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Abstract

The dynamic nature of language, particularly
evident in the realm of slang and memes on the
Internet, poses serious challenges to the adapt-
ability of Large Language Models (LLMs). Tra-
ditionally anchored to static datasets, these
models often struggle to keep up with the
rapid linguistic evolution characteristic of on-
line communities. This research aims to bridge
this gap by enhancing LLMs’ comprehension
of the evolving new concepts on the Internet,
without the high cost of continual retraining.
In pursuit of this goal, we introduce SLANG, a
benchmark designed to autonomously integrate
novel data and assess LLMs’ ability to com-
prehend emerging concepts, alongside FOCUS,
an approach uses causal inference to enhance
LLMs to understand new phrases and their col-
loquial context. Our benchmark and approach
involves understanding real-world instances of
linguistic shifts, serving as contextual beacons,
to form more precise and contextually relevant
connections between newly emerging expres-
sions and their meanings. The empirical anal-
ysis shows that our causal inference-based ap-
proach outperforms the baseline methods in
terms of precision and relevance in the compre-
hension of Internet slang and memes. 1

1 Introduction

Recently, language evolution has been accelerated
by the online community, which has introduced
new dimensions to linguistic shifts (Varis and van
Nuenen, 2017; Firth et al., 2019; Hammarström,
2016). These rapid changes in language pose se-
rious challenges to the Large Language Models
(LLMs) on understanding the newly emerging con-
cepts (Yang et al., 2023; Sun et al., 2021).

Generally, LLMs are trained on static data
(Brown et al., 2020), which limits their adaptivity to

*Corresponding author.
1Our code is available at https://github.com/Meirtz/

FocusOnSlang-Toolbox.

Figure 1: Comparative analysis of LLMs’ understand-
ing of new phrases using CoT (Wei et al., 2022) and
FOCUS methods. The left side demonstrates the limited
understanding through the CoT approach, focusing on
the literal interpretation. In contrast, the right side using
the FOCUS method shows the model’s enhanced capa-
bility to grasp metaphors and deeper meanings.

the dynamic and ever-evolving nature of human lan-
guage. This limitation is particularly pronounced
in the context of digital communication, where new
forms of expression and concepts emerge at an un-
precedented pace (Sun et al., 2021). Hence, it is
essential for LLMs to understand linguistic shifts
and new concepts without constant updates or ex-
ternal data.

Moreover, LLMs often make decisions based
on superficial patterns rather than justified reasons.
This can hinder their ability to accurately interpret
and follow human instructions, as highlighted in
several studies (Tang et al., 2023; Wang et al., 2022,
Zhou et al., 2023b, Wang et al., 2023). For exam-
ple, as depicted in Figure 1, the Chain-of-Thought
(CoT) prompting (Wei et al., 2022) simply inter-
prets the phrase The sunset is beautiful, isn’t it? and
misses the deeper, metaphorical meaning, which
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could represent an acknowledgment of an ending,
like concluding a life phase or a relationship, in a
complex conversation. This situation underscores
the importance of enhancing and evaluating LLMs
in a way that goes beyond their performance met-
rics. It’s essential to consider the fundamental prin-
ciples that guide their decision-making processes.

Therefore, we propose SLANG (Similarity of
Lexical Analysis aNd Grasp), a benchmark to
assess language models’ adaptability to linguis-
tic shifts, and FOCUS (Factual cOntext CaUsal
analysiS), an approach based on causal inference
for enhancing comprehension of new concepts.

The SLANG benchmark, developed from Urban-
Dictionary (Urban Dictionary LLC), focuses on as-
sessing the capability of language models to main-
tain coherence and accuracy in the face of dynamic
and unconventional language use, such as slang
and idiomatic expressions, thereby evaluating the
capability of LLMs in grasping new concepts. We
select recent entries after a specific cutoff date and
filter out phrases already likely in LLM training
data. We utilize user-generated ratings (upvotes
and downvotes) to refine the dataset, ensuring its
quality and comprehensiveness. The dataset is then
standardized into a formal dictionary format, sim-
plifying explanations and examples for universal
understanding while retaining original meanings.
This preprocessing approach ensures SLANG effec-
tively evaluates LLMs’ adaptability to linguistic
shifts.

FOCUS employs causal inference to enhance
models’ comprehension of new concepts within
evolving linguistic contexts. By analyzing causal
relationships in language, FOCUS advances mod-
els’ predictive capabilities beyond traditional
correlation-based learning. This method allows
for a nuanced grasp of language dynamics, improv-
ing models’ adaptability and effectiveness in appli-
cations requiring deep understanding of language
use. FOCUS significantly enhanced performance
in language model comprehension, demonstrating
superior precision and adaptability. With Claude 3,
FOCUS achieved an F1 score of 0.4596, precision
of 0.4452, and recall of 0.4827, alongside an accu-
racy of 89.7%, outperforming previous methods in
comprehension and adaptability.

The codes for the SLANG and FOCUS toolboxes
are open-sourced, contributing to the community’s
resources for advancing language model develop-
ment.

2 SLANG

We introduce SLANG in response to rapidly evolv-
ing language. SLANG benchmark evaluates LLMs’
capability to interpret the dynamic landscape of
user-generated new concepts. It uniquely features
factual and counterfactual datasets, each crucial
for gauging LLM adaptability. We detail SLANG’s
dataset construction, and evaluation metrics in the
following subsections.

2.1 Preprocessing
Extraction Our dataset construction involved ex-
tracting numerous concepts from UrbanDictionary,
a platform known for user-generated content that
reflects current language trends and the evolving
internet lexicon, making it a unique, constantly up-
dated repository and dynamic forum for new Inter-
net language concepts. Specifically, our approach
involved selecting concepts added after a predeter-
mined date to ensure content novelty. We meticu-
lously extract relevant data, including the phrase,
its user-provided definitions, usage examples, and
user-generated ratings (upvotes and downvotes).
Additionally, the data construction pipeline is set up
to automatically include fresh, non-member data
for upcoming cutoff dates, ensuring the dataset
stays up-to-date and comprehensive.

Filtering The content filtering of our dataset con-
sisted of several steps to ensure the quality and
novelty of the concepts:

• Temporal Filtering: Many UrbanDictionary
phrases are now common and potentially in-
cluded in LLMs’ training data. To ensure
the novelty of our dataset, we leveraged the
knowledge cut-off dates of LLMs, strategi-
cally selecting phrases that emerged after
these dates. For instance, gpt-4-0613 has
a knowledge cut-off date of April 2021, as de-
tailed in the OpenAI documentation2, and we
selected concepts that were added to Urban-
Dictionary after January 2022. This temporal
gap was strategically chosen to include recent
phrases that may have gained popularity on-
line after the cut-off date but were not yet
recorded in UrbanDictionary.

• User Rate Filtering: We analyzed user-
generated ratings to refine the dataset. En-
tries with overwhelmingly negative receptions

2https://platform.openai.com/docs/models
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(more than 80% downvotes) were excluded.
Comparative histograms in Figure 2 illustrate
the distribution of upvotes (left) and absolute
upvotes (right) across dataset entries before
and after our cleaning process. This stringent
data cleaning was crucial in ensuring the qual-
ity and reliability of the entries selected for
our research. For details on the validation of
user-generated votes, see Appendix E.

• Removal of Inappropriate Content: Inap-
propriate content, including NSFW material
and hate speech, was removed to preserve aca-
demic integrity and ensure quality.

• Novelty Check: To ensure that the concepts
in our dataset were unknown to the LLMs, we
employed gpt-4-0613 for thorough filtration
based on the method described by Yin et al.,
2023. Additionally, due to the existence of
models with different cut-off dates, we applied
the "needle in a haystack" test (Kamradt,
2023, see Appendix D) to confirm the novelty
of the knowledge. This meticulous validation
process involved strategically embedding the
selected phrases into extensive corpora and
evaluating the models’ capability to extract
them.

After the temporal filtering step, we started with
7220 concepts. The subsequent steps filtered out
5463, 1328, and 21 samples respectively, resulting
in a final dataset of 408 usable new concepts.

Factual dataset Following the above filtering
steps, we obtained our factual dataset. Acknowl-
edging the informal nature of the original data, we
transformed it into a uniform, formal dictionary
format (see Appendix B). This process involved
simplifying explanations and examples for univer-
sal understanding while preserving their original
meanings. We adhered to a custom-designed tem-
plate for consistency and clarity across all con-
cepts. Each explanation was enriched with four
synonym-based variants to capture diverse poten-
tial responses.

Counterfactual Dataset To further evaluate the
ability of LLMs in understanding new concepts, we
created the counterfactual dataset. This dataset is
derived from the factual dataset by preserving the
original phrases while modifying the contexts and
explanations. Given the factual dataset Dfact, the
generation process is structured as follows:
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Figure 2: Comparative histograms illustrating the dis-
tribution of upvotes (left) and absolute upvotes (right)
across dataset entries. Both histograms are plotted on
a logarithmic scale with the vertical axis representing
the log percentage of the total dataset and the horizon-
tal axis indicating the log count of upvotes or absolute
upvotes. The blue bars represent the raw data, while
the orange bars depict the cleaned data, facilitating a
direct comparison of the distributions before and after
data cleaning.

• Entity Extraction: We extract the entities e
from each explanation y in Dfact.

• Counterfactual Replacement: For each en-
tity ei ∈ e, we generate a counterfactual en-
tity e′i that is conceptually divergent from the
original entity ei while retaining the original
phrase structure.

• Context Construction: Based on the
counterfactual explanations y′i, we
use GPT-4 to generate new contexts
x′i. Consequently, the counterfactual
dataset Dcf is composed of pairs: Dcf =
{(p1, x′1, y′1), (p2, x′2, y′2), . . . , (pn, x′n, y′n)}.

This approach ensures that while the original
phrases are preserved, the contexts and explana-
tions are transformed to convey entirely different
meanings. Consequently, each entry in the coun-
terfactual dataset introduces novel concepts that is
distinct from the original dataset, providing unique
challenges for the LLMs to interpret and under-
stand.

2.2 Metrics
For this task, we employed traditional metrics like
F1 score, recall, and precision (Yang et al., 2018),
and added BLEU (3-gram) (Papineni et al., 2002)
and ROUGE (Lin, 2004) for stricter quality checks.
Considering that language models might output
synonymous interpretations with varied wording,
we also incorporated sentence similarity measures
such as sentence-level similarity and SimCSE (Gao
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Figure 3: Structural Causal Model (SCM) of LLMs
for interpreting new phrases, excluding confounders.
The variables X and W encapsulate users’ complex
intentions and thoughts, which span intricate emotional
expressions, cultural insights, and extensive internet-
specific knowledge. Grasping these nuanced aspects
directly through an LLM is a challenging endeavor.

et al., 2021), and sentence similarity (Team, 2023)
as Similarity by calculating the cosine similarity
of the embeddings of all-mpnet-base-v2 (Team,
2023; Song et al., 2020). A positive sample was
considered for accuracy calculation if its SimCSE
score exceeded 0.7. We also generated five lexi-
cally varied yet syntactically and semantically iden-
tical interpretations for each dataset entry. To deter-
mine the final metric, we selected the interpretation
with the highest BLEU score.

3 FOCUS

This section outlines the novel approach employed
in our research to enhance the adaptability of LLMs
in understanding the evolving human language.
Our method analogizes the dynamic nature of lan-
guage to a continuously evolving entity that re-
quires adaptive comprehension strategies.

3.1 Causal Analysis

Structural Causal Models (SCMs) serve as vital
tools for elucidating the relationships and influ-
ence pathways among variables. We propose a
simplified SCM (see Figure 3) to delineate the in-
terpretative processes of an LLM when confronted
with novel phrases within their context. In this
model, users supply both the phrase W and its
context X , which are then inputted into the LLM,
represented by the direct links X →M→ Y and
W →M→ Y , whereM denotes the LLM and Y
is the output explanation. These causal links, free
from confounders, capture the logical chain from
input to interpretation. This SCM sets the stage for
our forthcoming discussion where we reintroduce
and scrutinize these confounders, thus laying the
groundwork for a comprehensive causal analysis.

Analysis of entity Initially, referencing a typical
SCM framework (Wang et al., 2023; Wang et al.,
2022), we assume SCM S = {X,E, Y }, where
X denotes context/input, and E represents con-
founder, including phrases and other entities within
the context. From the perspective of human un-
derstanding of new phrases, the interpretation Y is
derived from the context X and its entities E. The
confounder E can be extracted from X , leading to
the relationships X → Y ← E and X → E in
our model. By applying the do-operation (Verma
and Pearl, 1990), which denoted as do(X), we fol-
low the guidelines (Wang et al., 2023; Wang et al.,
2022) to conduct a rigorous causal inference, ensur-
ing that the main effects of the textual context are
captured without losing entity information. This
operation aims to isolate the effect of the context
X on the confounder E. Consequently, the rela-
tionship between X and E undergoes a change,
becoming X̃ ← Ẽ, where Ẽ represents the mod-
ified entity, and X̃ denotes the context obtained
after the do operation which effectively substitutes
the actual entity.

Analysis of linguistic factors In our SCM, de-
noted as S = {X,W,E, Y,R}, the output variable
Y , as an endogenous variable, is influenced by the
input context X , the input phrase W , other en-
tities E, and finally, linguistic factors R, which
include the linguistic structure, style, theme, and
cultural background, crucially shape X and consti-
tute the exogenous variables. The model includes
direct paths X → Y and W → Y , indicating the
immediate influence of context and phrase on the
interpretation. The backdoor path E ← X → W
and the indirect path X → E → W demonstrate
the mediated effects. The path R→ X highlights
the exogenous influence of linguistic factors on
context. The equation for the causal effect in this
context is as follows:

P (Y = y|X = x)

=
∑

e,r

P (Y = y|X = x,W = w,E = e,R = r)

P (W = w|X = x,E = e,R = r)

P (E = e)P (R = r)

In this formula, P (Y = y|X = x) represents
the probability of the outcome variable Y being
a particular value y, given the context X is set
to x. The summation over e and r encompasses
all possible combinations of the values of the en-
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Figure 4: SCM analysis in FOCUS methodology. This figure presents the complex process of causal inference in the
understanding of new phrases, highlighting how the FOCUS approach systematically analyzes and interprets intricate
language patterns, emphasizing the causal links between linguistic elements and their interpretive outcomes.

tities E and linguistic factors R. For each com-
bination, the formula calculates the conditional
probability of Y = y given X = x, the spe-
cific phrase W = w, the entity E = e, and the
linguistic factor R = r. This conditional prob-
ability is further modulated by the probabilities
P (W = w|X = x,E = e,R = r), P (E = e),
and P (R = r). These terms represent the likeli-
hood of observing the phrase W = w conditioned
on the context, entities, and linguistic factors, as
well as the inherent probabilities of the entities
E = e and the linguistic factors R = r. This
comprehensive approach allows for a nuanced un-
derstanding of how context, entities, and linguistic
factors collectively influence the interpretation Y .

3.2 Context-based Causal Intervention

Subsequently, we refine our causal intervention ap-
proach in the SCM, focusing on the role of context
and linguistic factors. To concentrate on the con-
textual content and reduce reliance on shortcuts, E
is replaced with Ẽ, consequently transforming X
into X̃ , (as illustrated in Figure 4 (a) and (b)). Fur-
ther, to eliminate the entity bias in W , it is replaced
with a specific placeholder, denoted as Ŵ (as il-
lustrated in Figure 4 (c) and (d)). This alteration
aids in isolating the effect of W while excluding
entity-specific biases. Overall, these adjustments
accentuate the role of R in shaping the context,
enhancing the model’s capacity to highlight the in-
fluence of linguistic factors in a bias-free manner.
The updated causal effect formula in the SCM is

thus:

P (Y = y|do(X = x))

=
∑

ẽ,r

P (Y = y|X = x, W̃ = w̃, Ẽ = ẽ, R = r)

P (W̃ = w̃|do(X = x), Ẽ = ẽ, R = r)

P (Ẽ = ẽ)P (R = r)

=
∑

ẽ,r

P (Y = y|X = x, W̃ = w̃, Ẽ = ẽ, R = r)

P (W̃ = w̃|Ẽ = ẽ, R = r)P (Ẽ = ẽ)P (R = r)

This revised formula ensure a more comprehen-
sive and nuanced analysis of the causal dynamics
within the SCM, post-intervention. This approach
ensures a more robust and bias-free interpretation
within the SCM framework. This equation ac-
counts for the altered relationships in the SCM
after do-operation. The conditional probabilities
and summations are now over the new variables Ẽ
and W̃ , while maintaining the original structure’s
intent to adjust for confounding effects and capture
the influence of modified entities in the context X .

The core idea of FOCUS is to explore how lan-
guage models can adhere to guidelines to better
understand the content of the context. The goal
is to enable LLMs to analyze phrases according
to usage examples and provide counterfactual in-
terpretations, thereby understanding the evolving
semantics of language. To achieve this objective,
we propose a four-stage method (as shown in Fig-
ure 5), each with its principles:
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Figure 5: The four-stage pipeline of FOCUS.

Direct Inquiry (DI) In the Direct Inquiry (DI)
stage, we input the usage example (context) X and
phrase W into the language model. Represented as
YDI = M(X,W,E), this stage aims to evaluate
the direct effect of X on the inferred meaning Y .
It allows the model to derive meaning naturally
within the given context, focusing on the coherence
of the phrase’s morphology, literal meaning, and
context-based interpretation. DI sets a baseline for
understanding the phrase’s meaning before adding
more analytical layers.

Masked Entity Inquiry (MEI) In the Masked
Entity Inquiry (MEI) stage, we mask the phrase
W within context X to analyze the meaning
Y without W ’s direct influence. This process,
YMEA, ŴMEA = M(Xmasked, E), helps the
model suggest synonyms or near-synonyms for the
masked phrase. MEI focuses on extracting mean-
ing from broader linguistic factors in X and E,
reducing bias towards W ’s literal interpretation
and enhancing context-based understanding.

Entity Replacement Inquiry (ERI) In the En-
tity Replacement Inquiry (ERI) stage, we alter en-
tities in context X to assess phrase interpretation
variability. We use a dropout rate for entity al-
teration in YERI , ŴERI =M(X̃masked, Ẽreplaced).
This introduces a balance of original and new en-
tities, enhancing model robustness without bias.
ERI helps understand entity dynamics’ effects on
interpretation, providing deeper causal analysis.

Synthesis (SY) In the Synthesis (SY) stage, we
integrate insights from Direct Inquiry, Masked En-
tity Inquiry, and Entity Replacement Inquiry. Rep-
resented as YFS = M(YDI , YMEA, YERI), this
phase evaluates the interplay between direct, con-
textual, and entity-variable interpretations. SY rec-
onciles varied interpretations and confounders, re-
fining the model’s understanding of language nu-
ances. This final stage offers a multi-dimensional
perspective on language model analytics, empha-
sizing contextual richness.

4 Experiments

4.1 Setup

Large Language Models Following the prepro-
cessing method described in Section 2.1, we fil-
tered our initial dataset of 7220 concepts, resulting
in 408 new concepts. These evaluations were con-
ducted using Claude 3, GPT-4, Mistral-7B, and
other popular models. For detailed experimental
setup and additional results for other models, please
refer to Appendix A and Appendix C.

Baselines Baselines comprised direct inquiry (Di-
rect) (Ouyang et al., 2022), Chain-of-Thought
(CoT) (Wei et al., 2022), CauView (Wang et al.,
2023), and our FOCUS approaches. In each case,
the language model output was parsed and com-
pared with the ground truth. We implement the
CauView method in our experiment design by us-
ing a two-stage prompt inquiry, due to its lack of a
direct inquiry step.
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Model Prompting Method F1 Precision Recall BLUE ROUGE Similarity SimCSE ACC (%)
1 2 L

Mistral-7B

Direct (Ouyang et al., 2022) 0.1869 0.2655 0.1684 0.0372 0.2078 0.0481 0.1452 0.1507 0.6084 43.1
CoT (Wei et al., 2022) 0.3453 0.3227 0.3706 0.1978 0.3657 0.1602 0.2744 0.4713 0.7132 68.5
CauView (Wang et al., 2023) 0.3012 0.2787 0.3384 0.1561 0.3272 0.1336 0.2449 0.4862 0.7127 64.3
FOCUS (Ours) 0.3703 0.3555 0.3878 0.2493 0.3942 0.1866 0.3011 0.5121 0.7469 76.0

GPT-4

Direct (Ouyang et al., 2022) 0.2308 0.3474 0.1917 0.0483 0.2597 0.0606 0.1859 0.1616 0.6476 47.2
CoT (Wei et al., 2022) 0.4123 0.3947 0.4244 0.2384 0.4370 0.1927 0.3299 0.5521 0.7883 79.3
CauView (Wang et al., 2023) 0.3602 0.3444 0.3948 0.1987 0.3917 0.1643 0.3032 0.5515 0.7636 74.7
FOCUS (Ours) 0.4446 0.4280 0.4714 0.3177 0.4721 0.2332 0.3652 0.6032 0.8216 88.2

Claude 3

Direct (Ouyang et al., 2022) 0.2395 0.3538 0.2171 0.0552 0.2645 0.0673 0.1904 0.1947 0.6714 51.4
CoT (Wei et al., 2022) 0.4276 0.4082 0.4606 0.2471 0.4492 0.2014 0.3371 0.5628 0.7948 81.2
CauView (Wang et al., 2023) 0.3752 0.3550 0.4229 0.2015 0.4035 0.1707 0.3041 0.5778 0.7932 76.6
FOCUS (Ours) 0.4596 0.4452 0.4827 0.3264 0.4835 0.2373 0.3729 0.6109 0.8354 89.7

Table 1: Performance results on the factual dataset. For results on more models, see Appendix C.1.

4.2 Results

4.3 Experimental Results

Results on the factual dataset Table 1 summa-
rizes the findings that the FOCUS method demon-
strates exceptional performance across all models.
For GPT-4, FOCUS achieves the highest F1 score
of 0.4446, precision of 0.4280, recall of 0.4714,
and an accuracy of 88.2%. Similarly, Claude 3
under FOCUS secures an F1 score of 0.4596 and an
accuracy of 89.7%, while Mistral 7B records an F1

score of 0.3703 with an accuracy of 76.0%. These
metrics highlight the effectiveness of the FOCUS

method in enhancing the interpretative capabilities
of language models.

Results on the counterfactual dataset Follow-
ing the analysis of the factual dataset, we extended
our evaluation to the counterfactual dataset, which
presents hypothetical scenarios altering real-world
language usage. As detailed in Table 2, the FO-
CUS method outshines other techniques, particu-
larly with GPT-4, achieving an F1 score of 0.4532,
precision of 0.4598, recall of 0.4551, and an accu-
racy of 84.9%. Claude 3 also performs well under
FOCUS, securing an F1 score of 0.4636 and an ac-
curacy of 86.8%. Mistral 7B shows a solid perfor-
mance, with an F1 score of 0.3935 and an accuracy
of 77.5%. These results underscore FOCUS’s ro-
bust ability to navigate the challenges posed by
modified linguistic contexts.

4.4 Ablation Study

Our ablation study, focusing on the FOCUS method-
ology’s components MEI and ERI on the factual
dataset. As shown in Table 3, these components sig-
nificantly enhance the interpretative capabilities of
the model. Extended ablation results are provided
in Appendix C.3.

MEI The MEI stage, represented mathematically
as P (Y |W,X,E;M), where Y is the interpreta-
tion, W the phrase, X the context, and E the enti-
ties, critically influences the model’s performance.
Its exclusion (w/o MEI) reduced the F1 score to
0.4366 from 0.4446. This result illustrates MEA’s
role in disentangling the direct influence of W and
X from confounding entities E, vital for context-
driven interpretation.

ERI The ERI stage, which examines the causal
links X → Y ← E and X → E, also shows
significant impact. Removing ERI (w/o ERI) de-
creased the F1 score to 0.4283. ERI’s function
in the model, isolating the entity’s influence and
exploring alternative causal pathways, proves es-
sential for nuanced language interpretation.

While incorporating either MEI or ERI individ-
ually into direct inquiry enhances model perfor-
mance, their combined use in the FOCUS frame-
work is indispensable for achieving optimal results.
This synergy underscores the importance of a com-
prehensive causal analysis, balancing context and
entity dynamics, for the nuanced interpretation of
evolving linguistic phenomena.

5 Related Work

5.1 Knowledge Update Methods

LLMs enhance knowledge through parameter-
efficient fine-tuning methods like task-specific pa-
rameter addition (Houlsby et al., 2019) and low-
rank adaptation (LoRA) (Hu et al., 2021; Pfeif-
fer et al., 2020). However, these methods face
challenges such as computational demands, catas-
trophic forgetting, and reduced task-specific effec-
tiveness (Lester et al., 2021). BitFit (Ben-Zaken
et al., 2021) simplifies fine-tuning but relies heav-
ily on dataset quality. Trade-offs in computational
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Model Prompting Method F1 Precision Recall BLUE ROUGE Similarity SimCSE ACC (%)
1 2 L

Mistral-7B

Direct (Ouyang et al., 2022) 0.1765 0.2402 0.1461 0.0327 0.1983 0.0396 0.1378 0.1520 0.5488 20.0
CoT (Wei et al., 2022) 0.3318 0.3018 0.3741 0.1849 0.3593 0.1594 0.2734 0.3960 0.6692 56.2
CauView (Wang et al., 2023) 0.2922 0.2567 0.3416 0.1431 0.3197 0.1233 0.2365 0.3515 0.6309 46.3
FOCUS (Ours) 0.3935 0.3928 0.4005 0.2498 0.4151 0.1891 0.3199 0.5079 0.7343 77.5

GPT-4

Direct (Ouyang et al., 2022) 0.2050 0.3018 0.1705 0.0426 0.2341 0.0503 0.1693 0.1645 0.5735 21.0
CoT (Wei et al., 2022) 0.3821 0.3573 0.4247 0.2189 0.4091 0.1841 0.3147 0.4383 0.7241 62.6
CauView (Wang et al., 2023) 0.3357 0.3024 0.3919 0.1744 0.3701 0.1467 0.2812 0.3815 0.6715 47.2
FOCUS (Ours) 0.4532 0.4598 0.4551 0.3017 0.4763 0.2273 0.3722 0.5645 0.8065 84.9

Claude 3

Direct (Ouyang et al., 2022) 0.2123 0.3143 0.1779 0.0454 0.2435 0.0496 0.1769 0.1733 0.5909 23.1
CoT (Wei et al., 2022) 0.3928 0.3605 0.4405 0.2143 0.4138 0.1867 0.3184 0.4499 0.7398 64.7
CauView (Wang et al., 2023) 0.3468 0.3101 0.4062 0.1662 0.3791 0.1490 0.2879 0.4012 0.6941 52.4
FOCUS (Ours) 0.4636 0.4739 0.4618 0.3132 0.4894 0.2361 0.3867 0.5783 0.8216 86.8

Table 2: Performance results on the counterfactual dataset. For results on more models, see Appendix C.2.

Experiment F1 Precision Recall BLUE ROUGE-1 ROUGE-2 ROUGE-L Similarity SimCSE ACC (%)

w/o MEA 0.4366 0.4380 0.4484 0.2766 0.4586 0.2059 0.3556 0.8821 0.8014 82.0
w/o ERI 0.4283 0.4300 0.4371 0.2814 0.4593 0.2117 0.3547 0.9021 0.8092 84.0

Table 3: Results of ablation experiments on GPT-4. For results on more models, see Appendix C.3.

demands, flexibility, and task compatibility are es-
sential considerations. Retrieval-augmented gener-
ation (Lewis et al., 2020) and in-context learning-
based knowledge editing (Zhong et al., 2023) offer
dynamic integration of external information, focus-
ing more on fact retrieval than on enhancing deeper
understanding.

5.2 Entity Bias and Shortcuts in LLMs

Entity bias (Peng et al., 2020; Longpre et al., 2021;
Wang et al., 2022, 2023) and shortcuts (Du et al.,
2021; Saparov and He, 2023) in LLMs lead to
oversimplified language processing, relying on spe-
cific entities or dataset-driven patterns. Entity bias
skews model predictions towards certain entities,
while shortcuts encompass simplified heuristics,
focusing on identifiable features or aspects of the
input (Du et al., 2022). These patterns limit the
models’ understanding and generation of nuanced
language, affecting generalization and robustness.

5.3 Causal Intervention Solutions

Causal interventions for debiasing and mitigat-
ing shortcuts have gained prominence. (Tian
et al., 2022) and (Zhou et al., 2023a) focus on
causal inference and invariant learning for debi-
asing. CausaLM (Feder et al., 2021) provides
causal-based model explanations, addressing pre-
vious tools’ limitations. Counterfactual methods
for debiasing (Chen et al., 2023b) and eliminating
shortcuts (Wen et al., 2022) have shown promise,
though limitations remain in targeting white-box
models and retraining requirements.

6 Conclusion

In this work, we have explored the dynamic and
evolving nature of internet language, particularly
slang and memes, and their impact on the adaptabil-
ity of LLMs. Our study introduced a novel bench-
mark, SLANG, to assess LLMs’ proficiency in com-
prehending emerging linguistic trends. Addition-
ally, we proposed the FOCUS methodology, which
utilizes causal inference to enhance understanding
of new concepts, going beyond other methods in
terms of precision and relevance. Our approach
involves the construction of datasets from Urban-
Dictionary, a platform known for user-generated
content that reflects current language trends. We
incorporated both factual and counterfactual in-
stances to provide diverse linguistic contexts. Fac-
tual instances are drawn directly from the Urban-
Dictionary entries, while counterfactual instances
are created by altering real-world examples to as-
sess the models’ adaptability to hypothetical scenar-
ios. The results from our experiments demonstrate
the enhanced capability of LLMs, equipped with
our FOCUS method, to adapt to the rapid evolution
of online language. This research contributes to the
field of natural language processing by emphasiz-
ing the importance of contextual understanding and
adaptability in LLMs. Our findings suggest that
LLMs can effectively navigate the complexities of
evolving human communication when equipped
with robust methodologies like FOCUS and evalu-
ated against benchmarks such as SLANG.
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Limitations

The main limitation of this work is that it does not
fully address the complexities of linguistic evolu-
tion in non-English or morphologically rich lan-
guages. Therefore, future work should explore
a wider range of linguistic scenarios and extend
our methodology to other languages and linguistic
contexts. Additionally, the FOCUS methodology,
despite its effectiveness in enhancing the under-
standing of emerging linguistic phenomena, has
a higher computational complexity compared to
some traditional approaches. This might not only
increase the computational demands but also in-
troduce delays when deployed on mobile devices,
which could hinder real-time applications. Such
issues necessitate further optimization to reduce
computational load and improve efficiency for mo-
bile and other constrained environments. More-
over, applying this methodology to downstream
tasks might encounter challenges related to data
processing, as the sources of new concepts may not
be readily accessible. This could require the use
of external tools to gather relevant data, potentially
making the data collection process time-consuming
and variable depending on the specific task.

Ethics Statement

Our research acknowledges that while methods like
the SLANG benchmark and FOCUS approach en-
hance LLM’s understanding of Internet language,
they cannot entirely eliminate the propagation of
harmful content. Users must exercise caution and
cultural sensitivity, especially when interpreting
slang and memes, to avoid reinforcing stereotypes
or biases. Our work encourages responsible use,
emphasizing the importance of respecting diverse
linguistic origins and the natural evolution of lan-
guage.
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In this section, we provide a comprehensive
overview of our experimental setup, including
the models used, API parameters, preprocessing
steps, and the standardization process for defini-
tions. This setup ensures that our evaluations are
thorough, replicable, and provide meaningful in-
sights into the performance of various large lan-
guage models (LLMs).

A.1 Models
We evaluated both closed-source and open-source
LLMs to ensure a broad assessment.

Closed-source models.

• GPT-3.5:
gpt-3.5-turbo-1106

• GPT-4:
gpt-4-0613

• Claude 3 Opus:
claude-3-opus-20240229

• Claude 3 Sonnet:
claude-3-sonnet-20240229

• Claude 3 Haiku:
claude-3-haiku-20240307

Open-source models.

• Mistral 7B (Jiang et al., 2023) :
mistral-7b-instruct-v0.1

• LLaMA 7B:
llama-2-7b-chat
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A.2 API Parameters

To ensure consistency and comparability in our
evaluations, we used the following hyperparame-
ters when calling the LLM API:

• Temperature: 0.7

• Max tokens: 512

A.3 Preprocessing

The selection of 408 samples from 7220 was based
strictly on the data filtering strategy described in
Section 2.1 of our paper. Although this number
of test samples may seem small for an unfiltered
dataset, it is substantial compared to existing LLM
benchmarks:

• MaliciousInstruct (Huang et al., 2023):
100 samples

• HumanEval (Chen et al., 2021):
163 samples

• AdvBench (Zou et al., 2023):
500 samples

• HarmBench (Mazeika et al., 2024):
400 unimodal samples

Additionally, we ensured the quality and diversity
of the samples, as illustrated in Figure 6. Our cho-
sen test samples were novel to the LLM, guaran-
teeing a comprehensive evaluation of model perfor-
mance by maintaining the integrity and representa-
tiveness of the dataset.

A.4 Costs

The experiments conducted using closed-source
models incurred a total cost of approximately $500
(includes API discounts). For the open-source mod-
els, the experiments were run on a server with 4
NVIDIA Tesla A100 GPUs for a duration of 14
hours.

This breakdown of costs highlights the compu-
tational and financial resources required to con-
duct comprehensive evaluations of large language
models. The use of both closed-source and open-
source models ensures a diverse and robust assess-
ment, while the detailed cost analysis provides
transparency regarding the experimental setup.

B Explanation Standardization

Since the definitions were user-generated, they var-
ied widely in language style and structural format.
To ensure uniformity, we standardized these expla-
nations using a consistent template.

We used the following template to standardize
the explanations in the dataset:

[P] refers to [B]. It is often used [C].
This expression [A].

• P: Phrase

• B: Basic description of the word

• C: Context or situation of usage

• A: Additional details like connotations, emo-
tions, or typical reactions associated with the
word

For example, the original explanation of the
phrase The Winter Arc was:

“A time where every man must face the
mental and physical challenges of winter.
A time to put your head down and get
things done”

After standardization, it became:

“The Winter Arc refers to a time when
people deal with the cold and hard parts
of winter. It is often used to talk about
staying strong and getting work done
even when it’s cold and challenging out-
side. This expression suggests that peo-
ple are being tough and focused.”

C Additional Experimental Results

We provide a comprehensive summary of the ex-
tended evaluation conducted on various language
models including GPT-3.5, GPT-4, several versions
of Claude 3, Mistral 7B, and LLaMA 2-7B (Tou-
vron et al., 2023). Each model undergoes assess-
ment using a range of prompting methods, such as
Direct, CoT, CauView, and our FOCUS method.

C.1 Factual Dataset
In the factual dataset, the FOCUS prompting
method propels GPT-4 and Claude 3 Opus models
to the highest performance, with GPT-4 achieving
an F1 score of 0.4446, precision of 0.4280, recall
of 0.4714, and accuracy of 88.2%. Claude 3 Opus
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closely follows with an F1 score of 0.4596 and ac-
curacy of 89.7%. The LLaMA 2-7B also exhibits
commendable improvements, confirming the effi-
cacy of FOCUS across diverse architectures. These
results are shown in Table 4.

C.2 Counterfactual Dataset
When analyzing the counterfactual dataset, which
involves challenges from hypothetical language al-
terations, FOCUS maintains the lead under GPT-4,
achieving an F1 score of 0.4532 and accuracy of
84.9%. Claude 3 Opus exhibits robustness in this
modified context with an F1 score of 0.4636 and ac-
curacy of 86.8%. The lower-resource models such
as LLaMA 2-7B also displays significant gains,
demonstrating the adaptability of FOCUS to a wide
range of models and scenarios. These results are
shown in Table 5.

C.3 Ablation Study
We extend the ablation study to more models, focus-
ing on the effect of the MEI and ERI components
of FOCUS on the factual dataset. As shown in Table
6, removing these components leads to a significant
performance drop across all models tested. These
results further confirm the findings in Section 4.4,
demonstrating that MEI and ERI are crucial for
achieving optimal performance within FOCUS.

C.4 Discussion
Across both datasets, FOCUS consistently excels,
enabling models to understand and interpret lan-
guage effectively. This effectiveness is particularly
evident in models with diverse capacities and struc-
tures, signifying the versatility of FOCUS in its
application to natural language processing tasks.
Furthermore, the lower recall score observed in
GPT-3.5 is attributed to the model’s tendency to
provide shorter answers to questions, a character-
istic preference of GPT-3.5 itself rather than a lim-
itation of FOCUS. Although this preference for
brevity contributes to a lower recall score, it does
not diminish the overall effectiveness of FOCUS.

D Needle In A Haystack Test

To ensure that the concepts in our dataset are novel
to LLMs, we designed and implemented the "nee-
dle in a haystack" test. The purpose of this test is
to evaluate the ability of LLMs to retrieve specific
information from large corpora, thereby verifying
whether the concepts we selected are indeed new
to the LLMs.

D.1 Experimental Setup

A large corpus was prepared, incorporating text
data from diverse online sources such as news ar-
ticles, blog posts, and social media content. This
corpus is intended to simulate the training data typ-
ically encountered by LLMs. We selected a set of
concepts that were added to our Urban Dictionary
dataset after the LLMs’ knowledge cutoff date. For
each concept, we generated a unique phrase embed-
ding the concept and randomly inserted this phrase
into the corpus. This setup was designed to mimic
the challenge of locating specific information in a
vast dataset. We tested the LLMs’ ability to iden-
tify and extract each phrase from the corpus using
specific prompts. If an LLM successfully retrieved
the inserted phrase, the corresponding concept was
considered known to the model. If the model failed
to find the phrase, the concept was deemed novel.

D.2 Data Format Example

Here is an illustrative example of the data format
used in the "needle in a haystack" test:

• Concept: "Tamagotchi effect"

• Inserted Phrase: "Jimmy was so upset when
his furby died, he obviously was suffering
from the tamagotchi effect."

• Corpus Sample: "...The stock market showed
surprising resilience today. In other news,
Jimmy was so upset when his furby died, he
obviously was suffering from the tamagotchi
effect. Meanwhile, local sports teams are gear-
ing up for the upcoming championships..."

• LLM Prompt (w/o few-shot context): "...Iden-
tify the phrase from the text that describes
a scenario where a person shows emotional
distress due to the cessation of function in an
electronic device or machine..."

• LLM Output: "Jimmy was so upset when his
furby died, he obviously was suffering from
the tamagotchi effect."

If the LLM accurately extracts the inserted
phrase, "tamagotchi effect" would be considered
known by the LLM. If not, it is marked as a novel
concept. This process was repeated for all selected
concepts to determine their novelty to the LLMs.
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Model Prompting Method F1 Precision Recall BLEU ROUGE Similarity SimCSE ACC (%)
1 2 L

GPT-3.5

Direct 0.2219 0.1541 0.4320 0.0477 0.2410 0.0547 0.1531 0.1943 0.6806 47.6
CoT 0.3922 0.3585 0.4583 0.2273 0.4181 0.1822 0.3135 0.5292 0.7653 76.4
CauView 0.3500 0.2487 0.4885 0.1676 0.3777 0.1506 0.2676 0.5612 0.7868 72.0
FOCUS (Ours) 0.4292 0.4153 0.4524 0.2798 0.4541 0.2131 0.3481 0.5748 0.8017 84.5

GPT-4

Direct 0.2308 0.3474 0.1917 0.0483 0.2597 0.0606 0.1859 0.1616 0.6476 47.2
CoT 0.4123 0.3947 0.4244 0.2384 0.4370 0.1927 0.3299 0.5521 0.7883 79.3
CauView 0.3602 0.3444 0.3948 0.1987 0.3917 0.1643 0.3032 0.5515 0.7636 74.7
FOCUS (Ours) 0.4446 0.4280 0.4714 0.3177 0.4721 0.2332 0.3652 0.6032 0.8216 88.2

Claude 3 Opus

Direct 0.2395 0.3538 0.2171 0.0552 0.2645 0.0673 0.1904 0.1947 0.6714 51.4
CoT 0.4276 0.4082 0.4606 0.2471 0.4492 0.2014 0.3371 0.5628 0.7948 81.2
CauView 0.3752 0.3550 0.4229 0.2015 0.4035 0.1707 0.3041 0.5778 0.7932 76.6
FOCUS (Ours) 0.4596 0.4452 0.4827 0.3264 0.4835 0.2373 0.3729 0.6109 0.8354 89.7

Claude 3 Sonnet

Direct 0.2251 0.3411 0.2015 0.0495 0.2541 0.0592 0.1813 0.1587 0.6417 46.8
CoT 0.4075 0.3895 0.4202 0.2353 0.4312 0.1892 0.3247 0.5467 0.7834 78.7
CauView 0.3562 0.3393 0.3897 0.1946 0.3872 0.1602 0.2951 0.5462 0.7586 73.9
FOCUS (Ours) 0.4391 0.4238 0.4653 0.3128 0.4676 0.2293 0.3601 0.5982 0.8167 87.6

Claude 3 Haiku

Direct 0.2137 0.3105 0.1912 0.0463 0.2356 0.0558 0.1652 0.1849 0.6639 48.7
CoT 0.3853 0.3530 0.4271 0.2196 0.4085 0.1776 0.3050 0.5217 0.7559 75.2
CauView 0.3384 0.3032 0.3816 0.1782 0.3663 0.1498 0.2743 0.5394 0.7562 70.6
FOCUS (Ours) 0.4086 0.3875 0.4308 0.2759 0.4326 0.2041 0.3303 0.5648 0.7896 82.8

Mistral-7B

Direct 0.1869 0.2655 0.1684 0.0372 0.2078 0.0481 0.1452 0.1507 0.6084 43.1
CoT 0.3453 0.3227 0.3706 0.1978 0.3657 0.1602 0.2744 0.4713 0.7132 68.5
CauView 0.3012 0.2787 0.3384 0.1561 0.3272 0.1336 0.2449 0.4862 0.7127 64.3
FOCUS (Ours) 0.3703 0.3555 0.3878 0.2493 0.3942 0.1866 0.3011 0.5121 0.7469 76.0

LLaMA 2-7B

Direct 0.1581 0.2115 0.1361 0.0282 0.1795 0.0378 0.1254 0.1134 0.5792 40.5
CoT 0.3174 0.2884 0.3491 0.1746 0.3344 0.1407 0.2515 0.4628 0.6844 64.4
CauView 0.2717 0.2441 0.3109 0.1416 0.2951 0.1152 0.2242 0.4669 0.6718 59.5
FOCUS (Ours) 0.3391 0.3282 0.3549 0.2043 0.3619 0.1579 0.2771 0.4873 0.7117 70.8

Table 4: Performance results on the factual dataset.

D.3 Discussion

It is also important to note that in the context of this
experiment, the use of existing filtering strategies
based on the cut-off date for GPT models proved to
be more stringent than the "needle in a haystack"
test. This resulted in no additional data being fil-
tered out by the test since the dataset had already
been screened through more conservative criteria
(Yin et al., 2023) and aligned with an earlier knowl-
edge cut-off date. However, this situation is spe-
cific to the dataset used in this study, which is a
subset tailored to demonstrate the methodology.
For broader applications, especially when utilizing
our complete open-source dataset which contains
over 180,000 entries, the "needle in a haystack" test
becomes essential. This is crucial for effectively
assessing the novelty of concepts across a more
extensive and diverse corpus.

E Validation of User-generated Votes

To validate the effectiveness of our user votes-
based filtering strategy, we conducted an experi-
ment with the assistance of five English-speaking
volunteers from English-speaking countries. This
experiment was designed to compare the human
judgment against the automated user votes-based

method, affirming the reliability of user votes as a
metric for assessing data quality.

E.1 Experiment Design

The experiment engaged five volunteers to review
200 entries from our dataset. These entries in-
cluded an equal split of 100 entries that had been
filtered out and 100 that had been retained by our
pre-existing user votes-based filtering method. Vol-
unteers were instructed to make independent filter-
ing decisions for each entry based on our study’s
quality criteria.

E.2 Data Collection and Analysis

We analyzed the decisions of the volunteers to de-
termine the recall and precision of the user votes
method against human judgments. Recall measures
the proportion of entries that both humans and the
automated method agreed should be filtered, while
precision assesses the accuracy of the automated
method in filtering entries deemed necessary by hu-
man reviewers. Additionally, we calculated consis-
tency rates to quantify the agreement between each
volunteer’s decisions and the automated method.

12572



Model Prompting Method F1 Precision Recall BLEU ROUGE Similarity SimCSE ACC (%)
1 2 L

GPT-3.5

Direct 0.1922 0.1252 0.4497 0.0371 0.2120 0.0477 0.1328 0.1936 0.6051 24.3
CoT 0.3576 0.3138 0.4407 0.2098 0.3865 0.1713 0.2932 0.4390 0.7232 62.3
CauView 0.3161 0.2489 0.4471 0.1464 0.3439 0.1297 0.2491 0.4031 0.6954 54.6
FOCUS (Ours) 0.4078 0.4018 0.4294 0.2519 0.4344 0.1955 0.3339 0.5594 0.7836 83.4

GPT-4

Direct 0.2050 0.3018 0.1705 0.0426 0.2341 0.0503 0.1693 0.1645 0.5735 21.0
CoT 0.3821 0.3573 0.4247 0.2189 0.4091 0.1841 0.3147 0.4383 0.7241 62.6
CauView 0.3357 0.3024 0.3919 0.1744 0.3701 0.1467 0.2812 0.3815 0.6715 47.2
FOCUS (Ours) 0.4532 0.4598 0.4551 0.3017 0.4763 0.2273 0.3722 0.5645 0.8065 84.9

Claude 3 Opus

Direct 0.2123 0.3143 0.1779 0.0454 0.2435 0.0496 0.1769 0.1733 0.5909 23.1
CoT 0.3928 0.3605 0.4405 0.2143 0.4138 0.1867 0.3184 0.4499 0.7398 64.7
CauView 0.3468 0.3101 0.4062 0.1662 0.3791 0.1490 0.2879 0.4012 0.6941 52.4
FOCUS (Ours) 0.4636 0.4739 0.4618 0.3132 0.4894 0.2361 0.3867 0.5783 0.8216 86.8

Claude 3 Sonnet

Direct 0.1984 0.2886 0.1637 0.0398 0.2261 0.0445 0.1628 0.1539 0.5540 20.5
CoT 0.3752 0.3439 0.4211 0.2038 0.3972 0.1790 0.3053 0.4249 0.7080 61.1
CauView 0.3302 0.2952 0.3873 0.1578 0.3617 0.1421 0.2745 0.3776 0.6596 49.6
FOCUS (Ours) 0.4416 0.4521 0.4398 0.2956 0.4666 0.2249 0.3682 0.5502 0.7874 83.2

Claude 3 Haiku

Direct 0.1853 0.2392 0.1482 0.0334 0.2018 0.0384 0.1405 0.1708 0.6026 22.7
CoT 0.3458 0.3044 0.3898 0.1923 0.3649 0.1589 0.2763 0.4297 0.7196 60.5
CauView 0.3038 0.2583 0.3540 0.1490 0.3280 0.1234 0.2431 0.3860 0.6786 51.7
FOCUS (Ours) 0.3959 0.3885 0.4086 0.2462 0.4164 0.1868 0.3180 0.5428 0.7716 81.3

Mistral 7B

Direct 0.1765 0.2402 0.1461 0.0327 0.1983 0.0396 0.1378 0.1520 0.5488 20.0
CoT 0.3318 0.3018 0.3741 0.1849 0.3593 0.1594 0.2734 0.3960 0.6692 56.2
CauView 0.2922 0.2567 0.3416 0.1431 0.3197 0.1233 0.2365 0.3515 0.6309 46.3
FOCUS (Ours) 0.3935 0.3928 0.4005 0.2498 0.4151 0.1891 0.3199 0.5079 0.7343 77.5

LLaMA 2-7B

Direct 0.1421 0.1680 0.1107 0.0207 0.1495 0.0281 0.1021 0.1033 0.4606 13.7
CoT 0.2619 0.2381 0.2950 0.1472 0.2837 0.1255 0.2159 0.3151 0.5475 44.5
CauView 0.2309 0.2026 0.2698 0.1122 0.2520 0.0971 0.1864 0.2762 0.5177 36.1
FOCUS (Ours) 0.3087 0.3081 0.3142 0.1954 0.3255 0.1479 0.2510 0.3985 0.6073 60.6

Table 5: Performance results on the counterfactual dataset.

Model Experiment F1 Precision Recall BLEU ROUGE-1 ROUGE-2 ROUGE-L Similarity SimCSE ACC(%)

Claude 3 Opus w/o MEA 0.4325 0.4160 0.4561 0.2962 0.4565 0.2153 0.3480 0.5806 0.8018 85.1
w/o ERI 0.4369 0.4202 0.4608 0.3003 0.4606 0.2184 0.3519 0.5857 0.8062 85.8

GPT-4 MEA 0.4366 0.4380 0.4484 0.2766 0.4586 0.2059 0.3556 0.8821 0.8014 82.0
w/o ERI 0.4283 0.4300 0.4371 0.2814 0.4593 0.2117 0.3547 0.9021 0.8092 84.0

Mistral 7B w/o MEA 0.3624 0.3477 0.3792 0.2414 0.3864 0.1787 0.2933 0.5032 0.7379 74.7
w/o ERI 0.3663 0.3515 0.3833 0.2453 0.3903 0.1816 0.2972 0.5081 0.7421 75.4

Table 6: Results of ablation experiments on more models.

E.3 Results

The data, as shown in Table 8 and 7, indicate
high recall rates (95% to 99%) and precision rates
(91.67% to 94.12%), along with very high consis-
tency rates (96.50% to 98.00%). These metrics
collectively demonstrate that the user votes-based
method is highly effective at mirroring human judg-
ment in filtering decisions. The results underscore
the potential of user votes as a reliable indicator
of content quality, validating its use as a principal
method for data filtering in our study.

F Dataset Categorization

To address potential biases in our dataset that could
arise from overrepresentation of certain internet
slang categories, such as metaphors, we classified
the slang phrases into eight broad categories. We
recruited five English-speaking volunteers from

English-speaking countries to assist in the catego-
rization of 408 new concepts used in our experi-
ments.

Each volunteer, drawing on their personal expe-
rience and familiarity with internet culture, inde-
pendently categorized each phrase. The categories
were as follows:

• Abbreviations and acronyms

• Pop culture references

• Technical and internet terms

• Metaphors and similes

• Gaming and subculture jargon

• Euphemisms and slang for sensitive topics

• Social media and communication shortcuts
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Figure 6: Distribution of internet slang categories across our dataset.

Volunteers 1 2 3 4 5 Average
Consistency (%) 96.50 97.00 96.00 97.50 98.00 97.00

Table 7: Consistency of the user votes-based filtering strategy across different volunteers.

Volunteers Recall (%) Precision (%)
Volunteer 1 95.00 94.12
Volunteer 2 97.00 93.27
Volunteer 3 95.00 95.00
Volunteer 4 98.00 92.45
Volunteer 5 99.00 91.67

Average 96.80 93.30

Table 8: Recall and precision of the user votes-based
filtering strategy as validated by human reviewers.

• Generational and temporal slang

This collaborative approach was crucial to en-
suring that our dataset was not skewed toward any
single category of slang, providing a more balanced
foundation for analysis. As shown in Figure 6, our
dataset features a diverse array of slang expres-
sions.

Concept Editing and Tuning Recent advance-
ments in concept editing and tuning have signifi-
cantly improved the problem-solving capabilities
of models across a wide range of fields (Zhang
et al., 2023a, 2024b,c; Li et al., 2024; Chen et al.,
2023a; Zhang et al., 2024a). These methods, which
modify the internal structure of large language
models (LLMs), are designed to adjust the out-
put based on newly edited knowledge. In partic-
ular, many techniques focus on integrating aux-

iliary networks or tweaking model parameters to
guide responses (Meng et al., 2022a,b; Mitchell
et al., 2022; Yao et al., 2023; Bi et al., 2024c). A
promising approach in this area is In-Context Edit-
ing (ICE)(Bi et al., 2024e,a,b,d), which enables
models to adapt by utilizing prompts with modified
facts and retrieving relevant editing demonstrations
from memory. However, hallucinations and safety
issues remain significant challenges in tasks related
to LLMs(Zhang et al., 2023b; Mei et al., 2024a,b).

G Summary of Contributions

While our experiments leverage the UrbanDic-
tionary dataset and focus on a subset of popular
LLMs, it is crucial to emphasize that the core con-
tributions of this work extend far beyond these
specifics. We would like to highlight three key
aspects that underscore the broader impact and ap-
plicability of our research:

Dataset construction pipeline This work goes
beyond simply providing a static dataset from a
single source. Instead, we have developed a com-
prehensive, open-source toolbox that empowers
researchers and practitioners to continuously col-
lect, clean, and process data from a wide range
of sources. This toolbox is designed to be highly
adaptable, allowing users to easily integrate and
analyze data from various platforms and domains,
such as social media, online forums, and digital
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publications. By offering a flexible and extensible
framework, our approach ensures the long-term
relevance and applicability of the methodology,
enabling researchers to keep pace with the ever-
evolving landscape of online language. The open-
source nature of the toolbox further encourages
collaboration and innovation within the research
community, as it allows anyone to leverage and
build upon our work to process and analyze data
from diverse sources, tailoring it to their specific
research questions and requirements.

Benchmarking framework The SLANG bench-
mark is not merely a one-off evaluation limited to
the specific datasets and models used in our ex-
periments. Rather, it presents a comprehensive
and generalized framework for assessing the adapt-
ability and comprehension capabilities of a wide
range of large language models when faced with
the challenges of evolving linguistic phenomena.
The benchmark is designed to be model-agnostic
and can be seamlessly applied to various datasets
and architectures, irrespective of their size, domain,
or underlying structure, allowing for standardized
evaluations and fair comparisons across different
settings. By providing a robust and flexible evalu-
ation framework, SLANG sets a new standard for
assessing the performance of large language mod-
els in the face of linguistic change, facilitating the
development of language models that can handle
the dynamic nature of human language and paving
the way for more adaptable and resilient natural
language processing systems.

Enhancing LLMs on the fly The FOCUS

methodology proposed in this work offers a princi-
pled approach for improving the ability of LLMs
to grasp, interpret, and adapt to emerging linguistic
phenomena on the fly, without the need for retrain-
ing or relying on Retrieval-augmented generation
(RAG) techniques. Our method is model-agnostic,
providing a strong basis for anticipating its appli-
cability and benefits across a broader spectrum of
LLMs and architectures, without the computational
overhead and data requirements associated with re-
training or RAG-based approaches. This positions
FOCUS as an efficient and scalable solution for en-
hancing LLMs’ understanding of new concepts. In
industrial applications, FOCUS has the potential to
empower businesses across various domains, en-
abling real-time product recommendation systems,
content moderation, sentiment analysis tools, and
customer service chatbots that can swiftly adapt

to emerging new concepts and terminology. By
enhancing enterprises’ responsiveness and adapt-
ability, FOCUS positions itself as a cost-effective
solution that can provide a significant competitive
advantage in the fast-paced digital market.

H Definitions

Concept refers to new ideas or phenomena
emerging in language due to human activities, par-
ticularly on the internet.

Expression is a specific phrase or term used to
convey these concepts.

Deeper meaning refers to the underlying signifi-
cance or implications of a concept beyond its literal
expression.

Linguistic shift denotes the gradual incorpora-
tion of new concepts into the language, leading to
changes over time.
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