
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 12602–12609
November 12-16, 2024 ©2024 Association for Computational Linguistics

Why Does New Knowledge Create Messy Ripple Effects in LLMs?

Jiaxin Qin1*, Zixuan Zhang1, Chi Han1, Pengfei Yu1,3, Manling Li2, Heng Ji1
1University of Illinois Urbana-Champaign

2Stanford University
3Boson AI

{qjx0814, zixuan11, chihan3, pengfei4, hengji}@illinois.edu
manlingl@stanford.edu

Abstract

Extensive previous research has focused on
post-training knowledge editing (KE) for lan-
guage models (LMs) to ensure that knowl-
edge remains accurate and up-to-date. One
desired property and open question in KE is to
let edited LMs correctly handle ripple effects,
where LM is expected to answer its logically
related knowledge accurately. In this paper, we
answer the question of why most KE methods
still create messy ripple effects. We conduct
extensive analysis and identify a salient indi-
cator, GradSim, that effectively reveals when
and why updated knowledge ripples in LMs.
GradSim is computed by the cosine similarity
between gradients of the original fact and its re-
lated knowledge. We observe a strong positive
correlation between ripple effect performance
and GradSim across different LMs, KE meth-
ods, and evaluation metrics. Further investiga-
tions into three counter-intuitive failure cases
(Negation, Over-Ripple, Multi-Lingual) of rip-
ple effects demonstrate that these failures are
often associated with very low GradSim. This
finding validates that GradSim is an effective
indicator of when knowledge ripples in LMs.
The code is available.2

1 Introduction and Related Work

Large language models (LLMs) can serve as power-
ful knowledge bases (KBs) thanks to their impres-
sive knowledge storage, retrieval, and reasoning
capabilities (Petroni et al., 2019; AlKhamissi et al.,
2022; Zhang et al., 2024). However, real-world
knowledge keeps updating and evolving constantly,
which motivates extensive research efforts on post-
training knowledge editing (KE) (Meng et al., 2022,
2023; Yin et al., 2023; Zhong et al., 2023a; Song
et al., 2024; Liu et al., 2024) to make sure that the
knowledge in LMs remains accurate and up-to-date.

1Work done during internship at UIUC.
1https://github.com/JiaxinQin0814/Ripple_Effect_Analysis.
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Figure 1: An illustration of ripple effects in LLM knowl-
edge editing. Our work empirically demonstrates the
positive correlation between gradient similarity explains
a large portion of the ripple effect. Furthermore, messy
similarities between knowledge points create several
counter-intuitive ripple effect failures.

Previous research has proposed numerous eval-
uation metrics to ensure the efficiency and consis-
tency of these editing methods. Among them, one
critical criterion is the ability of the KE method to
handle ripple effects (Cohen et al., 2023), where
a single edit should automatically and accurately
propagate to related facts. For example, suppose
an edit changes Leonardo DiCaprio’s nationality
to Syrian. The model should automatically update
its related information, such as knowing that his
primarily used language is now Arabic. Such a task
is very challenging because it requires the model
to correctly understand and infer complex relation-
ships among knowledge elements and accurately
locate their parametric storage in order to perform
the edits. Empirically, even though direct knowl-
edge edits typically achieve over > 90% accuracy,
the success rates of ripple effects struggle to exceed
50% across all recent KE methods, even on the sim-
plest task in RippleEdits (Cohen et al., 2023).

In this paper, we answer the intriguing research
question of when and why updated knowledge rip-
ples in language models. We hypothesize that the
knowledge storage among parameters plays a criti-
cal role in determining the ripple effects between
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knowledge facts. A messy relationship among
knowledge elements can make achieving a suc-
cessful ripple effect intractable or impossible. Intu-
itively, the similarity of knowledge storage should
be an important factor, as knowledge represented
by similar parameters will respond similarly to pa-
rameter updates during knowledge editing. Follow-
ing this intuition, we conduct extensive analysis
and identify a salient indicator that strongly reveals
how likely an updated fact will ripple in a language
model: the cosine similarity between the gradients
of the related knowledge facts (GradSim). We use
gradients to represent knowledge storage distribu-
tion in LMs because they indicate which param-
eters in the model are responsible for increasing
or decreasing the likelihood of answering certain
knowledge. We observe a strong positive corre-
lation between ripple effect performance and the
cosine similarity of gradients across different LMs,
editing methods, and evaluation metrics, with a
Pearson correlation metric reaching as high as 0.85.

The hypothesis and analysis above predict a
counter-intuitive phenomenon: knowledge with
similar parameter-storing locations, even if logi-
cally unrelated or contradictory, will create pos-
itive ripple effects toward each other, and vise
versa. Viewing GradSim as an indicator of rip-
ple effects, we verify this paradox above by dis-
covering and explaining three specific ripple effect
cases: Negation, Over-Ripple Errors and Cross-
Lingual Transfer. As illustrated in Figure 1, as-
suming that a knowledge edit changes the citizen-
ship of Leonardo DiCaprio from United States
to Syria. In Negation, LMs with different sizes
including GPT2-XL and LLaMA-2 unexpectedly
answer the negated query Leonardo is not a cit-
izen of still by Syria instead of logically correct
answers such as United States. Moreover, in Over-
Ripple Errors, the LMs over-memorize the edit
target Syria, and tends to always answer Syria even
when asked about other topics such as language.
In Cross-Lingual Transfer, even the most power-
ful cross-lingual LMs could make mistakes when
asked about the edited knowledge in a different
language. All of these ripple-effect cases are com-
monly encountered in real-world applications, but
are more challenging and often experience counter-
intuitive failures with current LMs and KE meth-
ods. In our experiments, we demonstrate that the
model’s failure in these cases is strongly correlated
with a too small GradSim, the similarity in knowl-
edge distributions within LMs.

2 GradSim: A Ripple Effect Indicator

In this section, we formally introduce GradSim,
a ripple-effect indicator based on the knowledge
storage similarity between related knowledge. We
use x and y to denote a pair of original fact and its
related knowledge respectively, and we use (qx, ax)
and (qy, ay) to represent query-answer pairs based
on the corresponding knowledge facts. For in-
stance, if qx and ax are <Leonardo DiCaprio is a
citizen of> and <United States> respectively, then
one example pair of qy and ay could be <Leonardo
DiCaprio speaks> and <English>. Given a query
qx, typical KE methods update ax to a new answer
a′x by applying an update on the model parame-
ters θ, and ripple effect evaluations expect that the
LM can automatically find the correct a′y when
asked qy. Based on our hypothesis, knowledge
represented by similar parameteres will respond
similarly to parameter updates during knowledge
editing. We employ the gradient to model the stor-
age of knowledge within an LLM, and use the co-
sine similarity to measure the proximity between
the storage distribution of two pieces of knowledge:

GradSim(x, y) =

cos(∇θPθ(ax|qx),∇θPθ(ay|qy))

3 Experiments

We assess the effectiveness of GradSim by em-
pirically examining its correlation with ripple ef-
fect performance, aiming to determine if it reli-
ably indicates successful knowledge propagation
in language models. Furthermore, we analyze three
typical counter-intuitive failure cases in detail to
understand the role of GradSim in these situations.

3.1 Data, Models, and KE Methods

In our experiments, we mainly employ RippleEdits
(Cohen et al., 2023), the most widely-used bench-
mark for evaluating ripple effects for knowledge
editing methods in LLMs. We mainly use the popu-
lar split in RippleEdits because popular entities are
more likely to be recognized by language models.
This approach helps to minimize any side effects
resulting from the model’s lack of knowledge, al-
lowing us to focus on its reasoning abilities. To
ensure a comprehensive evaluation, we also demon-
strate results in the recent split as shown in Figure 2.
In our experiments, we consider two typical knowl-
edge editing (KE) methods: ROME (Meng et al.,
2022) and MEMIT (Meng et al., 2023), which are
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Figure 2: Main results of evaluating the correlation between ripple effect performances and GradSim values.

based on the locate-and-edit approach to modify
model parameters. For language models, we eval-
uate both larger models like LLaMA2-7B (Tou-
vron et al., 2023) and smaller models like GPT-2
XL (Radford et al., 2019) to ensure a comprehen-
sive evaluation and maintain consistency with the
original settings in ROME and MEMIT.

3.2 Evaluation Metrics of Ripple Effects

To ensure the validity of our experiment results, we
consider multiple evaluation metrics assessing how
well the model performs in answering ripple-effect
queries. These metrics include both accuracy-based
measures, such as the exact match rate, and more
quantified likelihood metrics, such as the absolute
and relative gains in likelihood.

Exact-Match (EM) Rate Similar to (Cohen
et al., 2023), we first consider accuracy-based met-
rics to calculate the proportion of correct answers
the model generates from multiple random sam-
pling choices. For each ripple query qy, we sample
50 generated answers with a temperature 0.7, and
compute the proportion of answers that include the
correct answer. Our metric differs slightly from
that in (Cohen et al., 2023), as we need to compute
performance for each individual data point to ana-
lyze the overall correlation. The maximum length

for generation is set to a small size of 15, as we
believe that the answer is expected to appear early
in a cloze-test query format.

Absolute Likelihood Gain We also examine the
answer probabilities to obtain a more detailed and
quantifiable assessment of the performance. As
probability values could be very small as the se-
quence length increases, we use log-likelihood
score logP (a′y|qy), and measure its absolute gain
on the correct answers before and after editing:

∆ logP (y) = logPθ′(a
′
y | qy)− logPθ(a

′
y | qy).

Relative Likelihood Gain This metric is formu-
lated by dividing the absolute gain of ripple effects
by the absolute gain of the original fact, thereby
normalizing the difficulty of the knowledge editing
itself.

∆ logP (y)

∆ logP (x)
=

logPθ′(a
′
y | qy)− logPθ(a

′
y | qy)

logPθ′(a′x | qx)− logPθ(a′x | qx)
.

3.3 Main Results
We conduct a comprehensive correlation analysis
across different language models, knowledge edit-
ing methods, and performance metrics for ripple
effects, with the results illustrated in Figure 2. A
strong positive correlation is observed between
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ripple-effect performances and the GradSim values,
validating that gradient-based knowledge storage
similarity is a reliable indicator of ripple effects.
Additionally, we observe the emergence of two dis-
tinct clusters in the figure. This clustering likely
occurs because the data points can be categorized
into successful and unsuccessful edits. Successful
edits result in a significant improvement on per-
formance, placing them in the upper successful
cluster, while unsuccessful edits tends to remain in
the unsuccessful cluster.

3.4 Counter-Intuitive Failure Cases

Negation Negation is one of the most straight-
forward ripple effects where the model is expected
to answer a negated query after an editing is ap-
plied. For example, after editing the nationality of
Leonardo DiCaprio as Syrian, the model should
be able to avoid Syria given a negated query like
“Leonardo DiCaprio is not a citizen of ”. How-
ever, both smaller-sized LMs like GPT-2 and larger-
sized LMs like LLaMA still answers “Syria” to this
query and simply ignore the negation inside the sen-
tence. In Figure 3, we first visualize both the values
and gains of model likelihoods for the original and
negated facts. The results demonstrate a strong pos-
itive (almost linear) correlation, indicating a severe
problem of negation failures. In terms of GradSim
values, we find that the gradient similarities be-
tween the original and negated facts are very high,
suggesting that the original and negated facts are
entangled in similar knowledge storage locations.
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Figure 3: Correlation between original and negated facts
on likelihood change, and the distributions of GradSim
and likelihood ratios between original and negated facts.

Over-Ripple Errors The over-ripple problem
refers to the situation where, after a knowledge
edit, the LM only memorizes the edited target itself
and continues to provide this target as the answer
even when asked about other knowledge that is re-
lated. For example, after editing the nationality of
Leonardo DiCaprio as Syrian, the model will still
answer Syria even when asked about the primary
language Leonardo is speaking (the correct answer
should be Arabic). In Figure 4, we first visual-

ize GradSim distributions on (qy, a
′
x) and (qy, a

′
y)

respectively, and we can observe that the edited
target a′x (e.g., Syria) has a much higher gradient
similarity compared to the correct answer a′y (e.g.,
Arabic). This explains the similar performance of
answering both the correct and incorrect answers
and indicates the occurrence of over-ripple errors.
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Figure 4: The distributions of GradSim values and ripple
effect performances.

Cross-Lingual Transfer The problem of cross-
lingual transfer is defined as the ability to edit a
piece of knowledge in one language and have the
model still provide the correct answer when asked
a question in another language. We study the role
of GradSim by visualizing the distribution of Grad-
Sim values and the ripple effect performance across
different languages. We employ Baichuan (Yang
et al., 2023), the state-of-the-art bilingual model
for Chinese and English. As shown in Figure 5,
while the performance on the target language re-
mains low, the GradSim values are also very low,
primarily distributed near zero. GradSim works as
a reliable indicator in this special ripple-effect case
for cross-lingual transfer.
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Figure 5: GradSim and performance distributions when
editing on one language and testing on another.

4 Conclusion

Through extensive experiments and analysis, we
propose GradSim, computed as the cosine simi-
larity between gradients of the original fact and
its related knowledge, as a crucial indicator for
the effectiveness of the ripple effects. The pos-
itive correlation observed between GradSim and
ripple effect performance across various LMs, KE
methods, and evaluation metrics underscores its
reliability. Additionally, our exploration of failure
cases further confirms that low GradSim values are
indicative of ripple effect failures.
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Limitations

The first notable limitation is that, although a strong
relationship between GradSim and the performance
of ripple effects has been demonstrated, our re-
search remains at the level of exploring correlations
between these two factors and has not yet estab-
lished a causal relationship. While it is always
challenging to determine causality, it would still be
extremely interesting and exciting to explore the
dominant contributing factors to the complex dis-
tribution of knowledge storage in the pre-training
phase of LMs. The second important limitation is
that, while this paper identifies an indicator, we did
not provide practical solutions for improving rip-
ple effect performance by leveraging this indicator.
However, we believe that the insights provided in
this short paper will significantly enable the devel-
opment of practical and effective methods in future
research.
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A Knoweledge Editing Methods

Current knowledge editing methods can be cate-
gorized into several distinct approaches, including
fine-tuning-based methods, locate-then-edit meth-
ods, and meta-learning methods. In this paper, we
employ a range of knowledge editing techniques to
validate our theorem. A brief introduction to each
of these methods will be provided here.

ROME: Rank-One Model Editing (ROME) con-
ceptualizes an MLP module as a key-value store.
In this framework, the key represents an encoded
subject, while the value represents the knowledge
associated with that subject. The MLP retrieves the
corresponding value by accessing the key. ROME
modifies the MLP weights using a rank-one adjust-
ment to directly insert new key-value pairs.

MEMIT: Mass Editing Memory in a Trans-
former (MEMIT) builds upon ROME, and is de-
signed to handle large-scale edits by inserting mul-
tiple memory entries simultaneously through mod-
ifications to the MLP weights across several key
layers. MEMIT employs causal tracing to identify
a set of mediating MLP layers that store and re-
call memories related to a specific subject. For a
set of new memories, an update (∆) is computed
and propagated across all the identified mediating
MLP layers, ensuring that by the final layer, the
output captures and reflects all the newly inserted
memories.

MEND: Model Editor Networks with Gradient
Decomposition (MEND) consist of small auxiliary
networks designed to make quick, localized edits
to a pre-trained model’s behavior using a single
input-output pair. MEND achieves this by learning
how to transform the gradient generated through
standard fine-tuning, employing a low-rank decom-
position of the gradient to make the transforma-
tion more computationally feasible. MEND can
be trained efficiently on a single GPU in less than
a day, even for models with over 10 billion pa-
rameters. Once trained, MEND allows for rapid
application of new edits to the pre-trained model.

B Additional Experiments

B.1 Experiments with various knowledge
experiments

To support our theorem, we also did experiments
with more knowledge editing methods, including
Fine-Tuning(FT) and MEND. In the basic FT pro-
cess, we use Adam and early stopping to minimize
the loss of new edits on full parameters. In the
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Figure 6: Main results of evaluating the correlation between ripple effect performances and GradSim values labeled
with different task names

additional experiments, we only compute on GPT-
XL due to computational resource limitations. The
experiments are done with the popular subset in
RippleEdits. Here are the experiment results:

Method Spearman Correlation Pearson Correlation Best Fit Line
MEND 0.628 0.501 y = 0.845x− 0.177

FT 0.231 0.731 y = 0.430x+ 0.119

Table 1: Main experiments with other knowledge editing
method

These experimental results demonstrate the ver-
satility of the GradSim indicator.

B.2 Experiments on other dataset

We conducted experiments on all data in RippleEd-
its to demonstrate the indicator’s effectiveness. Ad-
ditional experiments are also done on the 2-hop
subset of MQUAKE dataset (Zhong et al., 2023b)
to support the validity of our result. The results are
as follows

Method Model Spearman Correlation Pearson Correlation Best Fit Line
ROME GPT2-XL 0.767 0.783 y = 1.164x− 8.923

Table 2: Results on MQUAKE

C Extra Results of GradSim

The RippleEdits dataset comprises six distinct
tasks: Logical Generalization (LG), Compositional-
ity I (CI), Compositionality II (CII), Subject Alias-
ing (SA), Preservation (PV), and Relation Speci-
ficity (RS) (Cohen et al., 2023). These tasks are
designed to evaluate different aspects of knowledge
editing in neural networks. Specifically, LG, CI,
CII, and SA are tasks where the model is expected
to manifest new knowledge in response to edits
made to existing entries. Conversely, in the RS and
PV tasks, the existing knowledge should remain un-
altered post-editing, as these tasks are designed to
test the model’s ability to preserve information that
is logically independent of the changes applied.

In Figure 2, we analyze data from these tasks
to illustrate a positive correlation between ripple
effect performance and GradSim values across the
four tasks explicitly associated with knowledge up-
dates, hereafter referred to as ripple tasks. Each
data point in Figure 6 is labeled to demonstrate
the consistent applicability of the GradSim met-
ric across the individual sub-tasks. In contrast,
Figure 7 focuses on the two non-ripple tasks (RS
and PV), where no significant correlation is ob-
served between GradSim values and ∆ logP (y).
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The comparison underscores that GradSim is a crit-
ical metric for evaluating ripple effects, as it shows
no significant impact in the non-ripple tasks, con-
firming its relevance specifically in contexts where
knowledge modifications are expected.
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Figure 7: Comparison of the Correlation on None-
Ripple Tasks and Ripple Tasks.

D How to Represent Knowledge
Distribution?

In this paper, we utilize gradients to represent the
distribution of knowledge. To support this ap-
proach, we conducted preliminary experiments that
lend credence to the underlying rationale of this
intuition.

D.1 Does the way that we express a piece of
knowledge change the knowledge
distribution?
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Figure 8: L1 Norm Distribution over LlaMA-7B

In this study, we calculate the gradient of a spe-
cific piece of knowledge, "The name of the cur-
rency in the country of citizenship of Leonardo Di-
Caprio is the Syrian pound," along with its variants:
"The currency Leonardo DiCaprio uses is the Syr-
ian pound" and "What’s the name of the currency in
the country of citizenship of Leonardo DiCaprio?
Syrian pound." We then plot the L1 norm of the gra-
dient across the 32 downward projection layers of
LlaMA7b. Prior research suggests that these layers

are particularly adept at storing knowledge. Our
results indicate that the distribution across these
variants is remarkably consistent, suggesting that a
piece of knowledge may be encoded within specific
parameters of a large language model.
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