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Abstract
Language models have been shown to repro-
duce underlying biases existing in their train-
ing data, which is the majority perspective by
default. Proposed solutions aim to capture mi-
nority perspectives by either modelling annota-
tor disagreements or grouping annotators based
on shared metadata, both of which face sig-
nificant challenges. We propose a framework
that trains models without encoding annotator
metadata, extracts latent embeddings informed
by annotator behaviour, and creates clusters
of similar opinions, that we refer to as voices.
Resulting clusters are validated post-hoc via in-
ternal and external quantitative metrics, as well
a qualitative analysis to identify the type of
voice that each cluster represents. Our results
demonstrate the strong generalisation capabil-
ity of our framework, indicated by resulting
clusters being adequately robust, while also
capturing minority perspectives based on dif-
ferent demographic factors throughout two dis-
tinct datasets.1

Content Warning: This document contains
and discusses examples of potentially offensive
and toxic language.

1 Introduction

Supervised training is rooted in the presupposi-
tion that every example in a dataset has a single
ground truth, also known as the gold label (Hetti-
achchi et al., 2021). However, disagreement among
dataset annotators challenges the notion that a sin-
gle, per-example, ground truth exists (Uma et al.,
2022a,b). While disagreement can be indicative
of task difficulty or semantic ambiguity (Jiang and
Marneffe, 2022; Sandri et al., 2023; Wang et al.,
2021), it can also indicate the existence of both
stable and conflicting inter-annotator perspectives
(Abercrombie et al., 2023; Basile, 2020).

Nevertheless, capturing minority perspectives
present in the data, which we parallel to voices

†
Equal contribution

1All code is made available at https://github.com/
Ni-Vi/Cluster.

in a crowd, has proven challenging. Two main
approaches attempt to move beyond gold labels:
i) disagreement-based which leverage annotator
disagreement to provide distributional per-item pre-
diction labels (Leonardelli et al., 2023; Uma et al.,
2022a,b), and ii) metadata-based, which encode
annotator metadata to boost the signal from voices
with the same metadata labels (Beck et al., 2024;
Fleisig et al., 2023; Gupta et al., 2023) (i and ii
respectively in Figure 1).

However, both approaches come with strong vul-
nerabilities. Disagreement-based approaches col-
lapse multiple minority voices into a singular, per-
item, minority-majority distribution (Gordon et al.,
2022), essentially limiting the number of expressed
voices to the number of predicted labels (i.e., two
voices in a binary prediction task). On the other
hand, while metadata-based approaches allow for
multiple minority voices to be expressed (albeit
limited by metadata collected), they are based on
the erroneous assumption that most members that
share metadata labels (e.g., gendered females) will
also exhibit similar patterns of behaviour (Beck
et al., 2024; Dang et al., 2020).

We introduce a framework that addresses both
issues (Figure 1iii): it forms multiple clusters of dis-
tinct voices solely based on annotator behaviours
exhibited during the annotation process in an unsu-
pervised manner. Our pipeline trains models to pre-
dict each annotation made by each annotator for a
given text input. The final hidden states form what
we refer to as behavioural embeddings, represent-
ing how a given annotator will behave when shown
that text sample. These are then clustered via unsu-
pervised methods, with each cluster formed being a
potential voice—a group perspective of annotators
with similar annotating behaviours.

We apply our framework to two datasets related
to political bias that have been found to contain
multiple heterogeneous and conflicting perspec-
tives (Chen et al., 2019; de Zarate et al., 2020;
Menini and Tonelli, 2016; Németh, 2023). To iden-
tify the group whose voice each cluster belongs
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Figure 1: Different approaches for handling annotations: i) disagreement-based create per-example distributional
labels which fail to account for dataset-level effects; ii) metadata-based train models on annotations linked with
annotator metadata, which often groups disagreeing annotators who share metadata labels; iii) the “Voices in a
crowd” approach dynamically creates clusters based on annotation patterns and finally verifies each cluster as a
voice based on post-hoc matched metadata labels.

to, we match each data point with annotator meta-
data post-hoc while we also conduct an in-depth
qualitative analysis of the clusters themselves. The
resulting clusters show high internal label consis-
tency of either i) dataset majority labels (e.g.,
left-leaning in a left-leaning majority dataset), ii)
dataset minority labels (e.g., right-leaning in a
left-leaning majority dataset), but most importantly
their intersection resulting in iii) inter-minority

labels (e.g., right-leaning and highly educated, in a
left-leaning, non-highly educated majority dataset).
We are the first to dynamically identify voices of
minority opinions within larger majority/minority
groups, highlighting the significance of providing
an intersectional understanding of annotators that
goes beyond current grouping methodologies.
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2 Related Work

Disagreement-Based Solutions As an alterna-
tive to gold labels, recent research has introduced
the use of silver labels, i.e., distributional per-item
labels that measure disagreement amongst annota-
tors (Davani et al., 2022; Leonardelli et al., 2023;
Uma et al., 2022a,b). While such approaches can al-
low for the identification of controversial examples
in datasets (Fornaciari et al., 2022), they fail to cap-
ture stable inter-annotator disagreements through-
out the dataset that could provide insight as to why
disagreement occurs beyond an item-by-item scale
(Abercrombie et al., 2023; Vitsakis et al., 2023).

To be more specific, disagreement-based solu-
tions essentially limit the number of possible ex-
pressed voices into the number of predicted labels;
the upper bound of possible voices expressed in a
binary task is always two, no matter how diverse
the dataset. Unfortunately, this type of aggregation
leads to the erasure of what we define as inter-
minority voices: stable opinions held by minority
groups that are in conflict with each other as well
as the majority, across examples. While there are
some disagreement-based approaches that attempt
a more nuanced expression of varied voices present
in the data (Casola et al., 2023; Lo and Basile, 2023;
Mokhberian et al., 2024), there is still a distinct lack
of a holistic framework—such as ours—that both
clusters and explains the type of voice expressed.

Metadata-Based Solutions A recent trend aim-
ing to capture diverse perspectives has attempted
to group annotators based on their metadata. Such
approaches encode collected annotator metadata,
such as annotator beliefs (Davani et al., 2023;
Rottger et al., 2022) or demographics (Fleisig et al.,
2023; Gupta et al., 2023), into the training pipeline
to allow learning of patterns between annotations
and in-group tendencies. While the incorpora-
tion of such information can seemingly improve
model performance in specific tasks (Welch et al.,
2020), evidence suggests that such results might be
dataset-specific (Lee et al., 2023).

This is due to the assumption that annotators
sharing metadata labels will behave similarly dur-
ing the annotation process. However, demograph-
ics are not necessarily predictive of underlying be-
haviour (Beck et al., 2024; Hwang et al., 2023),
while social sciences have also explained similar
issues with self-reported measures (Dang et al.,
2020; Schwarz, 1999). With the added issue that
annotator metadata is often not collected outright

(Prabhakaran et al., 2021), there is a direct need for
methodologies that identify distinct group voices
based on factors other than a-priori collected labels.

Unsupervised Learning and Clusters of Voices
To circumvent previously mentioned issues, un-
supervised learning could be employed along the
lines of how past research identified emergent
themes within corpora via clustering of latent
textual embeddings (Dhillon and Modha, 2001;
Meng et al., 2022; Sevillano et al., 2007; Wich
et al., 2020). Recently, Meng et al. (2022) showed
promising results in automatic topic discovery by
utilising pretrained language models to cluster rep-
resentations in a joint latent space: formed by com-
bining latent spaces of multiple modalities during
learning, in this case word and document level em-
beddings. We aim to take this work further through
our use of joint behavioural embeddings, informed
by both text and annotating behaviour, to automati-
cally find voices, i.e., clusters of similar opinions.

There are significant challenges to this ap-
proach. Fine-tuning pretrained language model
embeddings produce embeddings that are often
anisotropic and anisometric (Rajaee and Pilehvar,
2021; Xu and Koehn, 2021); which paired with
their high dimensionality nature, makes cluster-
ing via distance-based metrics challenging. How-
ever, by using appropriate dimensionality reduc-
tions (Cai et al., 2020; Mu and Viswanath, 2018),
the relationships between features can be analysed
and clustered through Euclidean distance-based
metrics (McInnes et al., 2020).

3 Experimental Setup

Our framework comprises a supervised and an
unsupervised component. The former produces
latent embeddings informed by both text and anno-
tating behaviour that the latter uses to cluster into
voices. Being the first such approach, we compared
performance across a variety of transformer-based
architectures, clustering, and dimensionality reduc-
tion techniques to identify optimal combinations.

The supervised component explores several
modelling choices (Section 4) fine-tuned on each
dataset to predict each annotator’s individual an-
notation for a given example without providing
any annotator metadata that could bias the model
(Vitsakis et al., 2023). The unsupervised compo-
nent then performs dimensionality reduction on the
behavioural embeddings—the final hidden states
from the supervised component—and finally cre-
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ates clusters via several unsupervised algorithms
(Section 5). Clusters are evaluated through internal
(i.e., intra-cluster similarity) and external metrics
(i.e., consistency of demographic labels in a given
cluster), and via qualitative analysis of the best-
performing combination of components.

3.1 Datasets

All datasets used in our experiments contain the fol-
lowing annotator demographics: personal political
leaning, and education level. We explicitly chose
datasets that are political in nature, as self-declared
political affiliation metadata should largely match
with similarities in annotating behaviour.

Media Bias Annotation Dataset (MBIC;
Spinde et al., 2021a,b) comprises sentences from
media articles that may contain political bias from
news outlets across the political spectrum (e.g., Fox
News, MSNBC, etc.) covering 14 potentially di-
visive topics (e.g., gender issues, coronavirus, the
2020 American election). 784 crowd-sourced anno-
tators labelled sentences on whether they consider
them to contain bias. Demographics were slightly
skewed in political ideology (44.3% left-leaning,
26.7% right-leaning, 29.1% center).

Global Warming Stance Dataset (GWSD; Luo
et al., 2020) contains opinions of varying intensities
on the subject of global warming, gathered from
news outlets with different political leanings (e.g.,
The New York Times, Breitbart). 398 annotators
labelled each sentence with whether they agreed,
disagreed, or were neutral. Demographic skew of
this dataset mirrored that of MBIC in self-reported
political affiliation (46% Democrat, 21.2% Repub-
lican, 28.8% Independent, 4% Other).

4 Supervised Component

Each of the following modelling architectures was
trained through a different combination of inputs
(visual representation in Appendix B): given a text
sample in a dataset, x ∈ X, we predict the indi-
vidual annotation of each annotator pθ(y|x) where
y = (y1, . . . , yK) and K is the total number of
unique annotators within the dataset.

Unpooled Cross Attention uses a pretrained T5
encoder (Raffel et al., 2020) where the encoded
text and the embedded annotator unique identifiers
are fed through a decoder to predict each annota-
tor’s annotation as a sequence. Annotator embed-
dings are directly informed by the text via a cross-
attention layer aiming to capture the influence of

the text in the annotators’ behaviours.
Pooled Cross Attention follows Sullivan et al.

(2023), which showed strong performance in pre-
dicting annotator disagreement in the 2023 Learn-
ing With Disagreements shared task (LeWiDi;
Leonardelli et al., 2023). This model is similar in
structure to Unpooled Cross Attention since it also
uses a T5 encoder as the backbone. However, the
dimension for each encoded text token is downsam-
pled, as previous research has indicated possible
benefits in the salience of encoded features (Dhin-
gra et al., 2018; Holzenberger et al., 2018; Schick
and Schütze, 2019). Finally, decoder outputs are
pooled (Reimers and Gurevych, 2019) to predict
an aggregated annotation for each batch.

Encoder-Encoder treats text and annotators as
separate modalities, inspired by multimodal ap-
proaches (Agarwal et al., 2020; Singh et al., 2022;
Tan and Bansal, 2019). The encoded text (using
T5) and embedded annotator IDs are concatenated
and fed through a bidirectional encoder to predict
the annotation of each annotator, allowing for inter-
action between text and annotator embeddings.

Classifier Model simply concatenates the text
with the unique annotator identifier, before pass-
ing to an encoder (BERT; Devlin et al., 2019 for
GWSD, and RoBERTa; Liu et al., 2019 for MBIC)
to predict each annotation label independently. The
independence between annotators limits interaction
between annotators during training.

Pretrained Decoder is a decoder-only GPT-2
model (Radford et al., 2019) prompted with the con-
catenated text and annotator identifiers in the form
“<text> [SEP] <Ann 1> [SEP] ... <Ann K>”
and predicts the annotation for each annotator.

Pretrained Encoder-Decoder similarly to Un-
pooled Cross Attention. It uses a pretrained T5
encoder-decoder where unique annotator identifiers
are embedded through the decoder—instead of a
decoder trained from scratch—to predict each an-
notator’s annotation autoregressively. Since the
decoder is unidirectional, it forces causal attention
across annotators in their canonical order.

Metrics We compute F1 score to measure the
accuracy of predictions, and Average Pairwise Co-
sine Similarity (APCS) between hidden states of
predicted annotations to illustrate how dense the
latent states are by the end of training; we show
that lower scores generally correlate with better
clustering performance (see Section 5.1).
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F1 Score ↑ APCS ↓

GWSD Dataset
Unpooled Cross Attention 0.65 0.14 ± 0.07
Pooled Cross Attention 0.19 0.54 ± 0.13
Encoder-Encoder 0.63 0.15 ± 0.11
Classifier Model 0.63 0.81 ± 0.14
Pretrained Decoder 0.62 0.66 ± 0.08
Pretrained Encoder-Decoder 0.19 0.95 ± 0.02

MBIC Dataset
Unpooled Cross Attention 0.72 0.22 ± 0.05
Pooled Cross Attention 0.43 0.70 ± 0.06
Encoder-Encoder 0.72 0.21 ± 0.06
Classifier 0.38 1.00
Pretrained Decoder 0.63 0.75 ± 0.07
Pretrained Encoder-Decoder 0.71 0.74 ± 0.25

Table 1: Overall performance (F1 Score) for the super-
vised component of our framework (6 modelling archi-
tectures) on MBIC and GWSD for the task of individual
annotator prediction. We also report the Average Pair-
wise Cosine Similarity (APCS) across the final hidden
states; lower scores indicate greater variety in represen-
tation correlating with better clustering performance.

Results Table 1 summarises the results. For
GWSD, Unpooled Cross Attention achieved the
highest F1 score and lowest APCS, whereas
it shared a similar performance with Encoder-
Encoder for MBIC (albeit the latter has slightly
lower APCS). This could be down to the bidirec-
tional attention mechanism (either through cross-
attention or encoder self-attention) between the
annotator embeddings and the text during training.

These results also showcase the importance of
reporting on the quality of the hidden states. For ex-
ample, while the Pretrained Encoder-Decoder and
Classifier Model have high F1 scores on the MBIC
and GWSD datasets respectively, their low scores
on APCS indicate dense hidden states that would
result in poor clustering outcomes. Overall, our
findings show that the bidirectional attention-based
models that allow interaction between text and an-
notator embeddings are the only consistent archi-
tectures to show high F1 and low APCS scores.

5 Unsupervised Component

Dimensionality Reduction We perform dimen-
sionality reduction on the hidden states before
clustering as follows: a baseline without dimen-
sionality reduction, Principal Component Analysis
(PCA; a linear combination of components) and
Uniform Manifold Approximation and Projection

for Dimension Reduction (UMAP; a non-linear
transformation algorithm; McInnes et al., 2020).
Both PCA (Gupta et al., 2020; Sia et al., 2020)
and UMAP (Ait-Saada and Nadif, 2023; Cai et al.,
2020; George and Sumathy, 2023) improve feature
representation in high-dimensional latent spaces
leading to improved clustering.

Clustering Algorithms We used three cluster-
ing techniques: K-means (MacQueen et al., 1967;
Pedregosa et al., 2011), Gaussian Mixture Mod-
els (GMM; Rasmussen, 1999), and HDBSCAN
(McInnes et al., 2017). Each of these techniques
have been used to cluster features when paired with
either PCA (Asyaky and Mandala, 2021; Hosseini
and Varzaneh, 2022; Liu et al., 2021), or UMAP
(Allaoui et al., 2020; Asyaky and Mandala, 2021).

Metrics We use two internal validation met-
rics to assess average similarity scores between
clusters, namely Silhouette (Pedregosa et al.,
2011; Rousseeuw, 1987) and Davies-Bouldin Index
(Davies and Bouldin, 1979; Pedregosa et al., 2011).
Silhouette assesses intra-cluster separation and is
bound between -1 and 1, with 1 being the best pos-
sible score, with a threshold of 0.5 for moderate
clusters (Lengyel and Botta-Dukát, 2019; Shaha-
pure and Nicholas, 2020). The Davies-Bouldin
Index measures intra-cluster dissimilarity, with 0
indicating the lowest possible score (Idrus, 2022;
Kärkkäinen and Fränti, 2000).

We use Purity to assess the external validity
of clusters. Purity measures the internal consis-
tency of assigned labels within a cluster and eval-
uates whether a cluster is prototypical (i.e., repre-
sentative) across provided labels within a dataset
(Christodoulopoulos et al., 2010). In our case,
we report both average purity and the percentage
of prototypical clusters per method. We define a
cluster as prototypical if its metadata label purity
(i.e., political leaning and education level) is signif-
icantly different from the original dataset metadata
label distribution with a threshold of ± 10%. These
metrics allow us to automatically assess whether
a cluster emerging from annotator behaviours dur-
ing training is linked to any of the annotator labels
(e.g., a cluster with high right-leaning metadata la-
bel purity) and thus is indicative of a distinct voice.

5.1 Results

Optimal cluster numbers were automatically cal-
culated using hyperparameter sweeps to maximise
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Purity ↑ Prototypical Cluster % ↑

# Clusters DB Index ↓ Silhouette ↑ Political Education Political Education

Unpooled Cross Attention
No dim. reduction 19 6.35 0.02 0.71 0.71 15.8 0.0
w/ PCA 10 1.98 0.10 0.36 0.43 20.0 0.0
w/ UMAP 19 0.81 0.47 0.38 0.42 31.6 5.3

Pooled Cross Attention
No dim. reduction 19 3.03 0.06 0.42 0.48 26.0 5.3
w/ PCA 19 1.04 0.28 0.47 0.46 5.5 0.0
w/ UMAP 12 1.13 0.29 0.70 0.50 25.0 8.0

Encoder-Encoder
No dim. reduction 19 6.93 0.01 0.41 0.46 21.1 15.8
w/ PCA 19 0.49 0.54 0.53 0.43 15.0 7.7
w/ UMAP 19 0.49 0.53 0.51 0.48 36.8 21.1

Classifier Model
No dim. reduction 5 1.98 0.06 0.49 0.44 0.0 0.0
w/ PCA 13 0.84 0.36 0.44 0.44 7.4 0.0
w/ UMAP 18 0.55 0.49 0.44 0.49 5.5 5.5

Pretrained Decoder
No dim. reduction 19 2.76 0.06 0.39 0.42 16.0 11.1
w/ PCA 18 1.89 0.12 0.44 0.61 5.6 5.6
w/ UMAP 19 1.01 0.34 0.36 0.42 11.0 11.0

Pretrained Encoder-Decoder
No dim. reduction 5 1.62 0.16 0.44 0.48 0.0 0.0
w/ PCA 8 1.74 0.20 0.37 0.46 0.0 0.0
w/ UMAP 5 0.75 0.44 0.46 0.46 0.0 0.0

Table 2: Internal and external validation metrics for the unsupervised component with the K-Means clustering
algorithm on the MBIC dataset. Internal validation metrics explain intra-cluster separation through higher
Silhouette and lower Davies-Bouldin (DB Index) scores. External validity indicates the potential capturing of a
voice, measured by the average Purity score and % of prototypical clusters.

the Silhouette score (see Appendix A for more in-
formation). Table 2 shows the clustering of our best
performance combination, K-means with a UMAP
dimensionality reduction on the MBIC dataset as
other configurations performed less optimally as
seen in Appendix C.

Internal Validity Metrics Dimensionality reduc-
tion significantly impacted the quality of the result-
ing clusters; UMAP outperformed PCA, while no
dimensionality reduction showed the worst overall
results (for averages, see Appendix A.2). The only
exception was Encoder-Encoder, where PCA and
UMAP perform comparably.

Encoder-Encoder performed best overall: be-
ing the only model with Silhouette and Davies-
Boulding Index scores above/below the respec-
tive cutoff points of 0.5, indicating adequate intra-
cluster separation for both metrics (Idrus, 2022;
Lengyel and Botta-Dukát, 2019; Shahapure and

Nicholas, 2020). Interestingly, the Classifier Model
also performed relatively well despite being the
lowest-performing of the supervised component.

External Validity Metrics Average purity scores
are largely inconclusive as higher scores are not
always linked with better performance, which is
evident through comparisons with other evaluative
metrics. For example, Unpooled Cross Attention
with no dimensionality reduction, scores poorly on
internal validation metrics, while average purity is
the highest across both metadata labels.

Overall, these findings echo those seen in Ta-
ble 1, where models with the lowest APCS scores
also had the best performance in internal and ex-
ternal validation metrics. The best-performing
model was Encoder-Encoder with UMAP outper-
forming PCA, followed by Unpooled Cross Atten-
tion. While UMAP only marginally outperformed
PCA in terms of internal validation scores, the la-
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Dataset/Cluster No. Examples Bias Label Distribution

MBIC -1

British Olympic swimmer Sharron Davies also slammed the concept of transgender athletes. ✓

BBC Presenter Gabby Logan has said that it is not fair that transgender women can compete in sport
alongside biologically female women.

✓

BBC Presenter Gabby Logan has said that it is not fair that transgender women can compete in sport
alongside biologically female women.

✗

MBIC -7

Trump — who has been criticized for painting an overly rosy picture of the outbreak, often contradicting
his own health officials - insisted on Friday that his administration was “magnificently organized” and
“totally prepared" to address the virus.

✓

Google declined to offer details beyond Huntley’s tweets, but the unusually public attribution is a sign
of how sensitive Americans have become to digital espionage efforts aimed at political campaigns.

✗

At least 25 transgender or gender-nonconforming people were killed in violent attacks in the United
States last year, according to the Human Rights Campaign, which has been tracking anti-trans violence
since at least 2015.

✓

Though conservatives try to demonize Ocasio-Cortez an Omar, their actual policy views are perfectly
mainstream. The New York lawmaker proposed a 70 percent tax on top incomes — a view backed by
public opinion and many well-respected economists.

✗

MBIC -8 British Olympic swimmer Sharron Davies also slammed the concept of transgender athletes. ✗

At least 25 transgender or gender-nonconforming people were killed in violent attacks in the United
States last year, according to the Human Rights Campaign, which has been tracking anti-trans violence
since at least 2015.

✓

Table 3: Analysis of clusters on the MBIC dataset with the Encoder-Encoder architecture and UMAP dimensionality
reduction. We report the cluster number, representative examples of the cluster, and their paired annotation (✓
for perceived bias, ✗for no perceived bias). We also show the distribution of annotator characteristics which is
indicative of the prototypical nature of each cluster.

bel distributions in the clusters resulting from PCA
were minimally different when compared to label
distributions present in the original data. Finally,
we found that prototypical clustering percentage
was a strong indicator of capturing representative
clusters of voices.

Manual inspection of PCA-formed clusters in-
dicated that clusters formation was mostly based
around the most salient features discovered during
training, namely the unique annotator tokens or the
inter-sentence similarities. A possible reason for
this phenomenon could be that PCA reduces dimen-
sionalities to the most salient principal components,
which are not conducive to clustering based on con-
textual features in large language models (Cai et al.,
2020). Interestingly, this phenomenon was repro-
duced with UMAP when instructing the model to
focus on finding clusters based on local and not
overarching features (McInnes et al., 2020).2

6 Qualitative case study

While encouraging, our findings cannot be simply
explained through either internal or external vali-
dation metrics. To assess whether a cluster is truly
indicative of a voice, we looked at the content of

2A possible solution to this issue is to remove the top
principal components resulting in more salient representations,
and thus improve clustering performance (Mu and Viswanath,
2018); we leave this for future work.

the clusters themselves. High purity of a cluster
should be reflected in the text-annotation pair con-
tent (e.g., a cluster with high left-leaning purity
should be paired with left-leaning opinions).

Furthermore, this relationship between labels
and opinions contained in each voice should also
mediated by representation of other metadata la-
bels: clusters predominantly represented by a sin-
gle label should denote opinions held by that group
and not others, while an increasing representation
of other group labels should denote opinions that
are less divisive between groups. For example,
a cluster with a high concentration of center and
left-leaning metadata labels, but not right-leaning
ones, should contain opinions that are less divisive
between the former, but divisive with the latter.

Given our labels, this can result in three dis-
tinct types of voices: majority, minority and inter-
minority. Majority voice clusters consist of high pu-
rity of a majority metadata label (e.g., left-leaning
opinions in a left-leaning majority dataset), while
minority voices are the same for dataset minority
labels (e.g., right-leaning opinions in a left-leaning
majority dataset), and inter-minority voices, which
are clusters that consist of high purity across com-
bination of metadata labels (e.g., high purity in
both right-leaning and highly educated metadata
labels in a dataset with left-leaning and non-highly
educated majority metadata labels).
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Dataset/Cluster No. Examples Agreement Label Distribution

GWSD -9

The early 21st-century drought that afflicted Central Asia is the worst in Mongolia in more than
1,000 years, and made harsher by the higher temperatures consistent with man-made global
warming.

✓

Climate change means the end of shopping. ∼

The oil sands are responsible for just 0.001 percent of global greenhouse emissions ∼

GWSD -2

There is a connection between human activity and an assumptive change in global climate. ✓

Hiring a White House "climate change czar" would be a good idea. ✓

Scaring young people into believing that climate change is going to kill young people is child
abuse.

✗

GWSD -5

The oil sands are responsible for just 0.001 percent of global greenhouse emissions ✓

This could mean that current I.P.C.C. model predictions for the next century are wrong, and
there will be no cooling in the North Atlantic to partially offset the effects of global climate
change over North America and Europe.

✓

Eco-towns could provide an inspiring blueprint for low-carbon living ✗

Table 4: Analysis of clusters on the GWSD dataset using same parameters as the MBIC dataset, and results are
shown in a similar fashion (✓agree with the statement, ✗for disagree and ∼ for neutral). Distribution of annotator
characteristics is provided.

To extract our clusters, we used the best-
performing combination, i.e., Encoder-Encoder
with UMAP and K-means clustering. As the pur-
pose of the case study was to show examples of
what can be achieved through our framework, we
chose examples of prototypical clusters, indicative
of the variety of voices in each dataset, and found
multiple examples of each effect described. We
pick three prototypical clusters from a single clus-
tering run, each representing a distinct voice, and
discuss them in Table 3 and Table 4.

6.1 MBIC Dataset

MBIC-1: Minority Voice This cluster is a proto-
typical example of minority-led consensus amongst
annotators. The cluster’s distribution is more
even, following the original label distribution closer
(44.3%, 29.1%, 26.7% for left, center, and right po-
litical lean). Such clusters often contain different
annotations for the same sentences, while there is
no strong emerging effect from collected labels.

MBIC-7: Minority Voice This is a minority
voice, with the distribution of labels indicating
that the cluster is primarily formed of right-leaning
opinions. While Item 1 is expectantly labelled as
‘bias’, Item 3 contains no obvious biased words,
despite coming from an obvious place of concern
for a marginalised minority.

MBIC-8: Majority Voice This is an example
of a majority dominant cluster. Such clusters are
populated by the opinion of the original dataset’s
distributional majority label although with a much

heavier skew, indicating a stable and consistent be-
haviour of the group. The labelling distribution
of this cluster is expected to be populated by left-
leaning views and indeed sentences that were previ-
ously labelled as biased in non-left-leaning clusters
(Item 1 of Cluster 1, and Item 3 of Cluster 7), were
consistently found not to be labelled as such.

6.2 GWSD Dataset

GWSD-9: Minority Voice This is an example of
a minority cluster, as indicated by the differences
in the distribution of the minority label between the
cluster and the original data (21% in the original
data, 60% representation in this cluster). While the
expressed opinions within were generally agreeable
about climate-changing effects, there was no agree-
ment with more politically charged statements.

GWSD-2: Majority Voice This is a majority-
dominant cluster. Opinions that could be perceived
as more explicitly political were found to be in-
creasingly common (Item 2), while there was also
evidence of general agreement with some strongly
politically charged examples (Item 3).

GWSD-5: Minority-Minority Voice An exam-
ple of a minority within a minority perspective.
Opinions are over-represented by two minority la-
bels, the “republican” in terms of political affilia-
tion, and that of the “higher degree” in terms of
education level (8.4% label representation in the
original dataset). Opinions showed fewer “neutral”
responses and were generally indicative of a well-
informed audience, explicitly agreeing with more
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technical items such as Item 2 and especially Item
1, which received mostly “neutral” scores in other
clusters (e.g., Cluster 9).

7 Conclusion

We propose a novel framework to identify underly-
ing minority perspectives in data. We compared six
distinct model architectures trained on a classifi-
cation task, without providing any annotator meta-
data to avoid biasing their training. Subsequently,
final hidden states were passed through various
methods of dimensionality reduction (UMAP and
PCA), with the resulting embeddings used to create
clusters through various unsupervised algorithms
(K-means, GMM, and HDBSCAN).

The resulting clusters were adequately separated
according to internal and external validation met-
rics. Further qualitative analysis of clusters pro-
duced by our best-performing model showcased
the ability of our framework to capture perspectives
as shown by three distinct types: clusters represen-
tative of a minority, a majority, and clusters that
captured multiple minority labels, i.e., a minority
within a minority.

Limitations & Ethical Considerations

Internal & External Validity Related As shown
in Table 2 and Appendix C while internal validation
scores can be indicative of well-defined clusters of
minority perspectives, they are not necessarily so.
We further explain in Appendix C that this might
be due to our training on unique annotator tokens,
which could hinder organic clustering based on
behaviour by providing an alternative and easier to
learn signal in unique annotator tokens. Finally, for
comparisons between preliminary results between
different model sizes alongside a brief discussion
on their impact, see Appendix C.6.

We aim to expand upon this in future work,
by modifying training of our supervised compo-
nent to incorporate aspects more representative of
group behaviours such as inter and intra annota-
tor disagreement (Abercrombie et al., 2023; Ca-
sola et al., 2023; Lo and Basile, 2023; Mokhberian
et al., 2024; Uma et al., 2021). This would assess
the limitations of disagreement-based approaches
described in Section 2 by enhancing group be-
havioural signals, as indicated by annotator agree-
ment/disagreement (Deng et al., 2023; Mokhbe-
rian et al., 2024), while also allowing for such ef-
fects to be captured on the dataset-level. Further-

more, incorporation of such methodologies into our
framework would further address the limitations of
disagreement-based methodologies by allowing for
any number of voices to be expressed.

Automatic Detection of Voices A current limita-
tion of the framework is the ability to automatically
assess the performance of each combination with-
out manual inspection. While necessary at this
step to prove the efficacy of our framework, we
aim to expand this in future work by introducing a
a component that automatically extracts informa-
tion from each cluster to allow for identification of
voice without the need of matching clusters with
metadata labels post-hoc.

We aim to employ a similar methodology to
Fleisig et al. (2023), whose pipeline includes a
GPT-2 based component that predicts the demo-
graphic group targeted by a given text. We aim to
include similar components to extrapolate attitudi-
nal and behavioural indicators of formed clusters
via analysing the text-annotation pairs to generate
labels representative of each captured voice simi-
larly to how research in sentiment analysis, has pre-
viously classified opinions on politically charged
data (Ansari et al., 2020; Dorle and Pise, 2018;
Kazienko et al., 2023).

Labels and further marginalisation of minori-
ties Our model uses labels procured during data
gathering to validate emergent clusters. However,
the labelling gathering process can potentially be
an erasing process towards minorities in and of
itself (Chandrabose et al., 2021; Hovy and Prabhu-
moye, 2021). For example, the labelling process
can discriminate against socially marginalised mi-
norities by not providing options consistent with
an individual’s identity (Chandrabose et al., 2021;
Jo and Gebru, 2020).

In our case, we encountered this limitation with
the GWSD dataset (Luo et al., 2020), which col-
lected categorical labels about political affiliation
of participants. Beyond the three primary labels
("Democrat", "Independent", "Republican"), the
rest were aggregated into the "other" label. This
resulted in a minority so small that our clustering
methodology could not adequately disentangle it
from the rest. Future research should look into
directions alongside those explained in Section 7,
which also should address these concerns for future
iterations of our framework.
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Dual Use of the Model An unfortunate outcome
of methodologies aim to capture and expressed
more nuanced perspectives can lead to identifi-
cation of marginalised minority perspectives in
datasets, which can lead to concerning practice
of their removal in order to enhance a model’s gen-
eral performance (Sun et al., 2019; Xu et al., 2021).
Nevertheless, Gaci et al. (2023) has also proposed
that methodologies that identify minority perspec-
tives can be used to curate datasets in order to am-
plify voices of specific marginalised groups.

We urge researchers to be transparent in their
intended use of our framework, and to follow eth-
ical frameworks and solutions that have been pre-
viously highlighted by the field in from the data
collection process to model training and intended
use (Blodgett et al., 2020; Hovy and Prabhumoye,
2021; Leidner and Plachouras, 2017; Navigli et al.,
2023; Shmueli et al., 2021).
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A Training Details

To aid in reproducibility, we report all training de-
tails and any relevant hyperparameters.

A.1 Hyperparameters

All models were trained using a single NVIDIA
A40 GPU. A total of 1080 hours were used during
training of all models. For all models, we used the
AdamW optimizer (Loshchilov and Hutter, 2019)
during training with weight decay 0.01. We re-
port hyperparameters for each model and dataset
in Table 5.From small performance gains during
preliminary experiments, we disable bias across all
linear layers.

Cluster training hyperparameters can be found
in Table 6. Across every model, we found that
when comparing hyperparameters for both PCA
and UMAP converged to the same choices. For
both methods, we found that 2 components yielded
the best results. Additionally, for UMAP, we found
that the optimal number of neighbours were found
to be between 80–100 across all models,with a
minimum distance ranging from 0.8 to 1 to yield
better clustering performance.

A.2 Dimensionality Reduction

We report internal validity evaluation score aver-
ages across dimensionality reduction techniques in
Table 7.

B Visual Representation of Models used
in Training Component

Visual depictions of all model architectures seen in
Figure 2.

C Cluster Metrics

C.1 GWSD Cluster Validity Scores - Kmeans

We report the GWSD internal and external valida-
tion metrics resulting from our clustering using a
k-means algorithm and our various employed di-
mensionality reduction techniques in Table 8.

C.2 GWSD Cluster Validity Scores - GMM

We report the GWSD internal and external vali-
dation metrics resulting from our clustering using
a GMM algorithm and our various employed di-
mensionality reduction techniques in Table 9. This
methodology resulted in cluster metrics which were
not as optimal as those of the K-means solutions.

Hyperparameter Value

Unpooled Cross Attention
Model name google/t5-v1_1-large

Downsampling n. of layers 0-3
N. warmup steps 0- 800
Learning rate 0.0001 - 1e-08

Pooled Cross Attention
Model name google/t5-v1_1-large

Ann dim. factor 1-6
Downsampling n. of layers 0-3
N. warmup steps 0- 800
Learning rate 0.0001 - 1e-08

Encoder-Encoder
Model name google/t5-v1_1-large

Downsampling n. of layers 0-3
N. warmup steps 0- 800
Learning rate 0.0001 - 1e-08

Classifier Model
Model name roberta-large

N. warmup steps 0- 800
Learning rate 1e-11 - 1e-3

Pretrained Decoder
Model name gpt2-large

Downsampling n. of layers 0-3
N. warmup steps 0- 800
Learning rate 0.0001 - 1e-08

Pretrained Encoder-Decoder
Model name google/t5-v1_1-large

Downsampling n. of layers 0-3
N. warmup steps 0- 800
Learning rate 0.0001 - 1e-08

Table 5: Hyperparameters for all supervised models on
each of our chosen datasets, obtained from running a
hyperparameter sweep for 12 hours.

Hyperparameter Value

PCA
Cluster ranges 2 - 19
N components 2-40

GMM
Cluster ranges 2-19

HDBSCAN
Eps 0.0 - 1.0
Min samples 2 - 100
Min cluster size 2 - 100

Table 6: Hyperparameters for all clustering methods on
each of our chosen datasets, obtained from running a
hyperparameter sweep for 12 hours.
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Figure 2: Training component: 6 modelling architectures for extracting hidden states (denoted with a yellow circle
as Embn) used as input for the Clustering component.

Davies-Bouldin Index Silhouette

No dim. reduction 3.655 0.073
w/ PCA 0.491 0.56
w/ UMAP 0.565 0.53

Table 7: Dimensionality reduction effect on internal
validity scores

C.3 GWSD Cluster Validity Scores -
HDBSCAN

We report the GWSD internal and external valida-
tion metrics resulting from our clustering using an
HDBSCAN algorithm and our various employed
dimensionality reduction techniques in Table 10.
Unfortunately, this methodology resulted in either
large cluster numbers too large to be adequately
analysed manually, or with metrics not as optimal
as those of the K-means solutions.

C.4 MBIC Cluster Validity Scores- GMM

We report the MBIC internal and external valida-
tion metrics resulting from our clustering using a
GMM algorithm and our various employed dimen-
sionality reduction techniques in Table 11. Unfor-
tunately, this methodology also resulted in cluster
metrics which were not as optimal as those of the
K-means solutions.

C.5 MBIC Cluster Validity Scores-
HDBSCAN

We report the MBIC internal and external valida-
tion metrics resulting from our clustering using a
HDBSCAN algorithm and our various employed
dimensionality reduction techniques in Table 12.
Unfortunately, this methodology also resulted in
either large cluster numbers too large to be ade-
quately analysed manually, or with metrics not as
optimal as those of the K-means solutions.
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Purity ↑ Prototypical cluster % ↑
# Clusters DB Index ↓ Silhouette ↑ Political Education Political Education

GWSD - Kmeans
Cross Attention

No dim. reduction 19 1.95 0.17 0.46 0.43 0.0 4.5
w/ PCA 17 0.45 0.61 0.53 0.53 0.0 0.0
w/ UMAP 18 1.05 0.49 0.51 0.44 22.4 0.0

Pooled Cross Attention
No dim. reduction 16 2.76 0.07 0.43 0.44 5.7 0.0
w/ PCA 19 0.79 0.38 0.43 0.47 15.9 0.0
w/ UMAP 19 0.47 0.55 0.49 0.40 5.0 11.1

Encoder-Encoder
No dim. reduction 18 5.77 0.02 0.53 0.34 27.6 33.4
w/ PCA 19 0.84 0.34 0.40 0.60 10.9 0.0
w/ UMAP 15 0.50 0.54 0.69 0.54 40.3 19.8

Classifier Model
No dim. reduction 19 1.95 0.17 0.46 0.43 0.0 5.2
w/ PCA 17 0.45 0.61 0.53 0.53 0.0 0.0
w/ UMAP 18 1.05 0.49 0.51 0.44 21.8 0.0

Pretrained Decoder
No dim. reduction 19 2.83 0.09 0.61 0.47 10.7 5.3
w/ PCA 19 0.47 0.59 0.42 0.44 16.1 0.0
w/ UMAP 17 0.52 0.53 0.51 0.58 0.0 0.0

Pretrained Encoder-Decoder
No dim. reduction 19 2.53 0.06 0.48 0.55 4.9 4.9
w/ PCA 19 0.83 0.34 0.45 0.52 11.4 11.4
w/ UMAP 17 0.84 0.34 0.36 0.57 0.0 5.5

Table 8: Internal and external validation metrics for the K-means clustering technique on the GWSD dataset. Internal
validation metrics explain intra-cluster separation through higher Silhouette and lower Davies-Bouldin (DB Index)
scores. External validity, which indicates the potential of having captured a voice, is measured via the average Purity
score and % of prototypical clusters.

C.6 Preliminary experiments with different
model sizes

During our preliminary experiments, we ran the
Encoder-Encoder model using both base and large
variants for T5 v1.1. The hyperparameters used
were the same between models and models were
trained in an identical manner to control for pos-
sible confounding variables. We have included
our preliminary results for both the supervised
and unsupervised components of our model of the
Encoder-Encoder architecture, in Table 13 and Ta-
ble 14 respectively.

As shown by the results of the supervised com-
ponent in Table 13, using the larger model led to
marginal improvements in performance. The re-
sults of the unsupervised component can be found
in Table 14. The base model largely follow the
trends of the larger model shown in the paper, al-
though the marginal differences in the supervised

component cascade into larger differences in qual-
ity of prototypical clusters formed. This would indi-
cate that models that are smaller in size might strug-
gle to adequately capture annotating behaviours
within the latent space.
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Purity ↑ Prototypical cluster % ↑
# Clusters DB Index ↓ Silhouette ↑ Political Education Political Education

GWSD -GMM
Unpooled Cross Attention

No dim. reduction 5 12.54 0.00 0.44 0.55 0.0 0.0
w/ PCA 5 8.13 0.00 0.44 0.55 0.0 0.0
w/ UMAP 5 8.02 0.01 0.44 0.55 0.0 0.0

Pooled Cross Attention
No dim. reduction 6 3.73 0.04 0.46 0.57 0.0 0.0
w/ PCA 6 2.68 0.05 0.46 0.57 0.0 0.0
w/ UMAP 7 2.31 0.08 0.37 0.46 0.0 0.0

Encoder-Encoder
No dim. reduction 5 9.30 0.01 0.44 0.47 0.0 0.0
w/ PCA 5 4.09 0.03 0.44 0.47 0.0 0.0
w/ UMAP 5 5.57 0.03 0.44 0.47 0.0 0.0

Classifier Model
No dim. reduction 5 1.87 0.19 0.43 0.51 0.0 0.0
w/ PCA 5 1.48 0.33 0.43 0.51 0.0 0.0
w/ UMAP 12 3.02 0.05 0.42 0.50 8.3 0.0

Pretrained Decoder
No dim. reduction 19 3.12 0.05 0.41 0.50 4.6 0.0
w/ PCA 6 1.72 0.18 0.44 0.48 0.0 0.0
w/ UMAP 5 1.75 0.20 0.47 0.53 0.0 0.0

Pretrained Encoder-Decoder
No dim. reduction 5 3.39 0.05 0.47 0.48 0.0 0.0
w/ PCA 6 2.90 0.00 0.44 0.56 0.0 0.0
w/ UMAP 11 2.51 0.06 0.45 0.43 8.8 0.0

Table 9: Internal and external validation metrics for the GMM clustering technique on the GWSD dataset. Internal
validation metrics explain intra-cluster separation through higher Silhouette and lower Davies-Bouldin (DB Index)
scores. External validity, which indicates the potential of having captured a voice, is measured via the average Purity
score and % of prototypical clusters.
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Purity ↑ Prototypical cluster % ↑
# Clusters DB Index ↓ Silhouette ↑ Political Education Political Education

GWSD- HDBSCAN
Unpooled Cross Attention

No dim. reduction 407 0.62 0.57 1.00 1.00 95.9 100.0
w/ PCA 4 10.10 0.05 0.50 0.50 24.6 50.2
w/ UMAP 3 17.35 0.01 0.57 0.57 33.0 33.0

Pooled Cross Attention
No dim. reduction 191 1.25 0.30 0.80 0.60 58.8 35.1
w/ PCA 3 2.47 0.01 0.60 0.50 33.3 0.0
w/ UMAP 173 0.23 0.85 0.75 0.38 58.8 35.1

Encoder-Encoder
No dim. reduction 4 9.53 0.01 0.67 0.67 50.0 24.9
w/ PCA 5 6.99 0.03 0.43 0.57 0.0 39.5
w/ UMAP 4 21.22 0.07 0.52 0.92 24.6 25.6

Classifier Model
No dim. reduction 211 0.14 0.95 0.50 0.62 59.1 35.0
w/ PCA 210 0.13 0.95 0.50 0.62 58.8 34.3
w/ UMAP 3 3.20 0.14 0.51 0.42 0.0 0.0

Pretrained Decoder
No dim. reduction 210 1.21 0.62 0.50 0.62 60.0 34.6
w/ PCA 204 1.14 0.52 0.40 0.60 56.5 38.2
w/ UMAP 210 0.78 0.98 0.50 0.62 58.9 34.7

Pretrained Encoder-Decoder
No dim. reduction 3 0.72 0.25 0.50 0.50 33.0 33.0
w/ PCA 3 2.31 0.04 0.50 0.50 33.0 33.0
w/ UMAP — — — — — — —

Table 10: Internal and external validation metrics for the HDBSCAN clustering technique on the GWSD dataset.
Internal validation metrics explain intra-cluster separation through higher Silhouette and lower Davies-Bouldin
(DB Index) scores. External validity, which indicates the potential of having captured a voice, is measured via the
average Purity score and % of prototypical clusters. Missing runs indicate that the cluster number computed was
equal to the amount of text-annotation pairs, proving the solution invalid.
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Purity ↑ Prototypical cluster % ↑
# Clusters DB Index ↓ Silhouette ↑ Political Education Political Education

MBIC- GMM
Unpooled Cross Attention

No dim. reduction 19 7.50 0.01 0.66 0.54 31.7 5.2
w/ PCA 5 8.11 0.00 0.41 0.46 0.0 0.0
w/ UMAP 5 8.22 0.00 0.41 0.46 0.0 0.0

Pooled Cross Attention
No dim. reduction 19 4.04 0.02 0.37 0.46 32.2 5.4
w/ PCA 8 4.09 0.00 0.45 0.56 12.0 0.0
w/ UMAP 5 7.83 0.01 0.45 0.51 0.0 0.0

Encoder-Encoder
No dim. reduction 19 8.81 0.00 0.50 0.33 21.0 21.4
w/ PCA 5 9.50 0.00 0.47 0.48 19.7 19.7
w/ UMAP 5 8.87 0.00 0.47 0.48 19.7 19.7

Classifier Model
No dim. reduction — — — — — — —
w/ PCA — — — — — — —
w/ UMAP — — — — — — —

Pretrained Decoder
No dim. reduction 5 3.67 0.03 0.44 0.46 0.0 0.0
w/ PCA 16 2.83 0.01 0.52 0.32 0.0 0.0
w/ UMAP 18 7.50 0.01 0.53 0.50 17.2 0.0

Pretrained Encoder-Decoder
No dim. reduction 6 1.76 0.14 0.47 0.46 0.0 0.0
w/ PCA 5 2.27 0.03 0.49 0.48 0.0 0.0
w/ UMAP 5 0.58 0.43 0.49 0.48 0.0 0.0

Table 11: Internal and external validation metrics for the GMM clustering technique on the GWSD dataset. Internal
validation metrics explain intra-cluster separation through higher Silhouette and lower Davies-Bouldin (DB Index)
scores. External validity, which indicates the potential of having captured a voice, is measured via the average Purity
score and % of prototypical clusters. Rows with missing labels indicate inability of the GMM clustering technique
to create a solution within the allotted train time for the respective configuration’s hyperparameter sweep.
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Purity ↑ Prototypical cluster % ↑
# Clusters DB Index ↓ Silhouette ↑ Political Education Political Education

MBIC- HDBSCAN
Unpooled Cross Attention

No dim. reduction 862 1.01 0.71 1.00 1.00 100.0 100.0
w/ PCA 862 0.86 0.72 1.00 1.00 100.0 100.0
w/ UMAP 862 1.30 0.21 1.00 1.00 100.0 100.0

Pooled Cross Attention
No dim. reduction 218 1.30 0.20 1.00 1.00 84.8 70.1
w/ PCA 218 1.26 0.29 1.00 1.00 84.8 70.1
w/ UMAP 218 2.85 0.80 1.00 1.00 84.8 70.1

Encoder-Encoder
No dim. reduction 5 4.18 0.00 1.00 1.00 60.3 60.3
w/ PCA 3 3.59 0.06 1.00 1.00 67.0 33.2
w/ UMAP 5 4.10 0.04 1.00 1.00 60.4 59.9

Classifier Model
No dim. reduction 3 2.70 0.15 0.50 0.58 0.0 0.0
w/ PCA 3 1.81 0.04 0.67 0.67 32.7 32.7
w/ UMAP 3 1.93 0.56 0.46 0.55 0.0 0.0

Pretrained Decoder
No dim. reduction 185 1.22 0.45 0.44 0.56 68.3 44.2
w/ PCA 168 2.45 0.07 0.43 0.57 74.4 38.5
w/ UMAP 168 1.11 0.63 0.43 0.57 74.4 38.5

Pretrained Encoder-Decoder
No dim. reduction 3 1.27 0.19 0.50 0.50 33.3 33.3
w/ PCA 3 2.78 0.04 0.53 0.47 33.3 0.0
w/ UMAP 3 3.29 0.08 0.53 0.49 33.3 0.0

Table 12: Internal and external validation metrics for the HDBSCAN clustering technique on the MBIC dataset.
Internal validation metrics explain intra-cluster separation through higher Silhouette and lower Davies-Bouldin
(DB Index) scores. External validity, which indicates the potential of having captured a voice, is measured via the
average Purity score and % of prototypical clusters.
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Model size F1 Score ↑ Avg. Pairwise Similarity ↓

Base 0.70 0.22 ± 0.06
Large 0.72 0.21 ± 0.06

Table 13: Results of the supervised component with
different model sizes using the pretrained T5 v1.1 model
for the Encoder-Encoder architecture.
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Purity ↑ Prototypical cluster % ↑
# Clusters DB Index ↓ Silhouette ↑ Political Education Political Education

google/t5-v1_1-base

No dim. reduction 19 7.21 0.01 0.51 0.51 47.4 26.3
PCA 19 0.49 0.54 0.50 0.52 5.3 5.2
UMAP 19 0.50 0.54 0.53 0.41 10.5 10.4

google/t5-v1_1-large

No dim. reduction 19 6.93 0.01 0.41 0.46 21.1 15.8
PCA 19 0.49 0.54 0.53 0.43 15.0 7.7
UMAP 19 0.49 0.53 0.51 0.48 36.8 21.1

Table 14: Preliminary results of the unsupervised component for the Encoder-Encoder architecture using different
sizes of the pretrained T5 v1.1 backbone.
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