
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 12493–12516
November 12-16, 2024 ©2024 Association for Computational Linguistics

The Mystery of the Pathological Path-star Task for Language Models

Arvid Frydenlund
University of Toronto, Computer Science

Vector Institute
arvie@cs.toronto.edu

Abstract
The recently introduced path-star task is a min-
imal task designed to exemplify limitations to
the abilities of language models (Bachmann
and Nagarajan, 2024). It involves a path-star
graph where multiple arms radiate from a single
starting node and each node is unique. Given
the start node and a specified target node that
ends an arm, the task is to generate the arm
containing that target node. This is straight-
forward for a human but surprisingly difficult
for language models, which did not outperform
the random baseline. The authors hypothesized
this is due to a deficiency in teacher-forcing
and the next-token prediction paradigm.

We demonstrate the task is learnable using
teacher-forcing in alternative settings and that
the issue is partially due to representation. We
introduce a regularization method using struc-
tured samples of the same graph but with differ-
ing target nodes, improving results across a va-
riety of model types. We provide RASP proofs
showing the task is theoretically solvable. Fi-
nally, we find settings where an encoder-only
model can consistently solve the task.

1 Introduction

Language models (LMs) have become increas-
ingly capable of solving a variety of complex tasks
(Brown et al., 2020; Zoph et al., 2022; Bubeck et al.,
2023). LMs can do many spectacular things, mak-
ing it surprising when they perform poorly or re-
quire help on simple tasks (Valmeekam et al., 2023;
Wies et al., 2023; Golovneva et al., 2024; Berglund
et al., 2024; Nezhurina et al., 2024). Recently,
Bachmann and Nagarajan (2024) introduced one
such seemingly simple task designed to showcase
pathological behaviour of causal (decoder-only) au-
toregressive (AR) LMs trained via teacher-forcing.
The task is simple by design and thus failure of
AR models is both surprising and informative. We
begin by describing the task in Sec. 1.1, before
analyzing why it is difficult for LMs in Sec. 2.

1.1 The Path-star Task

We need to describe a path-star graph, G, i.e. the
data meant to be manipulated, and its problem spec-
ification or question, Q, i.e. the prompt specifying
the desired manipulation, and their tokenization.

Let N be the set of unique nodes forming G. A
path-star graph contains one central starting node
s ∈ N and D radial arms each of length M (inclu-
sive of s), s.t. |N | = D(M − 1) + 1. s has degree
D, all final nodes which end an arm, F ⊂ N s.t.
|F | = D, have degree 1, and all others have degree
2. See Fig. 1 for an example path-star graph.

Given G, and a task specification, Q, containing
s and a target node t ∈ F , the task is to gener-
ate the unique arm, Rt, as a sequence of nodes
starting from s until t. i.e. Rt = sort({ r ∈
N | ∀f∈F dist(r, t) ≤ dist(r, f)}).1 Let L be the
set of possible leading nodes which are adjacent to
s i.e. L = {l ∈ N | dist(l, s) = 1}. The challenge
is predicting the correct leading node lt ∈ L ∩Rt

from all other leading nodes. By design, there is a
uniform 1/D chance of this given only G. Predic-
tion above chance should be possible by inferring
the correct target arm and thus lt given t in Q. Note,
as all nodes are unique, predicting all non-leading
nodes is deterministic given their preceding neigh-
bour (going from the direction of s to f ∈ F).

When generating the dataset, the nodes in a sin-
gle graph are uniformly sampled from a set of possi-
ble nodes, V , without replacement. G is tokenized
as a series of D(M − 1) edges where each edge
is internally ordered by distance to s and marked
by the special token ‘|’ so that a given edge, (u, v),
is a three token sequence ‘u v |’. Q is tokenized
as a sequence of four tokens with special tokens
marking the beginning and end of Q as ‘/ s t =’.
Special beginning- and end-of-sequence tokens are
also used, making the final vocabulary size |V |+5.

1‘dist’ is graph distance. We abuse notation by treating Rt

as a set and G and Q as sequences after having been tokenized.

12493

1

Start
Node,

Target
Node,

Leading
Nodes,

Arm,

Figure 1: An example path-star graph. D = 3, M = 4,
s is ‘4’, t is ‘7’, Rt is ‘4 8 2 7’, and lt is ‘8’. One
possible tokenization of [G, Q, Rt], where the edges
are permuted is: ‘BOS 9 1 | 10 6 | 8 2 | 2 7 | 1 3 | 4 8 |
4 5 | 5 10 | 4 9 | / 4 7 = 4 8 2 7 EOS’. One tokenization
where the arms are permuted is: ‘BOS 4 9 | 9 1 | 1 3 |
4 8 | 8 2 | 2 7 | 4 5 | 5 10 | 10 6 | / 4 7 = 4 8 2 7 EOS’.

1.2 Autoregressive models and training
A causal or decoder-only AR LM models the joint
probability of a T -length sequence, y, as a factor-
ized product of local probabilities, as in

p(y1, y2, . . . , yT | y0) =
∏T

j=1
p(yj | y<j). (1)

Here, we model the path-star task as

p(r1, . . . , rM | [G, Q]) =
M∏

j=1

p(rj | [G, Q, r<j]).

(2)
Let x = [G, Q, r<j] be the concatenation of the
tokenized graph and problem specification along
with the partial ground-truth sequence, r<j , which
forms the given conditioning input to the model.
Such a model is trained via maximum likelihood,
generally referred to as ‘teacher-forcing’ in the con-
text of language models, as the partial ground-truth
sequence is used to condition the model during
training instead of the model’s own predictions as
done during inference (Williams and Zipser, 1989).
We minimize −∑

r∈Rt
log p(r |x). Thus the loss

is only over the target sequence, Rt, and not on
tokens in the prefix [G, Q]. This is necessary as
the nodes in G are random and Q must be provided,
making them both unpredictable.
G and Q are provided during inference. We eval-

uate using a non-autoregressive ‘teacher-forced’
inference procedure that conditions on the partial
ground-truths. Thus the inference and training pro-
cedures match and prevents any potential training-
inference bias (see Appx. A.1 for explanation).

We focus on transformer models (Vaswani et al.,
2017), where the causal parameterization of AR

models is enforced via an attention mask which
prevents the token at any step j from depending
on any token at step > j. This causal restriction
applies across the entire input x. Positional embed-
dings make each token unique. To prevent learning
a trivial answer based on position, as a data prepro-
cessing step, the edges are shuffled, which can
be seen as a random permutation applied to the
order of the edges in the tokenization of G.

1.3 Failure to learn: Clever Hans hypothesis
Bachmann and Nagarajan (2024) empirically
demonstrated three different LMs – finetuned
GPT2, a smaller GPT2 trained from scratch (Rad-
ford et al.), and a state-space model, Mamba (Gu
and Dao, 2023) – all fail to predict above 1/D
chance, even in settings as small as D = 2 and
M = 5. They hypothesized this was caused by
teacher-forcing. This is due to there being two pos-
sible modes of predictions which the model can
learn. The first is the desired mode which learns to
represent the entire path between s to t. This mode
is necessary for predicting lt. Whereas, the second
mode makes trivial predictions about the next node
in the arm given the previous node. This mode only
needs to learn superficial information about indi-
vidual edges but not the graph structure and is, by
task design, sufficient for predicting all non-leading
nodes given the correct preceding node.

Bachmann and Nagarajan (2024) argued that
teacher-forcing will result in learning the second
mode, referred to as the Clever Hans cheat (CHC).
This is because teacher-forcing conditions on the
correct ground-truth, which in this case is the cor-
rect preceding node in the arm. Also, when applied
to AR models, it is restricted to making a single
next-token prediction and hence precludes learn-
ing any long-term planning. Then, once the CHC
is learnt, it will discourage learning the desired
mode necessary for predicting lt. Their intuition,
which admittedly is not proven, is that sequence
modelling relies on the intermediate training steps
across the sequence to form a coherent represen-
tation of the overall sequence. In our case, that
would be a representation of the entire arm struc-
ture, however, here those intermediate steps do not
participate in learning such a structure but are rather
absorbed into learning the trivial CHC, resulting in
a loss of this intermediate training signal.

They presented empirical evidence for the CHC
hypothesis by considering the overall sequence ac-
curacy when provided with the correct preceding

12494

predictions. Here, all non-leading tokens are learnt
with 100% accuracy and the leading token is only
predicted at 1/D chance, leading to an overall se-
quence accuracy of 1/D (See their Fig. 3 and our
Fig. 7 in Appx. C). Interestingly, a trivial solution
to the task exists if the model can look-ahead M to-
kens to the end of the arm as the model just needs to
find and match the correct target token. Once done,
it can apply the CHC in reverse order to determine
the arm. This led them to provide a supporting em-
pirical argument, where they modified the task to
require that the arm be generated in reverse order.
This makes the task trivial as the CHC can just be
applied in reverse order via reverse supervision.

Importantly, they established, a), the failure is
not due to the amount of training data (see Sec.
2.4), b), the failure is in-distribution, and c), it is
not due to any exposure bias or other differences be-
tween the training and inference procedures (Ben-
gio et al., 2015; Ranzato et al., 2016; Arora et al.,
2022). This allows them to dismiss these alterna-
tive explanations and conclude that the CHC causes
the learning problem which is itself a consequence
of teacher-forcing and next-token prediction.

This leads to a discussion concerning possible
fundamental limitations to the next-token pre-
diction paradigm, with the path-star task being
offered as a counter-example to the paradigm
being sufficient to learn any task and also to
conjecture that these limitations may apply to a
broader set of more complex planning tasks.

They then introduced a ‘teacher-less’ model
(Monea et al., 2023), which uses M masked to-
kens, m, to predict all tokens independently of
the ground-truths i.e. x = [G, Q, m1, . . . , mM].
This eliminates teacher-forcing as it removes all
input dependencies between target-side tokens. Of
the 15 reported experiments, this method allows
the model to solve the task in 5 instances: for the
D = 2 experiment using the small GPT2, and for
D ∈ {2, 3, 4} (but not D = 5) when using large
GPT2. Thus while the method did not work con-
sistently, it acts as further empirical evidence that
teacher-forcing is the issue and a potential alterna-
tive learning paradigm to next-token prediction.

2 Methods and Results

We solely focus on the small LM setting under
the belief that such models should be able to learn
such a simple task and that the biases from the pre-
trained data and any emergent abilities of LLMs

will just obfuscate the root problem. We implement
our models using Fairseq (Ott et al., 2019). Our
AR models have 200 dim. embeddings and 6 lay-
ers, each with 800 dim. feed-forward projections
and 8 heads. This is smaller than both 12- and
36-layer GPT2 models used by Bachmann and Na-
garajan (2024). We use Adam with a learning rate
of 0.0005, a dropout rate of 0.1, and a weight decay
of 0.01. We use 16-bit training and a batch size
of 1024. Each model is given a maximum of 100
epochs but stops if the validation loss drops below
0.001. Each experiment is trained from scratch.

Following Bachmann and Nagarajan (2024),
|V | = 100 and M = 5. Each dataset for D ∈
{2, 3, 4, 5} is made up of 2,000,000 training and
20,000 test samples of randomly generated (G, Q)
pairs without overlap. Unlike them, we randomly
permute G at every epoch instead of just once prior
to training, in an attempt to prevent overfitting.

We present our work as an investigation over a se-
ries of hypotheses and corresponding experiments
to get at the heart of the path-star mystery. As such,
we report intermediate results and describe new
methodology as it becomes motivated. We present
results in order of our findings, however, we need
to give some post-hoc explanations for our method-
ology to inform the contents of Tables 1, 2, 3, 4.
First, in initial experimentation (under modified
task conditions), we found that the models could
solve the task seemingly at random. This motivated
the use of running multiple seeded trials for each
experiment. For all experiments, we consider the
percentage of trials that correctly succeed in learn-
ing the task across 11 trials. Second, we found it
necessary to set attention dropout to zero, since the
task requires routing exact node information. Third,
we also found that we required learned- instead of
sinusoidal-positional-embeddings. We suspect that
the latter results in too strong of a positional bias
when permuting the edges in G. We also found no
embeddings works for the decoder-only model as
positional information will arise out of the asym-
metry induced by causal masking (Tsai et al., 2019;
Haviv et al., 2022; Kazemnejad et al., 2023)

2.1 A reproduction of empirical results
As the results of Bachmann and Nagarajan (2024)
are surprising, we independently verifed them as
an initial step. Experiment (exp.) 1 of Table 1,
confirms that the task is not learnable under the
initial conditions. Exp. 2 confirms that reversing
the arm results in a trivial 100% success rate.

12495

ID Perm. Q Tgt./Dir. S. D = 2 D = 3 D = 4 D = 5

1 Edge End Fwd. 0 0% 0% 0% 0% 0% 0% 0% 0%
2 Edge End Rev. 0 100% 100% 100% 100%
3 Edge End lt-only 0 0% 0% 0% 0% 0% 0% 0% 0%
4 Arm End Fwd. 0 100% 36% 0% 9% 0% 9% 0%
5 Arm Start Fwd. 0 100% 100% 100% 100%
6 Edge Start Fwd. 0 0% 0% 0% 0% 0% 0% 0% 0%
7 Arm End Fwd. 1 100% 91% 9% 91% 9% 36% 55%
8 Edge End Fwd. 1 0% 0% 0% 100% 0% 100% 0% 100%
9 Edge Start Fwd. 1 0% 0% 0% 100% 0% 100% 0% 100%
10 Edge Start Fwd. 2 NA 0% 0% 0% 91% 0% 100%
9x Edge Start Fwd. 1 0% 0% 0% 0% 0% 0% 0% 100%

Table 1: Percent of successful trials (n=11) using the AR (decoder-only) model. ‘ID’ is the exp. ID. ‘Perm.’ is the
type of permutation applied to G (Sec. 2.2.2). ‘Q’ is the relative position of Q to G (Sec. 2.2.3). ‘Tgt./Dir.’ is the
type of target we are trying to generate (Sec. 2.2.1). And ‘S.’ is the number of structured samples used (Sec. 2.4).
For each exp. in D ∈ {2, 3, 4, 5}, we report the percent of trials which learnt the task to at least 95% sequence
accuracy in the first column. In the second column, we report the percent of unsuccessful trials where the valid and
training loss has not diverged i.e. 0% means all trials have overfit (Sec. 2.4). ‘x’ IDs use a larger model (Sec. 2.5).

2.2 Simplifying the task
Having confirmed the results in the original task
setting, our method to investigate the issue will be
to simplify the task until it becomes consistently
solvable. We begin by considering the target-side.

2.2.1 Isolating the CHC from the task
In Sec. 1.3, we indicated the CHC causes the learn-
ing problem. We first consider a simplified version
of the task where only lt is predicted instead of the
entire arm, Rt.2 Exp. 3 of Table 1, shows this pro-
duces the same negative result as when predicting
the entire arm. This allows us to exclude the pos-
sibility that lt is indecipherable due to the model
being overwhelmed by the CHC i.e. that the pres-
ence of the CHC causes the learning issues directly.

Having clarified this, we can state the CHC hy-
pothesis as being that teacher-forcing will cause
the CHC to be learnt, which will absorb critical
supervisory information in Rt needed for learning
the task. There are underlying assumptions that
Rt is both necessary3 and sufficient supervision to

2Our work considered a preprint version of Bachmann and
Nagarajan (2024). In the final version, they also conducted
this exp. (their Appx. F.5). This version, along with correspon-
dence with an author, clarified their position that the presence
of the CHC does not cause the learning issues directly. Thus
when they argued that after learning the CHC, ‘it is signifi-
cantly harder for the model to learn the correct solution now’,
they are considering a hypothetical point in training when the
model has access to Rt and could potentially learn lt before
the CHC is learnt and absorbs the critical information in Rt

and also prevents its recovery via alternative learning paths.
3Necessary may be too strong of a statement since Bach-

mann and Nagarajan (2024) stated that the CHC makes it

learn the task and that the task is inherently difficult
without it. As the evidence for the CHC hypothesis
is empirical, the degree of difficulty induced by
lack of supervision rests on the empirical results,
with the current results of not being able to predict
above chance suggesting a high degree of difficulty.

Exp. 3 is defined so that the only supervision
about the correct arm is t via Q. This begs the
question, why is the task difficult only given t?
To solve the task, all the model needs to do is 1)
determine all final nodes, 2) trace back each arm
from the final node to leading node, and 3) predict
the leading node matching with t. Importantly, this
requires that the model can represent the arms in
the graph. This prompts the research questions of
why is t insufficient information to solve the task
and what makes correctly representing the graph so
challenging? Note the CHC is a red-herring to such
questions since, as discussed above, it just results
in a situation where t is the only given supervision.

As these questions stem from underlying as-
sumptions of the CHC hypothesis, exploring them
will be informative as to what impact the path-star
task has on the next-token paradigm via teacher-
forcing and planning tasks in general. These ques-
tions motivate us to experiment with modifying the
source-side graph representation of the task.4

‘harder or potentially intractable to learn the true mechanism
from the remaining tokens alone’. But they also stated that lt
‘may become impossible to learn since the model is deprived
of all information about the subsequent targets’ and use the
term ‘indecipherable’ in reference to lt.

4All proceeding exps. predict Rt as in the original task.

12496

2.2.2 Alternative hypothesis: representation
issues due to the permutation of G

Our first hypothesis as to what is preventing learn-
ing the solution is that it is a representation issue
due to randomly permuting the edges of G. This
will corrupt the arm structure with the model seem-
ingly unable to recover the structure. In particular,
when using a causal model, all information can
only be routed forward in ‘time’ and this may in-
duce difficulties when trying to recover and route
information across the arm structure.5 Not only
does edge-wise permutation make routing infor-
mation across the arms harder, or even impossible,
but the difficulty in learning might also be due to
the assumptions we make when we decompose the
joint probability as in Eq. 1. Specifically, we are pa-
rameterizing the model to a specific decomposition
(Yang et al., 2019; Liao et al., 2020). However, by
permuting the edges, we are forcing the model to
learn an exponential number of possible decompo-
sitions. This may be a challenge, even when using
an over-parameterized model like a transformer,
and may explain the difficulty of the task.

Thus we can simplify the task where we retain
the arm structure by only permuting the order of
the arms relative to each other (but not the internal
order of the edges). Refer to this change as Edge-
vs. Arm-wise permutation (see Fig. 6 in Appx. B).
If this is solvable, then we know that the issue lies
in the corruption of the arm information via per-
muting the edges. Exp. 4 of Table 1 shows this
improves the results, with D = 2 being consis-
tently solved, but with a diminishing success rate
as D increases. These partial improvements lead
us to a related hypothesis.

2.2.3 Alternative hypothesis: representation
issues due to the order of G and Q

If we can only route information into the future,
maybe our representation issue stems from the fact
that we have placed the problem specification after
the graph during tokenanization. That is, we have
placed the information needed to specify what to
do with the data after the actual data (Chen et al.,
2024). Thus the latent representation of G formed
by the LM can not depend on Q. Thus instead we
form our input as x = [Q, G, r<j]. Refer to this as
Q’s position being either Start vs. End. Exp. 5 of
Table 1 demonstrates that this consistently solves
the task when combined with permuting the arms

5See Appx. E for discussion and proof routing is possible.

only, but goes back to being completely unsolved
when combined with permuting the edges (Exp. 6).

These last exps. demonstrate that the task is solv-
able in alternative settings and that the representa-
tion of G and Q are aspects of the task’s underlying
difficulty. Arm-wise permutation significantly de-
creases the difficulty of the task. This is because
it allows the graph to retain higher-order structural
information, whereas edge-wise permutation elim-
inates all such information except for individual
edges. Thus edge-wise permutation is a culprit in
the difficulty. While this shows that the task is
solvable, it is unsatisfying as we require stronger
supervisory information in this setting. Since the
causal constraint of decoder-only models poten-
tially induces some of these issues, we are moti-
vated to change the model specification to see if
abandoning this constraint will solve the task.

2.3 Changing the model parameterization
2.3.1 Encoder-decoder model, or, alternative

hypothesis: it’s the causal constraint
Here we use an encoder-decoder model with 6 and
3 layers respectively and tied embeddings. Remov-
ing the causal constraint on the source-side encod-
ing of [G, Q] makes the position of Q to G irrele-
vant. If this model can consistently solve the task,
it will show that it is the causal constraint which
prevents the decoder-only model from recovering
the arm structure with edge-wise permutation.

Exp. 12 in Table 2 shows that using a non-causal
encoder does not solve the task with edge-wise per-
mutation. This motivates us to revisit the ‘teacher-
less’ methodology as it has been shown to partially
work and is an alternative non-causal methodology
in Sec. 2.3.2. While this experimental setup does
not learn the task as is, we will revisit it in Sec. 2.4
and show that it is possible (Exp. 14 and Exp. 15).

2.3.2 Non-autoregressive models
Bachmann and Nagarajan (2024) reported that
‘teacher-less’ models were unable to solve the task
in the small LM setting and we attempt to improve
their results. However, we alter their ‘teacher-less’
model as it was designed to modify a pre-trained
LM post-hoc and so is inappropriate to our settings
(Monea et al., 2023). Rather, we note it is actually a
kind of non-autoregressive model (NAR) (Gu et al.,
2018; Wang et al., 2018; Gu and Kong, 2021).

NAR models treat all targets as independent in
order to make multiple predictions in parallel in-
stead of sequentially. This is achieved by removing

12497

ID Perm. Dir. S. D = 2 D = 3 D = 4 D = 5

11 Arm Fwd. 0 100% 100% 100% 100%
12 Edge Fwd. 0 0% 0% 0% 0% 0% 0% 0% 0%
13 Arm Fwd. 1 100% 100% 100% 100%
14 Edge Fwd. 1 9% 0% 27% 9% 0% 9% 0% 100%
15 Edge Fwd. 2 NA 45% 0% 0% 9% 0% 73%
14x Edge Fwd. 1 0% 0% 0% 0% 10%* 0% 0% 0%

Table 2: Results using the encoder-decoder AR model. *Only 10 trials completed.

ID Perm. Train Dir. S. D = 2 D = 3 D = 4 D = 5

16 Arm IAR Fwd. 0 100% 100% 82% 0% 82% 0%
17 Edge IAR Fwd. 0 0% 0% 0% 0% 0% 0% 0% 0%
18 Arm IAR Fwd. 1 100% 100% 100% 100%
19 Edge IAR Fwd. 1 64% 0% 9% 0% 0% 0% 0% 0%
20 Edge IAR Fwd. 2 NA 18% 0% 0% 100% 0% 100%
19x Edge IAR Fwd. 1 0% 0% 0% 0% 0% 36% 0% 91%

Table 3: Results using the CMLM (encoder-encoder) IAR model with IAR training (teacher-forcing).

the causal constraint i.e. attention mask. Complete
independence is assumed for (fully) NAR mod-
els. However, this can lead to poor performance
as it limits the ability to learn from dependencies
inherent in the sequence (Lee et al., 2018; Qian
et al., 2021). This led to the development of itera-
tive autoregressive models (IAR)6 which assume
partial dependencies, both during training and in-
ference – except in the first generation step (Lee
et al., 2018; Ghazvininejad et al., 2019). Impor-
tantly, IAR models assume no order-of-generation,
which may allow them to learn the reverse-order
solution without specific reverse-order supervision.

To train an IAR model, an order-permutation of
the targets, Rt, is sampled, along with a time-step,
j such that model conditions on the permuted or
‘unmasked’ ground-truths prior to step j. This is
equivalent to the MLM objective with a dynam-
ically sampled masking rate, where the uniform
masking acts as the permutation (Devlin et al.,
2019; Lee et al., 2018; Ghazvininejad et al., 2019).
Thus IAR models use teacher-forcing, but applied
to a permuted target sequence. We use CMLM
(Ghazvininejad et al., 2019) for an encoder-encoder
IAR model as well as an encoder-only model us-
ing the same hyper-parameters as the decoder-only
model i.e. similar but without causal masking.

Both NAR and IAR models make use of the full
target supervision of Rt by bypassing the CHC.
For NAR models, this is achieved by removing all

6Often called iterative NAR models, which is a misnomer.

input supervision and hence teacher-forcing. For
IAR models, this is achieved via input samples that
mask non-contiguous tokens in Rt, thus excluding
the trivial edge-lookup shortcut employed by CHC.

We evaluate the IAR models using both 1-step
NAR and M -step IAR inference with both produc-
ing the same results (thus we only report one). That
is, once, the model learnt the solution, it could gen-
erate the entire arm in one step just as well as over
M steps. In principle, the IAR models should be
able to first generate t in the last position, condi-
tion on it, and then just generate the arm in reverse
order via CHC – which should be much easier than
learning the true solution. This did not happen.7

We demonstrate that small IAR models are capa-
ble of learning the arm-wise task in Tables 3 and 4.
The encoder-only model is the first model to have
successful trials on the edge-wise task (Exp. 22).
Exps. 16 and 21 vs. 5 and 13 suggest IAR models
may not be as performative, however, this does not
hold once structured samples are used (Sec. 2.4).

2.4 Sensitivity and structured samples

Many of the arm-wise exps. across models and the
encoder-only edge-wise exp. had failed trials but
also successful ones. Observing the training and
validation losses of these failed trials led us to con-
clude that the model was overfitting in these trials.

7It should be disconcerting for practitioners of IAR models
that the trivial generation order does not seem to be found.
However, this may be an artifact of the task’s underlying
difficulty and not an issue with IAR models in general.

12498

ID Perm. Train Dir. S. D = 2 D = 3 D = 4 D = 5

21 Arm IAR Fwd. 0 100% 82% 0% 36% 0% 9% 0%
22 Edge IAR Fwd. 0 36% 0% 0% 0% 0% 0% 0% 0%
23 Arm IAR Fwd. 1 100% 100% 100% 91% 9%
24 Edge IAR Fwd. 1 100% 45% 55% 18% 82% 9% 91%
25 Edge IAR Fwd. 2 NA 55% 45% 36% 64% 11%* 89%

24x Edge IAR Fwd. 1 100% 100% 91% 0% 100%
22x Edge IAR Fwd. 0 100% 55% 0% 73% 0% 18% 0%
26x Edge NAR Fwd. 1 100% 100% 91% 9% 64% 36%

Table 4: Results using the encoder-only IAR model. *Only 9 trials were completed for this experiment.

Consider the first plot of Fig 8 (in Appx. D) with
D = 2. Here all trials successfully learn the task,
which can be seen when the validation accuracy
branches off from chance. However, the last trial
nearly overfits. The third plot has the same setup
but with D = 4. Here only a single trial succeeded
and the rest maintained a stagnant validation ac-
curacy at chance while the training and validation
losses diverged. To prevent this overfitting, we ex-
perimented with standard regulatory methods such
as lowering the learning rate, increasing batch size
and L2 regularization, etc. without success.

This leads us to reconsider what may cause over-
fitting. In the edge-wise task, even though the edges
are shuffled every epoch, there is only a set number
of graphs and targets. Taking a step back, when
we consider the task after the CHC has been learnt,
the model needs to be able to identify lt solely via
t. Thus the solution depends on or is sensitive to a
single token, t. As all nodes are unique, the space
of sampled graphs to targets is large with

Z =
|V |!

(|V | −D(M − 1)− 1)!
×D (3)

possible input-target pairs. This implies that the
dataset will contain nearly all uniquely sampled
graphs to any target i.e. we will not encounter the
same graph but with different target arms. How-
ever, because of this, the models can learn many
possible spurious correlations between any node or
combination of nodes in G to t and easily overfit.

To prevent this, we develop a method where
we supplement the training data with multiple in-
stances of a single G but paired with different tar-
gets, and hence, different Q and target arms. This
is achieved via expanding each batch with one or
more of these structured samples per original G.
These extra instances should act as interference on
any spurious training signal. Thus these samples
do not reduce the sensitive but rather they inform

the model that the task is sensitive to t in particu-
lar. Hence, this can be viewed as extra supervisory
information applied at the batch-level.

We now revisit prior experiments with structured
samples (‘S.’ > 0 in all tables). For the decoder-
only model, we find this reduces overfitting as in-
tended but does not lead to successful trials. Exp.
7 (arm-wise, Q-end) shows improved success rates
at D > 2. This can be observed in the second and
fourth plots in Fig. 8 where the validation loss now
tracks the training loss when provided with struc-
tured samples in contrast to their corresponding
first and third plots with diverging losses. It also
leads to learning the solutions in fewer epochs in
the D = 2 case and leads to 10/11 instead of 1/11
of the trials succeeding in the D = 4 case.

For all other models, this method improves suc-
cess rates across all edge-wise experiments (Exps.
14, 15, 19, 20, 24, and 25). Exps. 14 and 15 show
the first successes with the encoder-decoder model.
Despite being inconsistent, this is an important
result, as it demonstrates that casual models can
learn the task via teacher-forcing. As the CHC
will reduce the supervision to t, it also shows that t
may be sufficient supervision to learn the task with
next-token prediction. Thus this result challenges
the empirically supported CHC hypothesis.

While these are strong improvements, we have
not solved the mystery as the encoder-only model
with D = 2 is the only consistently solved setting
(Exp. 24). Exps. 15, 20, and 25 show that increas-
ing the number of samples helps but has diminish-
ing returns. These results indicate that overfitting is
a culprit to the task’s difficulty, but not the only one.
The decoder-only model has no successful trials,
but the encoder-decoder model has a few. Also,
the encoder-only model outperforms the encoder-
encoder model (Exps. 24 and 25 vs. 19 and 20).
The only difference between these last two is pa-

12499

rameterization and not the training method. Thus
the differences between each model’s performance
provide further evidence the task’s difficulty de-
pends on specific representations. Next, we turn
to RASP to verify if the task is actually solvable
for decoder-only models and to potentially gain
insights into why the task is difficult just given t.

2.5 RASP

The RASP programming language is a formal com-
putation model used to verify if a transformer is ca-
pable of solving a given symbolic (non-numerical)
task where the existence of a valid RASP program
proves there exists at least one transformer that can
solve the task (Weiss et al., 2021; Zhou et al., 2024).
Note this does not imply that such a transformer
is learnable but only that it can represent the task.
A RASP program transforms a sequence of tokens
into a new one using operations that can be im-
plemented via transformers, such as element-wise
operations which mirror feed-forward layers and
‘select’ and ‘aggregate’ operations which combine
to mirror the attention mechanism. See Appx. E
for details. Each operation corresponds to a trans-
former layer. As such, loops are disallowed and the
length of a RASP program upperbounds the task’s
difficulty in terms of the required number of layers.

We develop four algorithms for solving the task
with edge-wise permutation using non-causal en-
coders (Listings are in Appx. E.1), proving there
exists multiple transformers which can solve the
task. Three of these, Listings 1, 2, and 3, work by
traversing across the arms (in parallel) one edge
at a time. For example, Listing 2, routes the iden-
tity of each arms’ final node, starting at each final
node and moving backward until reaching the corre-
sponding leading nodes. This results in a sequence
where certain edges now contain pairs of corre-
sponding leading and final nodes, (ld, fd), which
can be used to match fd = t to identify ld = lt.

Importantly, these all require loops over M ,
which is invalid in general, but valid in our case,
as M is a static value. However, each step in the
traversal requires one or more transformer layers to
implement, and thus they all require O(M) num-
ber of layers. Listing 4 provides a O(logM) al-
gorithm,8 provided we have O(M) extra sequence
tokens to store intermediate results (the edge mark-

8Incidentally, this uses the same doubling parallel graph
traversal algorithm used by Sanford et al. (2024) to prove the
k-hops task is solvable in O(log k). Interestingly, they find
transformers can actually learn the log algorithm for k-hops.

ers ’|’ can be used). However, this algorithm is
more complex (from a human perspective). Despite
the empirical results, we prove that a decoder-only
model can solve the task (Listing 6). This algo-
rithm is complex as it can only route information
into future edges and thus requires different rules
if connecting edges come before or after a current
edge. This potentially explains why the task may
be harder to learn for decoder-only models.

RASP can explain why the arm-wise permuta-
tion is an easier task. Listing 5 describes a O(1)
algorithm which works by just finding the edges
with a final token and then using positional informa-
tion to ‘jump’ to the corresponding leading nodes.

Thus the main results of this analysis are: 1) the
task is solvable by transformers, 2) multiple solu-
tions exist, 3) the ‘simplest’ algorithms require a
linear number of layers to M , and 4), at least one
causal transformer can, provably, solve the task.
The first three of these results give an actionable
insight since we can increase the number of layers.
This may be antithetical to the overfitting prob-
lem, however, it may be that as we increase layers,
more solvable algorithms become viable and may
be easier to find during training. Exp. 24x shows
this makes the task consistently solvable for the
encoder-only model (with structured samples, see
Exp. 24x vs. 22x), but all other models do worse in
success rate and/or overfitting (exps. 9x, 14x, 19x).

3 Conclusion

We finally have a model that consistently solves the
task, however, we still have many open questions.
In this section, we consider these questions as well
as the progress we have made in the task.

First, we consider the role sensitivity has in the
task’s difficulty. In Sec. 2.4 we hypothesized the
model’s overfitting was due to sensitivity (Hahn
et al., 2021; Chen et al., 2023; Chakraborty et al.,
2023). In particular, we argued that the solution
is sensitive to a single token and that the model
needs to learn this in order to solve the task. How-
ever, because of the size of the sample space of
graphs to targets, Z, and the fact that all nodes
are unique, there will be many possible spurious
correlations between G and t which the model can
learn and solve the task via these shortcuts. As
these shortcuts are non-generalizable, the model
will fail during inference. Thus by using structured
samples, we are exposing the underlying sensitivity
of the task to the model by removing noise that

12500

would otherwise disguise this aspect of the task.
The empirical results show this accounts for some
of the task’s difficulty but not all of it.

There is another role that sensitivity may play.
When we consider the question of why t is insuffi-
cient information, one reason may be that sensitiv-
ity to t is the actual cause of the difficulty. This is
a conjecture the task is difficult because it is sensi-
tive. A function is sensitive if small changes in the
input cause large changes in the output. Sensitive
functions are known to be hard for transformers to
learn (Hahn et al., 2021; Bhattamishra et al., 2023;
Hahn and Rofin, 2024). Such analyses depend on a
formal description of the sensitivity of the task and
we found formulizing this to be challenging.

We ran an initial exp. to evaluate this conjecture.
Teacher-forcing should decrease sensitivity via the
provided ground-truth (input) support. Teacher-
forcing is not viable for AR models. However,
IAR models have a viable teacher-forcing training
method while NAR models foregoe teacher-forcing.
Thus finding a performance difference between
them would empirically support this conjecture.

We train a NAR model in Exp. 26x to contrast
with Exp. 24x. Contrary to expectation, the per-
formance of the NAR model is nearly as good as
the IAR model, with D = 5 showing the only dif-
ference. We believe this result may not hold under
increased task difficulty, especially as M grows,
since more samples can offer ground-truth support
while bypassing the CHC. As we have not formally
defined sensitivity, this remains a conjecture only,
with, potentially, some primary counter-evidence.

One open question is why the task’s difficulty
increases with D even though RASP analysis indi-
cates the solutions do not depend on D. This may
be explained by Z depending on D. It may also
relate to the sensitivity conjecture, as D increases
the number of possible targets for a given graph.

Another open question is why increasing the
layers helps for the encoder-only model. As there
were some successful trials with the smaller model,
it can not be the case that the number of layers was
a constraint on solving the task, however, it seems
easier to find the solution with more layers.

Perhaps the biggest open question is why only
the encoder-only model consistently solves the task.
If this is solely due to the non-causal parameteriza-
tion, we would expect the encoder-encoder model
to perform the same as the training method is iden-
tical (Exps. 19, 20, 19x vs. 24, 25, 24x). As this is
not the case, there must be a significant difference

between these two non-causal parameterizations.
This was an unexpected finding. The encoder-only
model is unique in that the source-side represen-
tation conditions and is dependent on the target-
side. This is not true of the decoder-only model
due to the causal constraint and not true of the
encoder-decoder and encoder-encoder models as
both employ a source-side encoder that isolates and
prevents it from conditioning on the target-side.

One explanation for this behaviour is the
encoder-only model may learn to write t into the
correct target position and then condition on this
latent variable when forming the representation of
G. Such an algorithm would explain why 1-step
NAR and M -step IAR inference both produce the
same results, as the iterative process may already
be applied in the latent space across layers. This
also relates to Exp. 26x, which indicates that condi-
tioning on ground-truths is not a critical component
of such behaviour and that t may be sufficient su-
pervision given the appropriate parameterization.

The path-star task is seemingly trivial but decep-
tively difficult and we make large headway into
solving the mystery behind this difficulty. While
we do not solve it using the decoder-only model,
we expose several issues that make the task harder
but are not caused by teacher-forcing. We demon-
strate that it is solvable in the simplified setting
using arm-wise permutation. We show that the rel-
ative position of Q to G induces a representation
problem for decoder-only models (Exp. 4 vs. 5).
We explain why this works and why edge-wise per-
mutation increases the difficulty via RASP. We also
show that overfitting is an issue (Exp. 4 vs. 7).

We show the task can be learnt, if inconsistently,
via an AR encoder-decoder model trained using
teacher-forcing (Exps. 14 and 15). These successes
depend on using a non-causal representation of G
and structured samples. Thus the difficulty of the
task is reduced when accounting for these hidden
factors. The arm-wise exps. show a key factor to
the task’s difficulty is the edge-wise permutation of
G and providing more structure to the graph makes
the task solvable. Given this, we expect the issue
with next-token prediction to apply to graph tasks
where the graph needs to be reconstructed from a
set of shuffled edges. We are skeptical that it will
apply to general tasks without these conditions.

Lastly, we find the encoder-only model can con-
sistently solve the task (Exp. 24x). Thus the task is
not pathological to teacher-forcing per se but specif-
ically when combined with a causal AR model.

12501

4 Limitations

We do not claim to have fully unraveled the mystery
of the path-star task and we try to fully exhibit the
limitations of the current work, in hopes that others
will become interested in improving on our results.
Solving the task is not important in itself, but rather
it is the insights gained into why the task is difficult
for certain models or training methods that is impor-
tant. Bachmann and Nagarajan (2024) introduced
the task because of the strong implications it would
have to the next-token prediction paradigm if the
task was not learnable due to the CHC. By ques-
tioning the implications of the CHC hypothesis, we
have potentially reduced the importance of the task.
This begs the question, is the path-star task still
interesting? One major limitation to our work is
that we can not fully explain why the encoder-only
model is the only one to work and why in both the
NAR and IAR settings. However, the fact that the
four different types of models all have different
performances and thus capabilities in regards
to learning the task, shows that the path-star
task is useful in exposing these different capabil-
ities and learning dynamics, and thus justifies
interest in the task.

One explanation is that the encoder-only model
can use the target-side tokens for latent compu-
tation which can affect the source-side. This is
mentioned above but we do not attempt any experi-
ments in this direction here. Given the O(logM)
RASP program requires the ‘|’ tokens to be used as
state-storage, we feel like extra compute tokens in
the sequence may be required for efficiently learn-
ing the task. This may be related to ‘thinking’ to-
kens (Herel and Mikolov, 2023; Goyal et al., 2024).
This is a direction we leave for future work.

Arguably, the original task setting requires that
we solve the problem using a decoder-only model.
We made progress in this, by considering the rel-
ative position of Q to G and proved decoder-only
models can solve the task via RASP, but we have
no empirical results where the solution is learnt.

One missing experiment would be increasing the
training dataset size. We are implicitly doing this
via structured samples which acts as a ‘smart’ way
of increasing the data. However, this method does
not always prevent overfitting, so dataset size may
still be an issue. We do not consider large values of
D. We also only do 11 trials per experiment, which
is not enough for significance. However, this work
does report the results of 31×4×11 = 1364 trials.

We only consider a single value of M . This is
justified in the fact that the RASP analysis indicates
that the models will not generalize as M increases
with edge-wise permutation. We do not believe
that there exists an algorithm that can solve the task
with O(1) layers, though we have not proven this.
This brings us to an important open question: the
IAR models do not find the reverse order solution.
We expect this has to do with the uniform order-of-
generation assumption they employ. Interestingly,
if they could find the reverse order, then it can be
done with O(1) layers, which would show that IAR
models can generalize to larger M where AR and
NAR models can not.

Related to this is our focus on transformers. The
arm traversal requires O(logM) or O(M) layers
because transformers can only make pair-wise com-
parisons on tokens. LSTMs have no such limita-
tion and thus may be capable of encoding the arms
better than transformers (but this may not be true
(Sanford et al., 2024)). However, LSTMs and trans-
formers are known to behave differently to sensitive
functions. Thus any potential differences between
models will be interesting, but it may be difficult
to pinpoint the reasons for the differences.

Finally, we attempt no experiments with LLMs.
If a LLM can solve the task, that is only interesting
or informative insofar as it provides an explanation
for why a large model can when a small one can not.
As such, we believe the results we have provided
in this work will still be critical in such a case. If
LLMs can solve the task, it will be because they are
making use of some learnt bias which helps with
the task, but given the opaque nature of LLMs and
their training, this will be difficult to discern.

Acknowledgments

We thank Siavash Kazemian, Gagandeep Singh,
Shunan Zhao, and Vaishnavh Nagarajan for their
insightful feedback. We thank Reviewer 3 who
strongly advocated for our work and Reviewer
1, who despite being apprehensive of our work,
engaged in a long discussion with us, correctly
pointed out issues, and provided strong feedback,
allowing us to significantly improve our work.

Resources used in preparing this research were
provided, in part, by the Province of Ontario, the
Government of Canada through CIFAR, and com-
panies sponsoring the Vector Institute

12502

References
Kushal Arora, Layla El Asri, Hareesh Bahuleyan, and

Jackie Cheung. 2022. Why exposure bias matters:
An imitation learning perspective of error accumu-
lation in language generation. In Findings of the
Association for Computational Linguistics: ACL
2022, pages 700–710, Dublin, Ireland. Association
for Computational Linguistics.

Gregor Bachmann and Vaishnavh Nagarajan. 2024. The
pitfalls of next-token prediction. In Proceedings of
the 41st International Conference on Machine Learn-
ing, volume 235 of Proceedings of Machine Learning
Research, pages 2296–2318. PMLR.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam
Shazeer. 2015. Scheduled sampling for sequence
prediction with recurrent neural networks. In Pro-
ceedings of the 28th International Conference on
Neural Information Processing Systems - Volume 1,
NIPS’15, page 1171–1179, Cambridge, MA, USA.
MIT Press.

Lukas Berglund, Meg Tong, Maximilian Kaufmann,
Mikita Balesni, Asa Cooper Stickland, Tomasz Ko-
rbak, and Owain Evans. 2024. The reversal curse:
LLMs trained on “a is b” fail to learn “b is a”. In
The Twelfth International Conference on Learning
Representations.

Satwik Bhattamishra, Arkil Patel, Varun Kanade, and
Phil Blunsom. 2023. Simplicity bias in transformers
and their ability to learn sparse Boolean functions.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 5767–5791, Toronto, Canada.
Association for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lund-
berg, et al. 2023. Sparks of artificial general intelli-
gence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712.

Mohna Chakraborty, Adithya Kulkarni, and Qi Li. 2023.
Zero-shot approach to overcome perturbation sensi-
tivity of prompts. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 5698–5711,

Toronto, Canada. Association for Computational Lin-
guistics.

Xinyun Chen, Ryan Andrew Chi, Xuezhi Wang, and
Denny Zhou. 2024. Premise order matters in rea-
soning with large language models. In Forty-first
International Conference on Machine Learning.

Yanda Chen, Chen Zhao, Zhou Yu, Kathleen McKe-
own, and He He. 2023. On the relation between
sensitivity and accuracy in in-context learning. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pages 155–167, Singapore.
Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and
Luke Zettlemoyer. 2019. Mask-predict: Parallel de-
coding of conditional masked language models. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 6112–
6121, Hong Kong, China. Association for Computa-
tional Linguistics.

Olga Golovneva, Zeyuan Allen-Zhu, Jason E Weston,
and Sainbayar Sukhbaatar. 2024. Reverse training
to nurse the reversal curse. In First Conference on
Language Modeling.

Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Kr-
ishna Menon, Sanjiv Kumar, and Vaishnavh Nagara-
jan. 2024. Think before you speak: Training lan-
guage models with pause tokens. In The Twelfth
International Conference on Learning Representa-
tions.

Albert Gu and Tri Dao. 2023. Mamba: Linear-time
sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor OK
Li, and Richard Socher. 2018. Non-autoregressive
neural machine translation. In International Confer-
ence on Learning Representations.

Jiatao Gu and Xiang Kong. 2021. Fully non-
autoregressive neural machine translation: Tricks of
the trade. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
120–133, Online. Association for Computational Lin-
guistics.

Michael Hahn, Dan Jurafsky, and Richard Futrell. 2021.
Sensitivity as a complexity measure for sequence
classification tasks. Transactions of the Association
for Computational Linguistics, 9:891–908.

12503

https://doi.org/10.18653/v1/2022.findings-acl.58
https://doi.org/10.18653/v1/2022.findings-acl.58
https://doi.org/10.18653/v1/2022.findings-acl.58
https://proceedings.mlr.press/v235/bachmann24a.html
https://proceedings.mlr.press/v235/bachmann24a.html
https://openreview.net/forum?id=GPKTIktA0k
https://openreview.net/forum?id=GPKTIktA0k
https://doi.org/10.18653/v1/2023.acl-long.317
https://doi.org/10.18653/v1/2023.acl-long.317
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/2023.acl-long.313
https://doi.org/10.18653/v1/2023.acl-long.313
https://openreview.net/forum?id=4zAHgkiCQg
https://openreview.net/forum?id=4zAHgkiCQg
https://doi.org/10.18653/v1/2023.findings-emnlp.12
https://doi.org/10.18653/v1/2023.findings-emnlp.12
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/D19-1633
https://doi.org/10.18653/v1/D19-1633
https://openreview.net/forum?id=HDkNbfLQgu
https://openreview.net/forum?id=HDkNbfLQgu
https://doi.org/10.18653/v1/2021.findings-acl.11
https://doi.org/10.18653/v1/2021.findings-acl.11
https://doi.org/10.18653/v1/2021.findings-acl.11

Michael Hahn and Mark Rofin. 2024. Why are sensitive
functions hard for transformers? In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 14973–15008, Bangkok, Thailand. Association
for Computational Linguistics.

Adi Haviv, Ori Ram, Ofir Press, Peter Izsak, and Omer
Levy. 2022. Transformer language models without
positional encodings still learn positional informa-
tion. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2022, pages 1382–1390,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

David Herel and Tomas Mikolov. 2023. Thinking to-
kens for language modeling. 8th Conference on Arti-
ficial Intelligence and Theorem Proving.

Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan
Natesan Ramamurthy, Payel Das, and Siva Reddy.
2023. The impact of positional encoding on length
generalization in transformers. In Advances in Neu-
ral Information Processing Systems, volume 36,
pages 24892–24928. Curran Associates, Inc.

Jason Lee, Elman Mansimov, and Kyunghyun Cho.
2018. Deterministic non-autoregressive neural se-
quence modeling by iterative refinement. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1173–1182,
Brussels, Belgium. Association for Computational
Linguistics.

Yi Liao, Xin Jiang, and Qun Liu. 2020. Probabilistically
masked language model capable of autoregressive
generation in arbitrary word order. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 263–274, Online.
Association for Computational Linguistics.

Giovanni Monea, Armand Joulin, and Edouard Grave.
2023. Pass: Parallel speculative sampling. arXiv
preprint arXiv:2311.13581.

Marianna Nezhurina, Lucia Cipolina-Kun, Mehdi
Cherti, and Jenia Jitsev. 2024. Alice in wonderland:
Simple tasks showing complete reasoning breakdown
in state-of-the-art large language models. arXiv
preprint arXiv:2406.02061.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for se-
quence modeling. arXiv preprint arXiv:1904.01038.

Lihua Qian, Hao Zhou, Yu Bao, Mingxuan Wang, Lin
Qiu, Weinan Zhang, Yong Yu, and Lei Li. 2021.
Glancing transformer for non-autoregressive neural
machine translation. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 1993–2003, Online. Association
for Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. Language mod-
els are unsupervised multitask learners.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence level train-
ing with recurrent neural networks. In 4th Inter-
national Conference on Learning Representations,
ICLR 2016.

Clayton Sanford, Daniel Hsu, and Matus Telgarsky.
2024. Transformers, parallel computation, and log-
arithmic depth. In Proceedings of the 41st Interna-
tional Conference on Machine Learning, volume 235
of Proceedings of Machine Learning Research, pages
43276–43327. PMLR.

Yao-Hung Hubert Tsai, Shaojie Bai, Makoto Yamada,
Louis-Philippe Morency, and Ruslan Salakhutdinov.
2019. Transformer dissection: An unified under-
standing for transformer’s attention via the lens of
kernel. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4344–4353, Hong Kong, China. Association for Com-
putational Linguistics.

Karthik Valmeekam, Matthew Marquez, Sarath Sreed-
haran, and Subbarao Kambhampati. 2023. On the
planning abilities of large language models - a crit-
ical investigation. In Thirty-seventh Conference on
Neural Information Processing Systems.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Chunqi Wang, Ji Zhang, and Haiqing Chen. 2018. Semi-
autoregressive neural machine translation. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 479–488,
Brussels, Belgium. Association for Computational
Linguistics.

Gail Weiss, Yoav Goldberg, and Eran Yahav. 2021.
Thinking like transformers. In International Con-
ference on Machine Learning, pages 11080–11090.
PMLR.

Noam Wies, Yoav Levine, and Amnon Shashua. 2023.
Sub-task decomposition enables learning in sequence
to sequence tasks. In The Eleventh International
Conference on Learning Representations.

Ronald J Williams and David Zipser. 1989. A learn-
ing algorithm for continually running fully recurrent
neural networks. Neural computation, 1(2):270–280.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. Advances in neural informa-
tion processing systems, 32.

12504

https://doi.org/10.18653/v1/2024.acl-long.800
https://doi.org/10.18653/v1/2024.acl-long.800
https://doi.org/10.18653/v1/2022.findings-emnlp.99
https://doi.org/10.18653/v1/2022.findings-emnlp.99
https://doi.org/10.18653/v1/2022.findings-emnlp.99
https://proceedings.neurips.cc/paper_files/paper/2023/file/4e85362c02172c0c6567ce593122d31c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/4e85362c02172c0c6567ce593122d31c-Paper-Conference.pdf
https://doi.org/10.18653/v1/D18-1149
https://doi.org/10.18653/v1/D18-1149
https://doi.org/10.18653/v1/2020.acl-main.24
https://doi.org/10.18653/v1/2020.acl-main.24
https://doi.org/10.18653/v1/2020.acl-main.24
https://doi.org/10.18653/v1/2021.acl-long.155
https://doi.org/10.18653/v1/2021.acl-long.155
https://proceedings.mlr.press/v235/sanford24a.html
https://proceedings.mlr.press/v235/sanford24a.html
https://doi.org/10.18653/v1/D19-1443
https://doi.org/10.18653/v1/D19-1443
https://doi.org/10.18653/v1/D19-1443
https://openreview.net/forum?id=X6dEqXIsEW
https://openreview.net/forum?id=X6dEqXIsEW
https://openreview.net/forum?id=X6dEqXIsEW
https://doi.org/10.18653/v1/D18-1044
https://doi.org/10.18653/v1/D18-1044
https://openreview.net/forum?id=BrJATVZDWEH
https://openreview.net/forum?id=BrJATVZDWEH

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin,
Omid Saremi, Joshua M. Susskind, Samy Bengio,
and Preetum Nakkiran. 2024. What algorithms can
transformers learn? a study in length generalization.
In The Twelfth International Conference on Learning
Representations.

Barret Zoph, Colin Raffel, Dale Schuurmans, Dani Yo-
gatama, Denny Zhou, Don Metzler, Ed H. Chi, Jason
Wei, Jeff Dean, Liam B. Fedus, Maarten Paul Bosma,
Oriol Vinyals, Percy Liang, Sebastian Borgeaud, Tat-
sunori B. Hashimoto, and Yi Tay. 2022. Emergent
abilities of large language models. TMLR.

A Model Details

In Figures 2, 3, 4, 5 we show the different parame-
terizations and attention constraints between mod-
els. We illustrate all possible attention connections
for one token on the source-side (lilac) and one
token on the target-side (green). For the encoder-
encoder model, we input the partial ground-
truth y9, y12, y13 with y10, y11, y14 masked and
for the encoder-only model we input the par-
tial ground-truth y9, y12, y14 with y10, y11, y13
masked. These represent different masking sam-
ples during training. Note that the prediction of y11
in both cases does not depend on the ground-truth
of y10 and hence bypases the CHC.

A.1 Inference details

Traditional AR models employ an autoregressive
inference procedure where the predicted output is
used as part of the conditioning information for
the proceeding step. We use a ‘teacher-forced’ in-
ference procedure that conditions on the partial
ground-truths instead. We call it ‘teacher-forced’
as this conditioning matches how teacher-forcing is
done during training. This means we are evaluating
the ground-truth-conditioned performance and not
autoregressive performance during inference. This
evaluation method was also used by Bachmann
and Nagarajan (2024) to prevent or rule out any
inference-time bias. We also performed traditional
autoregressive inference, however, this produced
the same results in terms of sequence accuracy (and
thus we did not report them). This is because as
soon as the wrong leading node is predicted all suc-
ceeding nodes are incorrectly predicted and thus,
the sequence accuracy is the same as lt is incorrect
in both cases. Thus the reason we can do this is
because we end up with the same results as tradi-
tional autoregressive inference and by doing it, we
can explicitly rule out any issues stemming from
training and inference time differences.

Source-side Target-side

Targets

Figure 2: A decoder-only model.

SOS

Source-side Target-side

Targets

Figure 3: An encoder-decoder model.

Source-side Target-side

Targets

Figure 4: An encoder-encoder IAR model.

Source-side Target-side

Targets

Figure 5: An encoder-only IAR model.

12505

https://openreview.net/forum?id=AssIuHnmHX
https://openreview.net/forum?id=AssIuHnmHX

Note this only applies to AR models. The NAR
models have no autoregressive procedure (and
hence can not have an inference-time bias). As
stated above, we use 1-step NAR inference (with
IAR training) for the IAR models. Also, as men-
tioned, we tried true autoregressive M -step itera-
tive inference for them as well, however, we did not
report these results as they are the same as the 1-
step NAR inference results. Note we can not have
a ‘teacher-forced inference’ for the IAR models
since there is no canonical order to partially con-
dition and so we would have to sample different
conditioning ground-truths which would not be an
informative evaluation method.

B Task Representation and Tokenization

In Figure 6, we illustrate multiple possible tokeniza-
tions in reference to the example path-star graph
in Fig. 1. The first and third tokenizations are the
same edge- and arm-wise examples provided in the
caption of Fig. 1. The second one shows Q be-
fore G, i.e.. ‘Start’. The fourth tokenization shows
(the only) two possible structured samples of the
original edge-wise tokenization.

C The Clever Hans Phenomenon

In Fig 7 we show how the CHC appears during
training. Here we see that the first token to fit
to 100% accuracy is the given start node, s. The
next token is the given target node, t. While this
might seem strange as it is generated at the end
of the sequence, this token is actually easily pre-
dictable since the model can infer that the target
token should always be placed in the M th position.
This is because there is no requirement that predic-
tions be generalizable to different arm lengths and
hence the target token is always in the M th posi-
tion. This is explicitly done to maintain that the
test data is in-domain with the training data. Next,
we see that all other non-leading nodes fit via the
CHC. As no trials succeeded in this experiment, the
validation accuracy of the leading token becomes
stagnant at chance, while the training accuracy im-
proves (due to overfitting).

D Structured Samples and Overfitting

Fig 8 shows the effect structured samples have on
overfitting. Note, that the number of structured
samples must be less than or equal to D − 1, as
there are only D target-arm pairs and we discount
the original sample.

E RASP

RASP (Restricted Access Sequence Programming)
is a formal programming language used to validate
the existence of a transformer that can solve a given
task. Our RASP code is based on the numpy-like
version of RASP provided by Zhou et al. (2024).
They extended RASP to causal attention. They
also place extra limitations on operations to dis-
allow difficult-to-learn representations. One such
limitation restricts math on positional indices to
be only single increments. Our algorithms do not
meet this limitation, however, we do not believe it
causes issues with learnability for our specific task.
RASP programs take in a tokenized word/symbol
sequence as input called ‘seq’ and can create the
indices, ‘idx’, via Listing 8. We always assume
that Q (‘q’ in RASP code) is at the start (this only
matters for the causal algorithm in Listing 6.

‘d’ is a symbol-to-id dictionary and ‘reverse_d’
is the inverted dictionary. In some algorithms, we
use extra special symbols to help present the output
of the algorithm, however, these do not contribute
to the solution and are only used for human read-
ability. These include a junk symbol ‘j’ and arm
markers ‘a0’ through ‘aM−1’, which mark a node
as being the ith place in the arm. We use ‘-99’ and
‘-89’ as masking values. Instead of using numeric
ids for s and t, we use the characters ‘s’ and ‘t’ for
readability.

Note, we only solve the task for identifying the
leading node, where we say the RASP program
solves the task if it can transform the input se-
quence such that the new sequence contains at least
one ‘edge’ or sequence of three contiguous tokens,
(i, j, k), where one of those tokens is the correct
leading node, lt, and the other is the indicated target
node, t. The algorithm for identifying the leading
node is different from all other nodes, which can
be identified using the CHC. As such, even more
layers may be required for the transformer since
some may be allocated to leaning the CHC (po-
tentially both can be learnt by the same layers but
using different attention heads). We do not claim
that these are the optimal algorithms, as we just
want to show that various solutions exist.

In Appx. E.1 we outline algorithms for solving
the path-star task and core and library functions
(slightly modified from from Zhou et al. (2024))
are in Appx. E.2.

12506

EOS

BOS EOS

Arm-wise permutation

BOS EOS

Edge-wise permutation with 2 structured samples

BOS EOS

BOS EOS

BOS EOS

Edge-wise permutation

Edge-wise permutation and is at the start

BOS

Text

Batch

Figure 6: Different tokenizations for a given path-star graph.

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Po
sit

io
na

l A
cc

ur
ac

y Chance at 1/(D=3)
Valid Acc. Pos. 1 = Start Node
Train Acc. Pos. 1 = Start Node
Valid Acc. Pos. 2 = Leading Node
Train Acc. Pos. 2 = Leading Node
Valid Acc. Pos. 3
Train Acc. Pos. 3
Valid Acc. Pos. 4
Train Acc. Pos. 4
Valid Acc. Pos. 5 = End Node
Train Acc. Pos. 5 = End Node

Figure 7: The appearance of the Clever Hans cheat over training. Data corresponds to row/Exp. 1 of Table 1, where
D=3, M = 5.

12507

0 10 20 30 40 50 60 70
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Se
q

Ac
c

Chance at 1/(D=2)
Train Loss
Train Seq Acc
Valid Loss
Valid Seq Acc

0 5 10 15 20 25 30 35
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Se
q

Ac
c

Chance at 1/(D=2)
Train Loss
Train Seq Acc
Valid Loss
Valid Seq Acc

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Se
q

Ac
c

Chance at 1/(D=4)
Train Loss
Train Seq Acc
Valid Loss
Valid Seq Acc

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Se
q

Ac
c

Chance at 1/(D=4)
Train Loss
Train Seq Acc
Valid Loss
Valid Seq Acc

0.0

0.2

0.4

0.6

Lo
ss

0.0

0.2

0.4

0.6

Lo
ss

0.0

0.2

0.4

0.6

Lo
ss

0.0

0.2

0.4

0.6
Lo

ss

D=2 without structured samples.

D=4 without structured samples.

D=2 with one structured sample per original example.

D=4 with one structured sample per original example.

Figure 8: Plots 1 and 3 visualize the training of the experiments of Exp. 4 in Table 1 where D = 2 and D = 4
respectively. Plots 2 and 4 visualize the corresponding experiments in Exp. 7 when structured samples are employed.
Each plot shows the loss and sequence accuracy across all 11 trials of the given experiment for both the training and
validation partitions. When a trial succeeds in finding the desired solution, the sequence accuracy spikes to 100%,
and the validation loss drops to near-zero. The loss is cut off at 0.75 for visibility.
In plot 1, all trials succeed, however, when D is increased to 4, only 1/11 trials succeed as shown in plot 3. Here we
see that the training and validation losses diverge shortly after epoch 20, resulting in overfitting. In Plot 4, the use of
structured samples prevents this divergence, leading to 10/11 trials succeeding, with the remaining trial not finding
the solution within the 100 epoch limit.

12508

E.1 Path-star RASP programs

RASP programs in Listings 1, 2, 3, and 4 are
for non-causal models (encoder-decoder9, encoder-
encoder, or encoder-only). They assume that Q is
before G, but only for convenience. The first three
require O(M) KQV operations and thus layers to
route information across the arms. The program in
Listing 4 requires O(logM) layers.

The RASP program in Listing 1 identifies the
correct target edge and walks back the target node
to the matching leading node. This makes use of
the BOS token to store the current state of the walk-
back. We use some helper values and states to
make processing the output of each KQV operation
easier. ‘masked_x’ will mask out Q from the input
sequence and ‘g_start’ is the token offset due to
Q being at the start. ‘i_nodes’ and ‘j_nodes’ are
further masked versions of the input such that only
‘i’ and ‘j’ position nodes are visible in the sequence
respectively. This means that one can match a
particular j-node with a particular i-node by value
(or reverse) uniquely for all nodes except the start
node. We only show how these are computed for
Listing 1 and just give them as function input for
the others which also use them. The RASP program
in Listing 2 is similar, except all final nodes are
walked back in parallel, and the one in 3 does this
but in the opposite direction, by identifying the
leading nodes and walking them to the final nodes
of each arm. Since there is only one BOS token,
we can not use it to keep the current state of the D
arms. Instead, we overwrite the values of either the
i or j nodes. This is permitted as any edge is no
longer useful for solving the problem once it has
been traversed.

The RASP program in Listing 5 requires a con-
stant, O(1), number of operations but requires that
arm-wise permutation is used and does not work
with edge-wise permutation. This algorithm can
just identify the final nodes and then look back at
the appropriate number of positions via learning
‘leading_offset’ to find the correct leading node.

The RASP program in Listing 4 requires
O(logM) layers. It makes use of two ‘|’ mark-
ers instead of one, allowing us to traverse the edges
in both the forward and backward directions. These
extra states are used to store the current current dis-
tance a given edge has been able to be routed to at
each step. We can not use the original (i, j) node to

9we count this as non-causal here as the computations are
done on the encoder-side.

store the arm states since, as we skip connections,
we sometimes need the original edges to potentially
do an extra step to match the leading nodes to the
final nodes. This depends on the length of the arms.
Note, using two ‘|’ markers is not necessary but
we believe using both directions makes the algo-
rithm’s behaviour more obvious. Also, multiple
heads would allow both directions to be considered
by a single KQV operation.

The logarithmic behaviour of this algorithm is
achieved by skipping or doubling the routed dis-
tance at each step. Since all connections are com-
puted in parallel, the first step computes all direct
connections. The next step can then reuse these
computations to compute the nodes 2-connections
away from any given node. And then this can be
used to compute the nodes 4-connections away and
so forth. Note that if, at any step, the connections
run out for a given position, this process stops,
hence M does not need to be an exact power of 2.
This parallel doubling algorithm was also found by
Sanford et al. (2024) to solve the k-hops task in
O(log k).

The RASP program in Listing 6 works for causal
models with edge-wise permutation. It requires that
Q is before G and also requires O(M) operations.
This algorithm is similar to the ones in Listings 2
and 3, however, it is more complicated due to the
casual constraint. The issue here is that we can only
move towards the end the of the sequence. Here we
use the ‘|’ tokens to keep the current leading nodes.
To achieve this we need to consider two different
cases or rules. In rule 1 we have the condition
that the connecting edge is before the current edge.
In this case, we move the next connecting edge’s
next token to the current edge. In rule 2 we have
the condition that the connecting edge is after the
current one. In that case, we copy the leading node
over to this edge and mark it as the current edge.

Note, that one explanation as to why Q is needed
to be before G is that this allows us to identify the
leading nodes via the start node. One may have
thought that providing the start node is redundant
in Q, however, otherwise, the start node is only
identifiable by determining that it is the only node
with degree D. However, the causal constraint
means we can not count the number of instances
of a token at all time steps and thus not its degree.
This would explain why placing Q before G makes
the task easier for the decoder-only model.

12509

E.2 RASP core and library functions
We define the required core functions of RASP
and helper library functions used in the above algo-
rithms.

Listing 7: An array filled with ‘const’ of shape ‘x’.
def full(x, const):

return np.full_like(x, const))

Listing 8: An array of 0 ... len(X). These correspond to
positional embeddings and allow us to make position-
wise decisions.
def indices(x):

return np.arange(len(x), dtype=int)

Listing 9: A bool array.
def is_true(x, default =0):

return x > default

Listing 10: A bool array. It is also an example predicate
function given to ‘select’.
def equals(x, y):

return x == y

Listing 11: An len(k) × len(k) bool matrix.
def select(k, q, pred , causal=True):

s = len(k)
A = np.zeros((s, s), dtype=bool)
for qi in range(s):

k index <= q index if causal
for kj in (range(qi + 1)

if causal else range(s)):
A[qi,kj] = pred(k[kj],q[qi])

Listing 12: An array counting the number of True values
in each row of selection matrix A.
def sel_width(A):

o = np.ones(len(A))
return np.dot(A, o). astype(int)

Listing 13: An array
def aggr_mean(A, v, default =0):

out = np.dot(A, v)
norm = sel_width(A)
o = np.full_like(v, default ,

dtype=float)
out = np.divide(out , norm , out=o,

where=(norm != 0))
return out.astype(int)

Listing 14: An array. The workhorse of RASP as it
mimics the attention mechanism in a transformer.
def kqv(k, q, v, pred ,

default=0, causal=True):
A = select(k, q, pred , causal)
return aggr_mean(A, v,

default=default)

Listing 15: An array.
def seq_map(x, y, func):

l = [func(xi , yi)
for xi, yi in zip(x, y)]

return np.array(l). astype(int)

Listing 16: An array.
def where(condition , x_if , y_else):

x_m = seq_map(x_if , condition ,
lambda x, m:

x if m else 0)
y_m = seq_map(y_else , condition ,

lambda y, m:
y if not m else 0)

return seq_map(x_m , y_m ,
lambda x, y:
x if y == 0 else y)

12510

Listing 1: Simple RASP program for non-causal encoders which propagates the given target node back across the
arm until the leading node is found.

def non_causal_propagate_back_target(seq):
helper representations which can be deduced via the positions
idx = indices(seq)
masked_x = specification_mask(seq) # mask out q

each node id will be unique within i_nodes and j_nodes
this can be deduced via positional information
keeping these as separate states just means that
we do not need to do the masking at each step to process the kqv

g_start = len(q) if q_before_g else 0
i_nodes = where((idx - g_start) % 3 == 0, masked_x , full(masked_x , d['j']))
j_nodes = where((idx - g_start) % 3 == 1, masked_x , full(masked_x , d['j']))

write_in_mask = full(seq , False)
write_in_mask [0] = True

look up the target token via position in specification first
target_idx = kqv(j_nodes , full(j_nodes , d['t']), idx , equals ,

default=-99, causal=False) # index in g
cur_state = where(write_in_mask , target_idx , seq)

for step in range(0, arm_len - 2): # skip start and initial node
cur_idx = where(write_in_mask , cur_state , full(cur_state , -99))

write in the arm token , this is just to show how an arm could be marked
cur_state = where(cur_idx [0] == idx ,

full(cur_state , d[get_cur_marker(step)]), cur_state)

Get the connecting edge token
cur_idx = where(write_in_mask , cur_state , full(cur_state , -100)) - 1
cur_state = where(cur_idx [0] == idx ,

full(cur_state , d[get_cur_marker(step , True)]), cur_state)

connecting_token = kqv(idx , cur_idx , i_nodes , equals ,
default =-99, causal=False)

cur_state = where(write_in_mask , connecting_token , cur_state)

get connecting node idx
if step < arm_len - 3:

cur_idx = kqv(j_nodes , connecting_token , idx , equals ,
default=-99, causal=False)

cur_state = where(write_in_mask , cur_idx , cur_state)

assert reverse_d[cur_state [0]] == correct_initial_node
return cur_state

12511

Listing 2: RASP program for non-causal encoders which propogates each final node to the edge containing the
leading node of each arm.

def non_causal_propagate_backward_targets(seq , idx , masked_x ,
g_start , i_nodes , j_nodes):

is final if only once in masked_x
counts = sel_width(select(masked_x , masked_x , equals , causal=False))
is_final = equals(counts , full(counts , 1))

pos of final_nodes nodes in i_nodes
final_nodes = where(is_final , j_nodes , full(idx , -99))
final_idx = where(is_final , idx , full(idx , -99))
final_idx_slash = where(is_final , idx + 1, full(idx , -99))
is_final_slash = kqv(idx + 1, idx , is_final , equals ,

default=False , causal=False) # shift right

cur_state = seq
connecting_nodes = kqv(final_idx_slash , idx , final_nodes , equals ,

default=-99, causal=False) # shift
for step in range(0, arm_len - 2): # while start not found

find connecting indices
connecting_idxs = kqv(j_nodes , connecting_nodes , idx , equals ,

default=-99, causal=False)

cur_state = where(is_final_slash , connecting_idxs , seq)
connecting_nodes = kqv(idx , connecting_idxs - 1, i_nodes , equals ,

default =-99, causal=False)
cur_state = where(is_final_slash , connecting_nodes , seq)

check valid , assume q before g
output = detokenize(cur_state)
edges = [(output[i], output[i+1], output[i+2])

for i in range(g_start , len(output), 3)]
is_valid = False
for edge in edges:

if edge [1] == 't' and edge [2] == correct_initial_node:
is_valid = True
break

assert is_valid
return cur_state

12512

Listing 3: RASP program for non-causal encoders which propogates each leading node to the edge containing end
node of each arm.

def non_causal_propagate_forward_start(seq , idx , masked_x ,
g_start , i_nodes , j_nodes):

get start indices
is_start = equals(i_nodes , full(j_nodes , .d['s']))
pos of start nodes in i_nodes
start_idx = where(is_start , idx , full(idx , -99))
cur_state = where(is_start , start_idx , .seq)

get leading nodes from j_nodes
leading_nodes = kqv(idx , start_idx + 1, j_nodes , equals ,

default=-99, causal=False)
cur_state = where(is_start , leading_nodes , seq)

connecting_nodes = leading_nodes
for step in range(0, arm_len - 2): # while last not found

find connecting indices
connecting_idxs = kqv(i_nodes , connecting_nodes , idx , equals ,

default=-99, causal=False)
cur_state = where(is_start , connecting_idxs , seq)
connecting_nodes = kqv(idx , connecting_idxs + 1, j_nodes , equals ,

default =-99, causal=False)
cur_state = where(is_start , connecting_nodes , seq)

check valid , assume q before g
output = detokenize(cur_state)
edges = [(output[i], output[i+1]) for i in range(g_start , len(output), 3)]
is_valid = False
for edge in edges:

if edge [0] == 't' and edge [1] == correct_initial_node:
is_valid = True
break

assert is_valid
return cur_state

12513

Listing 4: RASP program for non-causal encoders with O(logM) required layers.
def non_causal_propagate_log(seq , idx , masked_x ,

g_start , i_nodes , j_nodes):

each edge is (i, j, k1, k2) due to having two '/' tokens
initialize each edge by moving i -> k1, j-> k2,
i_nodes_pos = where(not_equals(i_nodes , full(idx , d['j'])),

idx , full(idx , -99))
j_nodes_pos = where(is_true(j_nodes , full(idx , d['j'])),

idx , full(idx , -99))
k1_nodes_pos = kqv(idx , i_nodes_pos + 2, idx , equals ,

default=-89, causal=False)
k2_nodes_pos = kqv(idx , j_nodes_pos + 2, idx , equals ,

default=-99, causal=False)
k1_nodes = kqv(k1_nodes_pos , idx , i_nodes , equals ,

default=-89, causal=False)
k2_nodes = kqv(k2_nodes_pos , idx , j_nodes , equals ,

default=-99, causal=False)

for step in range(0, int(np.ceil(np.log2(arm_len - 1)))):
if this k1 == other k2, other k1 -> this k1
connecting_k1_pos = kqv(k2_nodes , k1_nodes , idx - 1, equals ,

default =-89, causal=False)
new_k1_nodes = kqv(idx , connecting_k1_pos , k1_nodes , equals ,

default =-89, causal=False)
k1_nodes = where(is_true(new_k1_nodes), new_k1_nodes , k1_nodes)

if this k2 == other k1, other k2 -> this k2
connecting_k2_pos = kqv(k1_nodes , k2_nodes , idx + 1, equals ,

default =-99, causal=False)
new_k2_nodes = kqv(idx , connecting_k2_pos , k2_nodes , equals ,

default =-99, causal=False)
note we can do k1_nodes here if we want parallel processing
k2_nodes = where(is_true(new_k2_nodes), new_k2_nodes , k2_nodes)

write in state
cur_state = where(is_true(k1_nodes), k1_nodes , seq)
cur_state = where(is_true(k2_nodes), k2_nodes , cur_state)

potentially do one extra step due to step size issues
if j = k1, then k2 -> j
conn = kqv(k1_nodes , j_nodes , idx + 1, equals ,

default=-99, causal=False)
new_j_nodes = kqv(idx , conn , k2_nodes , equals ,

default=-99, causal=False)
j_nodes = where(is_true(new_j_nodes), new_j_nodes , j_nodes)
cur_state = where(is_true(j_nodes_pos), j_nodes , cur_state)

check valid , assume q before g
note this does a check against four tokens ,
which is invalid if implemented in RASP ,
but can be done as series of pairwise comparisons
output = detokenize(cur_state)
edges = [(output[i], output[i+1], output[i+2], output[i+3])

for i in range(g_start , len(output), 4)]
is_valid = False
for edge in edges:

has_t = any([edge[i] == 't' for i in range (4)])
has_initial = any([edge[i] == correct_initial_node

for i in range (4)])
if has_t and has_initial:

is_valid = True
break

assert is_valid
return cur_state

12514

Listing 5: RASP program for non-causal encoders arm-wise permutation with O(1) required layers.

def non_causal_arms_propagate_backward_targets(seq , idx ,
masked_x , g_start ,
i_nodes , j_nodes):

is final if only once in masked_x
counts = sel_width(select(masked_x , masked_x , equals , causal=False))
is_final = equals(counts , full(counts , 1))

positions of final_nodes nodes in i_nodes
final_nodes = where(is_final , j_nodes , full(idx , -99))
final_idx = where(is_final , idx , full(idx , -99))
positions of final_nodes nodes in i_nodes
final_idx_slash = where(is_final , idx + 1, full(idx , -99))
is_final_slash = kqv(idx + 1, idx , is_final , equals ,

default=False , causal=False) # shift right

leading_offset = (arm_len - 3) * 3 + 1
leading_idx = final_idx - leading_offset
gather leading nodes and place in final slash
leading_nodes = kqv(idx , leading_idx , i_nodes , equals ,

default=-99, causal=False)
leading_nodes = kqv(final_idx_slash , idx , leading_nodes , equals ,

default=-99, causal=False) # shift
cur_state = where(is_final_slash , leading_nodes , seq)

check valid , assume q before g
output = detokenize(cur_state)
edges = [(output[i], output[i+1],

output[i+2]) for i in range(g_start , len(output), 3)]
is_valid = False
for edge in edges:

if edge [1] == 't' and edge [2] == correct_initial_node:
is_valid = True
break

assert is_valid
return cur_state

12515

Listing 6: RASP program for causal encoders/decoders.
def causal_propagate(seq , idx , masked_x , g_start , i_nodes , j_nodes):

is_start = equals(i_nodes , full(j_nodes , d['s'])) # get start indices
positions of start nodes in i_nodes , requires Q is before G
pos of start nodes in i_nodes
start_idx = where(is_start , idx , full(idx , -99))
find leading nodes and copy leading token to '/'
leading_idx = kqv(start_idx + 2, idx , idx + 1, equals ,

default=-99, causal=True) # shift
leading_nodes = kqv(idx , leading_idx , j_nodes , equals ,

default=-99, causal=True)

cur_state = where(is_true(leading_nodes), leading_nodes , seq)

edge is (i, j, k) where k started as '/' token and is used for memory
cur_j_idx = kqv(start_idx + 1, idx , idx + 1, equals ,

default=-99, causal=True) # shift by 1, add 1 to pos
cur_k_nodes = leading_nodes
cur_j_nodes = where(is_true(cur_j_idx), j_nodes , full(j_nodes , -99))

for step in range(0, arm_len - 1):
rule 1: connecting edge is before current edge ,
i.e. cur_j_idx > connecting_i_idx
then find match cur_j_node to connecting_i_node
and move connecting_j_node to cur_j_node

select width works as binary mask as only one possible match
is_before = sel_width(select(i_nodes , cur_j_nodes ,

equals , causal=True)) # values at j pos
connecting_i_idx = kqv(i_nodes , cur_j_nodes , idx , # values at j pos

equals , default=-99, causal=True)
connecting_i_node = kqv(idx - 1, connecting_i_idx , j_nodes , equals ,

default=-99, causal=True) # at j pos
update state , only j changes
cur_j_nodes = where(is_before , connecting_i_node , cur_j_nodes)
write in connecting token to k-node pos
cur_state = where(is_before , connecting_i_node , cur_state)

rule 2: connecting edge is after current edge ,
i.e. cur_j_idx < connecting_i_idx
find match of cur_j_node to connecting_i_node
and move cur_j_node to connecting_k_node

notice the reverse order of the arguments
is_after = sel_width(select(cur_j_nodes , i_nodes ,

equals , causal=True))
at connecting i pos , points to the cur j node pos
connecting_i_idx = kqv(cur_j_nodes , i_nodes , idx , equals ,

default =-99, causal=True)
at connecting i pos , points to the cur j node pos
connecting_k_idx = kqv(idx + 2, idx , connecting_i_idx , equals ,

default =-99, causal=True)
connecting_k_node = kqv(idx , connecting_k_idx + 1, cur_k_nodes , equals ,

default=-99, causal=True)
update state by moving current edge to future edge
new_after = is_true(connecting_k_node) # at k pos
cur_k_nodes = where(new_after , connecting_k_node , cur_k_nodes)

cur_j_idx_at_i = where(is_after , idx + 1, full(idx , -99))
cur_j_idx = kqv(cur_j_idx_at_i , idx , idx + 1, equals ,

default=-99, causal=True) # shift by 1
new_cur_j_nodes = where(is_true(cur_j_idx), j_nodes , full(j_nodes , -99))
cur_j_nodes = where(is_true(new_cur_j_nodes), new_cur_j_nodes , cur_j_nodes)
write in connecting token to k-node pos
cur_state = where(new_after , cur_k_nodes , cur_state)

valid if edge [1] == 't' and edge [2] == correct_initial_node
return cur_state

12516

