the model made that
prediction? (Helps/Neutral/Hinders)

3. Given the prediction, does the explanation help
you understand why the model made that pre-
diction? (Helps/Neutral/Hinders)

4. Does the explanation accurately describe the
latent concept? (Yes/No)

5. Is the explanation relevant to the task at hand?
(Yes/No)

E.2 Comparison with other Methods
For comparison with other methods, we ask four
annotators to rank 100 samples where they see the
original input, gold label, predicted label, and ex-
planations by three methods: LACOAT, IG and
COCKATIEL. We consider the optimal settings
for each explanation method. IG explanations are
shown for layer 0 based on salient input features,
while in layer 12, IG identifies only the [CLS] to-
ken as the most salient feature, which provides an
implausible explanation and may negatively impact
its human evaluation. COCKATIEL explanations
are restricted to layer 12. LACOAT explanations
span three layers (0, 6, and 12). By presenting LA-
COAT’s layerwise explanations, we offer a more
comprehensive view of how the prediction evolves
through the network, enhancing human evaluation.

The annotators are asked to rank each method
from 1 to 3 in terms of usefulness in understanding
the reason for the prediction where 1 implies the
method was very useful while 3 implies it was not
useful. The annotation allows for the annotator to
rank multiple methods with the same usefulness
rating, e.g. for a particular sample, both LACOAT
and COCKATIEL can have the rank 1. This set-
ting is intentional since the output of explanation
methods is not directly comparable to each other
due to the difference in their design and the tar-
geted form and granularity of explanation. Table 1
presents the results. The results suggested that

LACOAT is preferred or equally preferred by all an-
notators. The average Cohen’s κ further shows a
"fair agreement" between annotators and the con-
solidated ranking where consolidated ranking is the
average rank across users.

F Toxicity Classification Task

F.1 Experimental Setup
We use the Jigsaw Toxicity dataset for the tox-
icity classification task (Toxicity). This dataset
comprises Wikipedia comments labeled by human
annotators to identify instances of toxic behavior.
We retain only the "toxic" feature as the label for
each instance, thereby classifying each instance as
toxic or non-toxic. The dataset has more than
159k, 63k, and 89k instances for train, dev, and
test. We randomly select 9k, 800, and 800 splits for
train, dev, and test respectively. We use K = 600
for ConceptDiscoverer and have the same setting
for the rest of the module-specific hyperparameters.

We also used standard splits to tune transformers
BERT-base-cased, RoBERTa, and XLM-RoBERTa.
The fine-tuned performance of each model is pre-
sented in Table 13.

Task Train Dev Test Tags BERT RoBERTa XLM-R

Toxicity 159570 63977 89185 2 91.53 91.55 91.53

Table 13: The fine-tuned performance of models, data
statistics (number of sentences) on training, develop-
ment, and test sets used in the finetuning, and the num-
ber of tags to be predicted for the toxicity classification
task. Model: BERT, RoBERTa, XLM-R

F.2 Qualitative Evaluation
F.2.1 Correct prediction with correct gold

label
Figure 10 and Figure 11 present the correct
prediction case for a toxic and a non-toxic la-
beled instance. In the toxic label instance,
PlausiFyerdiscovers that the words in latent con-
cept have common semantics of negative behaviors
and highlights the reason for toxic label due to
harsh language. For the non-toxic labeled instance,
PlausiFyerfinds that the relation between the sen-
tence and the list of words in the latent concept is
about the governance theme and user management
in online community platforms.

F.2.2 Wrong prediction with correct gold label
Figure 12 shows a non-toxic labeled instance that
is incorrectly predicted as toxic. The sentence con-
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tains non-toxic content and has cultural/religious
terms expressing positive emotion. However,
the model predicts this sentence with a toxic la-
bel. The latent concept provides helpful evidence
that it contains many toxic words such as “ASS-
HOLE”, “idiot”, “bitch”, and “Niggers”. Also, the
PlausiFyerprovides additional information that
both the sentence and the latent concept contain
the context of religion and culture. We hypothesize
that the model captures the correlations between
the toxic content or label and the religion/culture
concept in the training. Thus, the model has a bias
in the prediction with the religion/culture-related
content to the toxic label.

F.3 Module Specific Evaluation
F.3.1 ConceptDiscoverer

We also form latent concepts of each layer using
ConceptDiscoverer and annotate them with the
procedure mentioned in 4.3. In the toxicity clas-
sification task, we discovered that 88%, 99%, and
96% of the latent concepts of BERT, RoBERTa,
and XLMR were made up of either toxic major-
ity or non-toxic majority sentences (see Table 14).
Similar to the sentiment, we noticed that the 12th
layer has a higher number of class-based clusters
of Roberta and XLMR.

F.3.2 PredictionAttributor

For toxicity, we found over 98% accuracy in map-
ping the salient representation to the correct latent
concept for the last layer (see Tables 16). This high
accuracy indicates that PredictionAttributor
performs effectively and accurately in the toxic-
ity task.

F.3.3 ConceptMapper

Table 15 presents the performance of
ConceptMapper for toxicity. The accuracy
of the first layer is high (around 100%) and
drops as the layer increases for all models. In
the last layer, the accuracy of the top prediction
arrives at 67.01%, 81.43%, and 64.19% for BERT,
RoBERTa, and XLMR. We also consider the
top two and top five predictions of the mapper.
The performances of the top two and the top five
predictions are more than 81% and 93% for these
three models. Especially, the mapper based on
the RoBERTa model has the best performance,
achieving 81.43%, 93.72%, and 98.21% for the top
one, two, and five predictions respectively.
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Toxicity
BERT RoBERTa XLM-R

Layer non-toxic toxic Mix non-toxic toxic Mix non-toxic toxic Mix
Layer 0 15 30 555 22 15 563 19 16 565
Layer 1 13 27 560 17 20 563 16 16 568
Layer 2 11 33 556 18 24 558 16 20 564
Layer 3 16 35 549 17 28 555 16 21 563
Layer 4 18 36 546 20 29 551 15 24 561
Layer 5 12 41 547 28 33 539 14 22 564
Layer 6 15 48 537 37 42 521 23 24 553
Layer 7 18 49 533 324 131 145 114 53 433
Layer 8 23 49 528 332 186 82 267 74 259
Layer 9 43 52 505 373 158 69 334 134 132
Layer 10 116 73 411 425 137 38 328 154 118
Layer 11 298 110 192 449 130 21 423 139 38
Layer 12 374 155 71 502 92 6 449 129 22

Table 14: Number of clusters for each polarity. The total number of clusters is 600.

Toxicity

BERT RoBERTa XLM-R

Layer Top-1 Top-2 Top-5 Top-1 Top-2 Top-5 Top-1 Top-2 Top-5

0 100 100 100 99.96 99.99 100 100 100 100
1 100 100 100 99.92 100 100 100 100 100
2 99.99 100 100 99.94 100 100 99.75 100 100
3 99.07 99.88 100 99.34 99.80 99.92 99.46 99.95 100
4 98.49 99.78 99.99 96.87 98.96 99.78 98.81 99.83 100
5 98.25 99.72 99.94 93.10 97.63 99.26 97.72 99.42 99.89
6 97.22 99.51 99.88 87.72 95.05 98.50 94.83 98.45 99.61
7 95.00 98.57 99.68 73.50 87.21 95.70 86.96 95.37 98.72
8 91.87 97.41 99.18 67.62 83.09 94.38 79.62 91.37 97.62
9 85.66 93.80 98.01 66.75 82.80 94.38 73.73 88.57 96.76
10 76.22 87.90 95.89 64.87 81.37 93.07 66.10 82.36 93.39
11 70.53 84.31 94.31 77.91 91.09 98.10 68.30 84.49 95.28
12 67.01 81.71 93.65 81.43 93.72 98.21 64.19 81.96 94.26

Table 15: Top 1, 2, and 5 accuracy of ConceptMapper in mapping a representation to the correct latent concept for
the toxicity classification task. The top-5 performance reaches above 90% for all models demonstrating that the
correct latent concept is among the top probable latent concepts of ConceptMapper.
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Toxicity

Layer BERT RoBERTa XLM-R

Layer 0 10.54 13.45 6.57
Layer 1 8.98 19.14 8.45
Layer 2 10.92 19.92 10.56
Layer 3 49.90 22.95 13.90
Layer 4 50.07 34.30 15.12
Layer 5 11.30 31.50 23.89
Layer 6 66.21 35.42 34.47
Layer 7 67.11 91.84 59.38
Layer 8 63.74 97.84 77.43
Layer 9 84.41 98.79 94.44
Layer 10 94.92 99.30 97.52
Layer 11 94.73 99.49 97.39
Layer 12 98.93 99.72 99.61

Table 16: Saliency-based method: accuracy of
PredictionAttributor in mapping a representation
to the correct latent concept in the toxicity classification
task. The reason of very low values for the lower layers
is mainly due to the absence of class-based latent con-
cepts in the lower layers i.e. concepts that comprised
more than 90% of the tokens belonging to sentences of
one of the classes.

Figure 10: RoBERTa: A toxic labeled test instance
correctly predicted by the model.

G NLI Task

G.1 Experimental Setup

We use the MNLI dataset for the NLI task. This
task classifies each sentence pair into three classes:
entailment, contradiction, and neutral. The
MNLI dataset contains 393k, 19.65k, and 19.65k
splits for train, dev, and test. We randomly select 9k
and 1.2k for train and dev splits. We use K = 400
for ConceptDiscoverer and set the same numbers
for the other hyperparameters.

Like the other task, we used standard splits to
tune transformers BERT-base-cased, RoBERTa,

Figure 11: RoBERTa: A non-toxic labeled test instance
correctly predicted by the model.

Figure 12: RoBERTa: A non-toxic labeled instance that
is incorrectly predicted as toxic.

and XLM-RoBERTa. The fine-tuned performance
of each model is presented in Table 17.

Task Train Dev Test Tags BERT RoBERTa XLM-R

MNLI 393000 19650 19650 3 84.00 87.69 84.54

Table 17: The fine-tuned performance of models, data
statistics (number of sentences) on training, develop-
ment, and test sets used in the finetunings, and the num-
ber of tags to be predicted for the MNLI task. Model:
BERT, RoBERTa, XLM-R

G.2 Qualitative Evaluation
Figure 13 shows a correct prediction instance with
a “contradiction” label. PlausiFyer detects that
all premise-hypothesis pairs are “semantic incon-
gruity”, which means that the premise sentence
does not have a matched logic with the hypothe-
sis sentence. This indicates that the model learns
the knowledge of the “contradiction" label in the
training.
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Figure 13: MNLI: A contradiction labeled instance that
is correctly predicted.

However, due to the complexity of the task, it
is difficult for humans to understand or find the
relationship between the latent concept and the pre-
diction of the input sentence. Especially, if we have
the word cloud as the latent concept-based explana-
tion, it may not be helpful for humans to interpret
the model prediction. PlausiFyer simplifies the
interpretation in such cases.

G.3 Module Specific Evaluation
G.3.1 ConceptDiscoverer

In the MNLI task, we found more “mixed” latent
concepts than class-based latent concepts related
to other tasks. There are 0%, 82%, and 58% dis-
covered label dominant latent concepts by BERT,
RoBERTa, and XLMR (see Table 19). We spec-
ulate that tasks that involve multiple sentences as
input are more complex and abstract, thereby it is
difficult to have clear distinct concepts. This ob-
servation also varies depending on the model. For
instance, we did not detect any class-based latent
concepts of the BERT model. However, we achieve
good performance in discovering the latent concept
when using the RoBERTa model.

G.3.2 PredictionAttributor

We found that both RoBERTa and XLMR mod-
els have over 90% accuracy for the salient rep-
resentation mapping for the last layer (see Ta-
bles 18). To some extent, this accuracy indicates
that PredictionAttributor have good perfor-
mance in the MNLI task based on the RoBERTa
and XLMR model. Unlike other tasks, we have

MNLI

Layer BERT RoBERTa XLM-R

Layer 0 0.027 0.41 0.56
Layer 1 0.083 0.67 0.43
Layer 2 0.04 0 0.23
Layer 3 0 0.05 0.35
Layer 4 0.10 0 0.08
Layer 5 0.10 0 0.12
Layer 6 0.05 0 0.12
Layer 7 0 0 0.13
Layer 8 0 21.61 0
Layer 9 0 83.90 14.29
Layer 10 0 91.78 55.93
Layer 11 0 92.63 89.73
Layer 12 0 95.22 90.58

Table 18: Saliency-based method: accuracy of
PredictionAttributor in mapping a representation
to the correct latent concept in the MNLI task. The
reason of very low values for the lower layers is mainly
due to the absence of class-based latent concepts in the
lower layers i.e. concepts that comprised more than
90% of the tokens belonging to sentences of one of the
classes.

extremely low accuracy with the BERT model. We
assume that the BERT model may not be able to
capture the task knowledge due to the task com-
plexity.

G.3.3 ConceptMapper

Similar to other tasks, the performance of
ConceptMapper has very high accuracy (around
100%) at the first layer for all models. Then, the
accuracy is decreased to 72.07%, 77.56%, and
64.19% for the top prediction of BERT, RoBERTa,
and XLMR. The accuracy of the top two and two
five predictions are above 81% and 94%. The
Roberta model still has the best performance than
the others, which has 77.56%, 93.72%, and 98.21%
accuracy for the top one, two, and five predictions
(Table 20).
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MNLI
BERT RoBERTa XLM-R

Layer 0 1 2 Mix 0 1 2 Mix 0 1 2 Mix
Layer 0 0 6 0 394 0 2 0 398 0 7 0 393
Layer 1 0 4 0 396 0 2 0 398 0 4 0 396
Layer 2 0 3 0 397 0 1 0 399 0 3 0 397
Layer 3 0 4 0 396 0 2 0 398 0 5 0 395
Layer 4 0 4 0 396 0 1 0 399 0 4 0 396
Layer 5 0 4 0 396 0 0 0 400 0 4 0 396
Layer 6 0 6 0 394 0 1 0 399 0 4 0 396
Layer 7 0 4 0 396 0 3 0 397 0 2 0 398
Layer 8 0 1 0 399 1 11 6 382 0 1 0 399
Layer 9 0 1 0 399 27 38 24 311 4 6 6 384
Layer 10 0 0 0 400 38 48 34 280 24 41 18 317
Layer 11 0 1 0 399 51 76 50 223 40 67 51 242
Layer 12 0 0 0 400 92 155 81 72 64 86 82 168

Table 19: Number of clusters for each polarity: ’0’ for entailment label, ’1’ for neutral label, and ’2’ for contradiction
label. The total number of clusters is 400.

MNLI

BERT RoBERTa XLM-R

Layer Top-1 Top-2 Top-5 Top-1 Top-2 Top-5 Top-1 Top-2 Top-5

0 100 100 100 99.97 100 100 100 100 100
1 100 100 100 99.91 99.99 100 100 100 100
2 100 100 100 99.92 99.99 100 99.75 100 100
3 99.25 100 100 99.70 99.92 99.96 99.46 99.95 100
4 99.22 99.97 99.98 99.15 99.65 99.88 98.81 99.83 100
5 99.04 99.95 99.99 97.07 96.98 99.26 97.72 99.42 99.89
6 97.07 99.45 99.90 91.91 95.05 98.50 94.83 98.45 99.61
7 96.81 99.35 99.85 96.99 87.21 95.70 86.96 95.37 98.72
8 94.15 98.18 99.55 94.75 83.09 94.38 79.62 91.37 97.62
9 90.08 96.52 98.90 91.52 82.80 94.38 73.73 88.57 96.76
10 81.31 90.97 97.20 84.79 81.37 93.07 66.10 82.36 93.39
11 79.05 89.62 96.51 81.79 91.09 98.10 68.30 84.49 95.28
12 72.07 89.27 99.45 77.56 93.72 98.21 64.19 81.96 94.26

Table 20: Top 1, 2, and 5 accuracy of ConceptMapper in mapping a representation to the correct latent concept
for the MNLI task. The top-5 performance reaches above 90% for all models demonstrating that the correct latent
concept is among the top probable latent concepts of ConceptMapper.
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Sentiment
Llama-2-7b-chat-hf

Layer Negative Positive Mix
Layer 0 27 372 1
Layer 4 18 12 370
Layer 8 21 21 358
Layer 12 73 47 279
Layer 16 154 90 155
Layer 20 163 102 134
Layer 24 173 108 118
Layer 28 159 106 134
Layer 32 164 103 132

Table 21: Number of clusters for each polarity. The
total number of clusters is 400.

H LLama2

H.1 Experimental Setup

We also tried the Eraser Movie sentiment classifi-
cation and Jigsaw Toxicity classification tasks with
the Llama2 model. We applied the “Llama-2-7b-
chat-hf” version of the Llama2 model. We used the
last token of the input prompt as the [CLS] token.
We only used these [CLS] tokens as the latent con-
cept explanation. For ConceptDiscoverer, we set
K = 400 for the sentiment and set K = 200 for
the toxicity.

H.2 Sentiment Classification Task

H.2.1 ConceptDiscoverer

Compared to the BERT, RoBERTa, and XLMR
models (Table 8), the Llama2 model has fewer
class-based clusters at the last layer(See Table 21).
There are around 67% class-based clusters detected
at the last layer for the Llama2 model.

H.2.2 PredictionAttributor

With the Llama2 model, the accuracy in mapping
the salient word representation to the correct la-
tent concept for the last layer is approximately
70% (See Table 22). Although this accuracy in-
dicates that the Llama2 model performs well, it is
notably lower than the accuracy achieved by the
PredictionAttributor model based on BERT,
RoBERTa, and XLMR models, which has signifi-
cantly high performance (Table 10).

H.2.3 ConceptMapper

We found that, like the performance of us-
ing the other three models, the performance of
ConceptMapper using the Llama2 model exhibits
a high Top-1 accuracy (97.55%) in the lower layers,
and decreases to 66.47% for the last layer(Table 23).
Additionally, the top two and five predictions of the

Sentiment

Layer Llama-2-7b-chat-hf

Layer 0 2.88
Layer 4 0.93
Layer 8 1.94
Layer 12 22.11
Layer 16 64.18
Layer 20 70.63
Layer 24 75.64
Layer 28 71.30
Layer 32 71.02

Table 22: Saliency-based method: accuracy of
PredictionAttributor in mapping a representation
to the correct latent concept in the sentiment classifica-
tion task using Llama2 model.

Sentiment

Llama-2-7b-chat-hf

Layer Top-1 Top-2 Top-5

0 97.55 97.55 97.55
4 19.90 31.36 47.08
8 49.46 68.06 86.37
12 60.85 77.43 92.36
16 61.86 80.97 95.03
20 64.02 80.61 94.23
24 63.95 82.26 94.23
28 65.83 81.25 94.52
32 66.47 82.84 94.88

Table 23: Top 1, 2, and 5 accuracy of ConceptMapper
in mapping a representation to the correct latent concept
for the sentiment classification task using the Llama2
model.

mapper achieve accuracies of 82.84% and 94.88%,
respectively. The accuracy of ConceptMapper us-
ing the Llama2 model is relatively lower compared
to its accuracy using BERT, RoBERTa, and XLM-
RoBERTa(Table 12).

H.3 Toxicity Classification Task
H.3.1 ConceptDiscoverer

We found that 83% of the latent concepts of Llama2
are the class label-based at the last layer(Table 24).
The BERT, RoBERTa, and XLMR models have a
relatively higher number of class label-based clus-
ters(Table 14).

H.3.2 PredictionAttributor

The accuracy of the Llama2 model in our experi-
ments is significantly lower compared to BERT,
RoBERTa, and XLMR (Table 25). The perfor-
mance of the other three models achieves accuracy
values exceeding 90% (Table 16). The lower accu-
racy is due to several reasons. Llama2 is a genera-
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Toxicity
Llama-2-7b-chat-hf

Layer Non-toxic toxic Mix
Layer 0 84 108 1
Layer 4 35 13 150
Layer 8 27 5 168
Layer 12 43 22 135
Layer 16 61 21 117
Layer 20 62 25 113
Layer 24 69 25 106
Layer 28 67 26 107
Layer 32 69 21 109

Table 24: Number of clusters for each polarity. The
total number of clusters is 200.

Toxicity

Layer Llama-2-7b-chat-hf

Layer 0 2.26
Layer 4 7.20
Layer 8 6.59
Layer 12 32.10
Layer 16 42.91
Layer 20 45.83
Layer 24 46.93
Layer 28 46.43
Layer 32 44.28

Table 25: Saliency-based method: accuracy of
PredictionAttributor in mapping a representation
to the correct latent concept in the toxicity classification
task using Llama2 model.

tive model and it is hard to restrict its output to a sin-
gle class. While we optimized the prompt for this
purpose, we classified responses as label 0 (non-
toxic) only if they contained “non-toxic”, “NON-
TOXIC”, or “Non-toxic”. Similarly, we classified
responses as 1 (toxic) if they contained variations
of the term “toxic”. Moreover, many responses
of the model did not provide a classification re-
sult due to inappropriate or disrespectful content
of input instances that was blocked by the safety
filter. Consequently, there are many sentences were
skipped, which may account for the lower accuracy
of Llama2 compared to the other models.

H.3.3 ConceptMapper

The top-1 performance of ConceptMapper based
on the Llama2 model achieves 74.44% for the last
layer(Table 26). This performance is better than
the one based on the BERT and XLM-Roberta (Ta-
ble 15). RoBERTa still delivers the best perfor-
mance.

Toxicity

Llama-2-7b-chat-hf

Layer Top-1 Top-2 Top-5

0 96.97 96.97 97.09
4 42.38 62.00 83.86
8 67.83 85.20 97.20
12 70.40 89.24 98.21
16 73.09 87.44 98.77
20 74.22 90.25 98.99
24 71.19 88.68 98.88
28 72.65 90.13 98.76
32 74.44 91.82 99.10

Table 26: Top 1, 2, and 5 accuracy of ConceptMapper
in mapping a representation to the correct latent con-
cept for the toxicity classification task using the Llama2
model.
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