@inproceedings{lan-etal-2024-llm,
title = "{LLM}-Based Agent Society Investigation: Collaboration and Confrontation in Avalon Gameplay",
author = "Lan, Yihuai and
Hu, Zhiqiang and
Wang, Lei and
Wang, Yang and
Ye, Deheng and
Zhao, Peilin and
Lim, Ee-Peng and
Xiong, Hui and
Wang, Hao",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-main.7",
doi = "10.18653/v1/2024.emnlp-main.7",
pages = "128--145",
abstract = "This paper explores the open research problem of understanding the social behaviors of LLM-based agents. Using Avalon as a testbed, we employ system prompts to guide LLM agents in gameplay. While previous studies have touched on gameplay with LLM agents, research on their social behaviors is lacking. We propose a novel framework, tailored for Avalon, features a multi-agent system facilitating efficient communication and interaction. We evaluate its performance based on game success and analyze LLM agents{'} social behaviors. Results affirm the framework{'}s effectiveness in creating adaptive agents and suggest LLM-based agents{'} potential in navigating dynamic social interactions. By examining collaboration and confrontation behaviors, we offer insights into this field{'}s research and applications.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lan-etal-2024-llm">
<titleInfo>
<title>LLM-Based Agent Society Investigation: Collaboration and Confrontation in Avalon Gameplay</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yihuai</namePart>
<namePart type="family">Lan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhiqiang</namePart>
<namePart type="family">Hu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lei</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Deheng</namePart>
<namePart type="family">Ye</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peilin</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ee-Peng</namePart>
<namePart type="family">Lim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hui</namePart>
<namePart type="family">Xiong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hao</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper explores the open research problem of understanding the social behaviors of LLM-based agents. Using Avalon as a testbed, we employ system prompts to guide LLM agents in gameplay. While previous studies have touched on gameplay with LLM agents, research on their social behaviors is lacking. We propose a novel framework, tailored for Avalon, features a multi-agent system facilitating efficient communication and interaction. We evaluate its performance based on game success and analyze LLM agents’ social behaviors. Results affirm the framework’s effectiveness in creating adaptive agents and suggest LLM-based agents’ potential in navigating dynamic social interactions. By examining collaboration and confrontation behaviors, we offer insights into this field’s research and applications.</abstract>
<identifier type="citekey">lan-etal-2024-llm</identifier>
<identifier type="doi">10.18653/v1/2024.emnlp-main.7</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-main.7</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>128</start>
<end>145</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T LLM-Based Agent Society Investigation: Collaboration and Confrontation in Avalon Gameplay
%A Lan, Yihuai
%A Hu, Zhiqiang
%A Wang, Lei
%A Wang, Yang
%A Ye, Deheng
%A Zhao, Peilin
%A Lim, Ee-Peng
%A Xiong, Hui
%A Wang, Hao
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F lan-etal-2024-llm
%X This paper explores the open research problem of understanding the social behaviors of LLM-based agents. Using Avalon as a testbed, we employ system prompts to guide LLM agents in gameplay. While previous studies have touched on gameplay with LLM agents, research on their social behaviors is lacking. We propose a novel framework, tailored for Avalon, features a multi-agent system facilitating efficient communication and interaction. We evaluate its performance based on game success and analyze LLM agents’ social behaviors. Results affirm the framework’s effectiveness in creating adaptive agents and suggest LLM-based agents’ potential in navigating dynamic social interactions. By examining collaboration and confrontation behaviors, we offer insights into this field’s research and applications.
%R 10.18653/v1/2024.emnlp-main.7
%U https://aclanthology.org/2024.emnlp-main.7
%U https://doi.org/10.18653/v1/2024.emnlp-main.7
%P 128-145
Markdown (Informal)
[LLM-Based Agent Society Investigation: Collaboration and Confrontation in Avalon Gameplay](https://aclanthology.org/2024.emnlp-main.7) (Lan et al., EMNLP 2024)
ACL
- Yihuai Lan, Zhiqiang Hu, Lei Wang, Yang Wang, Deheng Ye, Peilin Zhao, Ee-Peng Lim, Hui Xiong, and Hao Wang. 2024. LLM-Based Agent Society Investigation: Collaboration and Confrontation in Avalon Gameplay. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 128–145, Miami, Florida, USA. Association for Computational Linguistics.