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Abstract

Direct speech translation (ST) models often
struggle with rare words. Incorrect translation
of these words can have severe consequences,
impacting translation quality and user trust.
While rare word translation is inherently chal-
lenging for neural models due to sparse learn-
ing signals, real-world scenarios often allow ac-
cess to translations of past recordings on similar
topics. To leverage these valuable resources,
we propose a retrieval-and-demonstration ap-
proach to enhance rare word translation accu-
racy in direct ST models. First, we adapt ex-
isting ST models to incorporate retrieved ex-
amples for rare word translation, which allows
the model to benefit from prepended examples,
similar to in-context learning. We then de-
velop a cross-modal (speech-to-speech, speech-
to-text, text-to-text) retriever to locate suitable
examples. We demonstrate that standard ST
models can be effectively adapted to leverage
examples for rare word translation, improving
rare word translation accuracy over the base-
line by 17.6% with gold examples and 8.5%
with retrieved examples. Moreover, our speech-
to-speech retrieval approach outperforms other
modalities and exhibits higher robustness to un-
seen speakers. Our code is publicly available1.

1 Introduction

Speech translation (ST) traditionally involves cas-
cading automatic speech recognition (ASR) and
machine translation (MT) (Stentiford and Steer,
1988; Waibel et al., 1991) to convert spoken lan-
guage into text in a different language. However,
recent years have witnessed rapid progress in di-
rect ST models (Anastasopoulos et al., 2021, 2022;
Agarwal et al., 2023) that bypass intermediate text
representations for lower inference latency and re-
duced error propagation (Sperber and Paulik, 2020).

1©: SiqiLii/Retrieve-and-Demonstration-ST
*Equal contribution; Siqi’s work done while at KIT

Despite the advancements, accurately translating
rare words like person names (Gaido et al., 2021,
2023) remains a significant challenge for ST sys-
tems. While infrequent, incorrect translations of
rare words can severely degrade overall translation
quality and even users’ trust in the deployed mod-
els. Rare word translation is inherently difficult for
ST models due to limited or absent learning signals.
Practically, however, valuable external resources
hold the potential to address this issue. Real-world
scenarios often allow access to translations from
past recordings on similar topics, sometimes even
from the same speaker. Similarly, human transla-
tors often leverage existing translations (Bowker,
2005), especially for special terminologies (Brkić
et al., 2009). Inspired by these observations, we
ask the question: How can we improve the rare
word translation performance of direct ST models
by leveraging an example pool that contains similar
translations?

The envisioned approach faces challenges in
both the retrieval and translation components.
First, the retrieval task is complicated by the vari-
ability of speech and the locality of rare words. As
the speaking condition for the same rare word dif-
fers in every utterance, source-side feature match-
ing as often done in text translation (Zhang et al.,
2018; Bulte and Tezcan, 2019; Xu et al., 2020; Cai
et al., 2021; Hao et al., 2023) is not sufficient to
handle the pronunciation variations. Moreover, as
rare words only constitute a small portion of the
query and candidate utterances, the retriever must
be able to locate the relevant information in long
speech utterances. For the translation model, inte-
grating retrieved utterance-translation pairs is also
non-trivial. Standard models trained on sentence-
level data require adaptation to ingest the examples.
Besides processing longer inputs, they also need to
pinpoint both the acoustic features and correspond-
ing textual translations of rare words.

Addressing the above challenges, we introduce a
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Figure 1: Proposed retrieval-and-demonstration framework: At the ST model training stage (§2.1), example-
prepended training data is used to instill in-context learning abilities in the S2T model. At the retriever training
stage (§2.2), SONAR encoders are fine-tuned within the DPR architecture for our rare word task. At the inference
stage (§2.3), retrieved examples are used as demonstrations to facilitate the translation of rare words.

retrieval-and-demonstration framework (Figure 1)
effective for improving rare word translation accu-
racy of ST models. Specifically, we adapt standard
ST models to benefit from prepended examples in
a way similar to in-context learning (Brown et al.,
2020), and then build a retriever to find suitable ex-
amples. Building on recent multi-modal encoders
(Duquenne et al., 2023), the retriever supports mul-
tiple modalities (speech→speech, speech→text,
text→text). Second, we propose an evaluation
methodology to adapt standard ST corpora, MuST-
C (Di Gangi et al., 2019) in this case, for targeted
assessment of rare words translation (§3.1). Our
main findings are:
• Standard direct ST models can be easily adapted

to benefit from prepended examples for rare word
translation, in a way similar to in-context learn-
ing (§4.1). This improves rare word translation
accuracy over the baseline by 17.6% with gold
examples and 8.5% with retrieved examples.

• Text-to-text information retrieval architectures
(Karpukhin et al., 2020) can be effectively
adapted for speech-based rare word retrieval,
yielding 33.3% to 46.6% top-1 retrieval accuracy
under different modalities (§4.2).

• Compared to other modalities, speech-to-speech
retrieval leads to higher overall translation quality
and rare word translation accuracy (§4.3), as well
as more robustness to unseen speakers (§5.1).

2 Proposed Framework

Our retrieval-and-demonstration framework is illus-
trated in Figure 1. First, a trained direct ST model
is finetuned to ingest examples (§2.1), which serve
as demonstrations of correctly translating the rare
words in question. During inference, given an ut-
terance containing rare words, we retrieve (§2.2) a
relevant utterance and its translation as a demon-
stration to guide the inference (§2.3).

2.1 Adapting ST Models to Ingest Examples

Motivation Human translators often leverage ex-
ample translations also known as translation mem-
ory (Bowker, 2005), especially for domain-specific
translation with terminologies (Brkić et al., 2009).
We aim to apply a similar approach to direct ST
models. The underlying idea mirrors that of in-
context learning (ICL) (Brown et al., 2020), where
providing models with task-specific examples dur-
ing inference improves the quality of the generated
output. While ICL has been primarily observed on
text-based LLMs (Brown et al., 2020; Min et al.,
2022; Vilar et al., 2023), we explore whether small-
or medium-sized encoder-decoder-based speech
translation models can also exhibit this capability.

Training To adapt standard ST models to ingest
examples, the example utterance and translation
must be included as context for training and in-
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ference. An intuitive approach is to include the
example as prefix in both input and output, as
shown in the left side of Figure 1. This allows the
output generation to be conditioned on the exam-
ple utterance and translation as context. Formally,
given an utterance u, let ŷ be the target translation
and y the predicted translation. Let (ue, ye) be
an example utterance-translation pair. We aim to
adapt an ST model so that the model maximizes
the probability of generating the correct transla-
tion ŷ, given the input utterance u and example
(ue, ye) : y = argmaxŷ P (ŷ|ue, ye, u). The dif-
ference to the standard training is that the example
(ue, ye) is included as context when generating the
target translation. For the training data, for the i-
th training utterance ui, an example utterance uei
is prepended to it, forming a concatenated input
uei + ui.2 The targets are also concatenated as
yei + <SEP> + yi, where <SEP> is a special token
indicating the separator between sentences. Dur-
ing training, the loss is only calculated on yi to
prioritize the translation of the utterance after the
example.3 In doing so, we encourage the model to
predict its outputs based on the context provided
by the demonstration example.

2.2 Example Retrieval
Formalization and Challenge Given a query ut-
terance u containing a rare word w, we aim to
retrieve a relevant example (ue, ye) from an exam-
ple pool D = {(u1, y1), . . . , (um, ym)} with a re-
trieval model r, such that the rare word w is spoken
in utterance ue. Here ui indicates the i-th utterance
and yi its translation. As the query u is only in
speech, we face additional complexities compared
to text-based retrieval. First, speech is versatile,
unlike text, which often has a standard writing sys-
tem. The speaking condition for the same word
varies in every recording, requiring a robust re-
triever that accounts for pronunciation variations.
Second, speech sequences are magnitudes longer
than text. The retriever must find fine-grained lo-
cal features corresponding to the keywords in long
sequences. Third, transcribing the query utterance
first and then using text-based retrieval is subopti-
mal due to ASR errors, especially on rare words.

Architecture As the nature of our example re-
trieval task resembles information retrieval (IR)

2Details on constructing the dataset is in §3.1.
3Including the loss on the prefix leads the finetuning step

to end prematurely in preliminary experiments. The loss cal-
culation is formally described in Appendix A.

where relevant answers are retrieved given a ques-
tion, we take inspiration from IR approaches for
our retriever. In text-to-text IR, a prominent ar-
chitecture is the Dense Passage Retriever (DPR)
(Karpukhin et al., 2020). It has a dual-encoder
architecture, where one encoder encodes the ques-
tions, and the other encodes the passages poten-
tially containing answers to the questions. The re-
trieval model is trained with a contrastive objective,
mapping question-passage (positive) pairs closer
to each other in the latent space while pushing
irrelevant (negative) pairs further apart. During in-
ference, passages closer to the encoded question by
the dot-product similarity are returned as answers.
In our case, the utterances containing the same rare
words are considered positive pairs, while those
not sharing the same rare words are negative pairs.

Speech-to-Speech/Text Retrieval We propose
to extend the DPR model to support querying from
speech. As the example utterances to be retrieved
often also have text transcripts available, we con-
sider the following retrieval modalities:
• Speech→speech retrieval: we retrieve ue in

speech using audio query u.
• Speech→text retrieval: we retrieve ye directly

using audio query u. This requires the retriever
to support both modalities (text and speech).

• Naïve text→text retrieval: first transcribing the
query utterance u and then text-to-text retrieval
for ye. As discussed before, the risk of ASR
errors especially on rare words renders this ap-
proach suboptimal. The additional inference time
for running ASR makes it further unpractical.

Given these requirements, instead of initializing
the dual encoders with pre-trained BERT (Devlin
et al., 2019) as in DPR (Karpukhin et al., 2020),
we leverage recent speech-text joint representation
models including SONAR (Duquenne et al., 2023)
and SpeechT5 (Ao et al., 2022).

2.3 Integrating Examples into ST Model

Inference with Retrieved Examples During in-
ference, the model is provided with a test input
u and a retrieved example (ue, ye). The example
is prepended to test input in the same way as in
training. The example input-output pairs are in-
tegrated by forced decoding. After the separator
token (<SEP>), the model starts to autoregressively
generate the output translation, conditioned addi-
tionally by the example utterance and translations.
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Practical Considerations An advantage of our
framework is its modularity. The separation of the
ST and retrieval modules enables straightforward
upgrades to newer models in either component.
Moreover, the retrieval module can be implemented
using highly optimized toolkits like FAISS (John-
son et al., 2021), which ensures efficient retrieval
without compromising inference speed. Prepend-
ing examples however leads to increased inference
latency as discussed in §5.5.

Split # utt. Avg. utt.
duration (s)

Avg. #
tokens

# unique
rare words

train (original) 250942 6.5 27.1 9512
tst-COMMON 2580 5.8 25.3 157

rare-word pool 9821 9.7 43.1 8679
dev-rare-word 6932 9.9 42.8 6244
tst-rare-word 2500 9.9 43.1 2358
train-reduced 231689 6.2 25.8 3164

Table 1: Dataset statistics. We split the original training
set into the example pool with rare words (rare-word
pool), dev/test sets for rare words (dev/tst-rare-word),
and a reduced training set (train-reduced). The example
pool simulates existing resources for querying.

3 Experimental Setup

3.1 Dataset Construction

For evaluation, we use the English-to-German sub-
set of the MuST-C dataset (Di Gangi et al., 2019),
where the task is to translate from English public-
speaking audio to German text. To create a targeted
test condition for rare words, we extract sentences
containing rare words from the original training
set to create dedicated sets. The statistics of the
original dataset and the newly created splits are in
Table 1. The rare-word sets have higher average
token counts due to: 1) longer utterance duration
and 2) the rare words being segmented into finer-
grained subwords. Note that we only re-split the
training set, leaving the official validation and test
sets (tst-COMMON) unmodified. Below we de-
scribe the dataset construction process in detail.

Rare Word Sets Our data partition step is in-
spired by Niehues (2021), which re-splits parallel
data based on word frequencies. Specifically, from
the English transcript, we find rare words by their
corpus-level frequency, choosing those appearing
two or three times in the original training set. For
rare words occurring twice, we move their corre-
sponding utterances to the rare-word pool and the

joint dev/tst set respectively, which creates a zero-
shot condition where the rare word is never seen in
training. For rare words occurring thrice, we fol-
low the same strategy for two occurrences. The re-
maining third occurrence is retained in the reduced
training set to create a one-shot learning scenario,
where the rare word is seen once in the training
set. Finally, the aggregated dev/tst set is split into
individual development and test sets for standard
evaluation. We analyze the rare word types in tst-
rare-word by a named entity recognition (NER)
model4 with results in Table 2. A more detailed
categorization of the words is in Appendix B.

tst-rare-word Person Location Tech Food Company

2358 130 72 29 27 25

Table 2: NER results on rare words in tst-rare-word with
the number of unique words in each category.

Training Data with Prepended Examples To
adapt the ST model and to train the retriever, we
need training data with prepended examples. As
most utterances lack rare words by the previously
used corpus-level frequency (3164 rare words in
231k utterances in Table 1), we train the retriever
on simulated data by treating words that have the
lowest corpus-level frequency in each sentence as
simulated rare words. Specifically, we propose
to use sentence-level rare words to choose the
prepended examples. For each piece of the train-
ing data (ui, si, yi), we identify the word ws in si

that has the least corpus-level frequency among all
words in its transcript. We then sample another
training instance (uj , sj , yj) where sj contains the
same sentence-level rare word ws as example. In
short, the retriever is trained without rare word
retrieval data. In this zero-shot training setup, the
retrieval accuracy is limited by the strong mismatch
between the train and test conditions.

Test Set with Gold Examples We also construct
a variant of tst-rare-word set with gold examples,
where the rare word in the test utterance is always
present in the example. This serves as an oracle
condition for evaluating the ST model’s ability to
learn from perfect demonstrations. As our data
splitting procedure ensures that the rare words also
occur in the example pool, we select sentences
from the rare-word pool containing the same rare
words as those in the tst-rare-word set to serve as

4Huggingface model by Zaratiana et al. (2023)
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example sentences. The example sentences are
then prepended to test sentences in a way identical
to that in the training set with prepended examples.

3.2 Model Configuration

ST Model We use the Transformer architecture
S2T_TRANSFORMER_S in FAIRSEQ S2T (Wang
et al., 2020) for all our ST models. To prevent
the tokenizer from seeing the rare words during its
training, which will cause an unfair test condition,
we train the SentencePiece (Kudo and Richardson,
2018) tokenizer on the reduced train set after the
utterances containing rare words are moved to ded-
icated splits (Table 1). Based on this vocabulary,
we train the base model on the train-reduced set,
closely following the hyperparameters from Wang
et al. (2020). We then adapt the base model to
ingest examples as described in §2.1 using the re-
duced training set with prepended examples (§3.1).
As the prefix tokens do not contribute to the overall
loss (Figure 1), we double the effective batch size
to keep the loss scale comparable to before. Further
details on training and inference are in Appendix C.

Retriever We use the DPR (Karpukhin et al.,
2020) architecture for the retriever. The encoders
are initialized with either SONAR (Duquenne et al.,
2023) or SpeechT5 (Ao et al., 2022). For both
models, we use the encoder only and discard the
decoder. DPR requires fixed-size embeddings from
its encoders. For SpeechT5, we mean-pool over
the sequence length. For SONAR, we use the built-
in attention-pooling for the speech encoder and
mean-pooling for the text encoder. The dual en-
coders in DPR are trained on the reduced training
set with prepended examples. Each sentence’s ex-
ample serves as a positive example, while examples
from other sentences in the batch are in-batch nega-
tives. Only the top layer of the encoders is trained,
as the lower layers of the encoders are likely re-
sponsible for extracting low-level acoustic features.
These features are considered less relevant for our
retrieval task, which focuses on word-level infor-
mation. Another reason is memory efficiency in
training. Further details on training and inference
are in Appendix D.

3.3 Evaluation

Metrics We evaluate speech translation quality
with BLEU (Papineni et al., 2002)5 and COMET

5sacreBLEU (Post, 2018) signature:
nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.4.2

(Rei et al., 2020)6. For the accuracy of rare word
translation, we evaluate how many unique lemma-
tized rare words in the test set are translated. We
use the spaCy toolkit (Honnibal et al., 2020) for
word lemmatization and used AWESoME Aligner
(Dou and Neubig, 2021) for en-de word-level align-
ment. For rare word accuracy, we further distin-
guish between rare words appearing once or never
appear in the training set (§3.1), which corresponds
to the one-shot and zero-shot accuracy. For the
retriever, we use top-1 retrieval accuracy to eval-
uate the retriever’s performance. Only the first
retrieved examples are used as demonstrations in
the ST model.

Evaluation Difficulty As described in §3.1, our
rare word sets are based on rare words from the
source-side English transcripts.7 Due to the flexi-
bility of translation, even with gold examples, some
rare words are translated differently in the example
translation versus the reference translation of the
actual test sentence. Only 845 of the 2500 unique
words are translated to identical target words when
using gold examples. Therefore, the highest possi-
ble accuracy is 33.8% given this strict evaluation.8

4 Main Results

Before presenting the results of our proposed frame-
work, we confirm that our baseline model performs
on par with those reported in the literature. The
details are in Appendix E.

4.1 Impact of Demonstration

Direct ST models can effectively learn from
demonstration at inference time. To indepen-
dently analyze the ST model’s ability to learn from
the prepended examples, we first assume an oracle
retrieval model by using gold examples which al-
ways contain the rare words in question. The results
are in row (2) of Table 3. Compared to the baseline
in row (1), this model achieves substantially higher
overall rare word translation accuracy (+17.6%
abs.), with a larger gain in zero-shot (+18.8%) than
one-shot accuracy (+15.3%). Nonetheless, this
gain comes at the cost of overall translation quality

6with Unbabel/wmt22-comet-da; ×100 for readability.
The COMET models take text transcripts as source.

7Constructing these sets based on target-side rare words
would be unrealistic since the target is unavailable in practice.

8Ideally, beyond lexical matches, synonyms and other al-
ternative translations should also be considered. As the eval-
uation of these cases is non-straightforward, we choose the
strict lexical evaluation.
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ST Model BLEU COMET Overall
acc (%)

0-shot
acc (%)

1-shot
acc (%)

(1) baseline model (on train-reduced) 17.2 57.9 11.8 11.0 13.3
(2) adapted + gold example 17.0 55.6 29.4 29.8 28.6
(3) adapted + random example 15.7 53.2 8.8 8.4 9.7
(4) train on {train-reduced + rare-word pool} (more data) 17.9 59.0 15.5 14.7 17.2

Using retrieved examples
(5) adapted + text (gold transcript)→text 15.2 54.4 20.1 19.6 21.2
(6) adapted + speech→text 15.3 54.0 18.8 18.2 20.2
(7) adapted + speech→speech 16.2 55.3 20.3 20.3 20.2

Table 3: Translation quality (BLEU↑, COMET↑) and rare word accuracy↑ (overall, 0- and 1-shot) of different
models on the tst-rare-word split. The lower section uses retrieved examples from the retriever (§4.3).

(−0.2 BLEU, −2.3 COMET). A potential reason
is that the prepended example sentences make the
input sequences much longer and therefore create
more difficulty for learning. Nonetheless, since
rare words are often important named entities, cap-
turing them correctly is as crucial if not more than
the overall translation quality scores. Overall, the
results suggest that task-specific demonstrations
provided at inference time can effectively enhance
rare word translation accuracy of direct ST models.

Quality of the given demonstration matters.
Next, we study the impact of the demonstration
quality. In contrast to the gold examples before,
we now use random examples that do not contain
rare words relevant to the sentence to be translated.
The results are in row (3) of Table 3. This led to
a decline in translation quality (−1.3 BLEU, −2.4
COMET) and rare word accuracy. These results
indicate that irrelevant demonstrations are harmful.

Seeing rare words only in training does not suffi-
ciently improve their translation accuracy. In-
stead of retrieving data from the rare-word pool as
demonstration, a simple alternative is to add these
data in training. Here, we add the rare-word pool
into the training set and train an identical model to
the baseline. The results are in row (4) of Table 3.
Overall, the rare word accuracy only sees a slight
increase compared to row (1), with an absolute ac-
curacy improvement of 3.7%, which is far less than
using gold example sentences (+17.6% overall).
This indicates that training with rare words alone
is insufficient for improving their translation accu-
racy. This is likely because of the limited training
signal for rare words, as each appears only once
or twice. Note that the translation quality scores
under this data condition also improved, which is
likely a result of the additional training data.

Retrieval Model T→T S→T S→S

(1) Orig. DPR w/ BERT (pretrained) 2.0 − −
(2) Orig. DPR w/ BERT (finetuned) 55.8 − −
(3) DPR w/ SpeechT5 (finetuned) 0.1 0.0 0.0
(4) DPR w/ SONAR (pretrained) 28.7 22.3 20.6
(5) DPR w/ SONAR (finetuned) 46.6 33.3 41.3

Table 4: Top-1 retrieval accuracy (%) of different retriev-
ers on 3 modalities of text-to-text (T→T), speech-to-text
(S→T), and speech-to-speech (S→S) on the tst-rare-
word split. T→T retrieval uses gold transcripts as query.

4.2 Retrieval Performance

Before integrating retrieved examples into the ST
model, we analyze the retrieval performance alone
with results in Table 4. To establish the upper
bounds of retrieval performance, we first use the
original DPR model for text-to-text retrieval with
gold transcripts of the query utterances and exam-
ples. As shown in row (1) of Table 4, directly using
the pretrained DPR for QA is not sufficient for our
task of rare word retrieval. Fine-tuning DPR’s en-
coders (row (2)) on our task enables effective rare
word retrieval in a text-to-text setting (55.8%).

Encoder choice is crucial for successful retrieval.
We proceed by adapting the original DPR to re-
trieval from speech. Overall, we notice that the
choice of the encoder heavily impacts the retrieval
performance. With SONAR, using the pretrained
encoders already achieves partial success in fulfill-
ing the task (row (4) in Table 4), with finetuning
further improving the results (row (5)). However,
finetuning SpeechT5 proves insufficient for learn-
ing the task (row (3)). We believe that the dis-
crepancy primarily arises from the models’ ability
to aggregate information over the sentence length:
SONAR is explicitly trained to aggregate it into
fixed-size embeddings while SpeechT5 lacks such
a mechanism. Naïve mean-pooling over sequence
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length fails to create meaningful embeddings over
long sequences like speech, as well as character-
level text representations used in SpeechT5.

Speech→speech outperforms speech→text re-
trieval. While we initially expected speech-to-
speech retrieval to be more challenging than speech-
to-text retrieval due to the high variability of speech,
the finetuned retriever in (5) of Table 4 shows
stronger performance on speech→speech retrieval
than speech→text (41.3% vs. 33.3%). We suppose
that the reason is the modality gap between text
and speech, which makes it more challenging to
bridge the two different types of data.

4.3 ST Performance with Retrieved Examples
Correlation between retrieval accuracy and
translation quality: As the retriever based on
finetuned SONAR showed the most promising re-
trieval results (Table 4), we use the retrieved exam-
ples from this model to guide the ST. The results
are in rows (5), (6), and (7) of Table 3. When com-
paring the performance of the three retrieval modal-
ities, retrieval accuracy does not always translate
to improved overall translation quality or rare word
accuracy. Although text-to-text retrieval using gold
transcripts had the highest retrieval accuracy (Ta-
ble 4), its integration into the ST model resulted
in lower translation quality compared to speech-
to-speech retrieval. Moreover, in practice, we still
need an ASR model to derive the transcripts that
likely contain errors, especially on rare words. This
introduces additional limitations to the text-to-text
retrieval approach. Overall, these results show that
speech-speech retrieval is more effective than the
other modalities in improving rare word translation
accuracy. Despite the improvement in rare word
translation accuracy, we also note the drop in trans-
lation quality compared to the baseline (row (7)
vs. (1); −1.0 BLEU and −2.6 COMET). We ex-
pect that increasing the robustness of the ST model
to examples containing incorrect rare words, for
instance by including such examples in training,
could mitigate this negative impact.

Does speech→speech retrieval help by implicit
speaker adaptation? Speech-to-speech retrieval
could be particularly effective in finding same-
speaker utterances due to the access to acoustic
information. This raises the hypothesis that if
the prepended example originates from the same
speaker as the utterance to be translated, translation
quality could be improved by implicit speaker adap-

tation (Saon et al., 2013), where the model benefits
from adapting to the specific speaker’s voice char-
acteristics. To test this, we analyze the proportion
of retrieved sentences from the same speaker across
different retrieval modalities. The results in Table 5
show similar percentages for all three scenarios,
indicating that the gains by speech-to-speech re-
trieval do not stem from speaker adaptation.

DRP + SONAR finetuned T→T S→T S→S

Examples from same speaker (%) 50.3 53.4 50.2

Table 5: Proportion of retrieved examples from the same
speaker as the utterance to be translated for the three
retrieval modalities on tst-rare-word.

5 Further Analyses and Discussions

5.1 Effects on Unseen Speakers
Now we push the approach further under the chal-
lenging scenario of unseen speakers, i.e., the ex-
ample pool does not contain any utterance from
the speaker of the test utterance. Specifically, dur-
ing retrieval, we ignore utterances from the same
speaker as the query utterance. As shown in Ta-
ble 6, this harms retrieval accuracy substantially,
losing 14.9% to 23.4% compared to Table 4 for
the three modalities. This is mainly due to the lim-
ited coverage of the rare-word pool, which contains
only one sentence for most rare words. Excluding
the speaker also excludes the rare word. However,
the BLEU scores and overall rare word translation
accuracy change only slightly compared to Table 3:
T→T (−0.6 BLEU, −1.5%), S→T (−0.3 BLEU,
−3.2%), S→S (+0.2 BLEU, −1.0%). This demon-
strates that our approach, especially when using
speech→speech retrieval, is relatively robust to un-
seen speakers.

Retrieval
modality

Retrieval
acc (%) BLEU Overall

acc (%)
0-shot

acc (%)
1-shot

acc (%)

(5) T→T 23.2 14.6 18.6 18.5 18.7
(6) S→T 18.4 15.0 15.6 15.6 15.7
(7) S→S 23.5 16.4 19.3 18.8 20.2

Table 6: Retrieval and ST performance on unseen speak-
ers. Compared to Table 3, S→S retrieval has the least
decrease in translation quality and rare word accuracy.

5.2 Qualitative Example
Table 7 shows an example where our approach cre-
ates partially correct translation for the named en-
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tities “Patrice and Patee”. To avoid cherry-picked
results, we include more examples where our ap-
proach succeeds and fails in Appendix F.

Source (transcript): Patrice and Patee set out most days to
go out hunting in the forest around their homes.
Baseline (Table 3 row (1)): Die Bäume und Petes (Trees
and Petes) setzten die meisten Tage hinaus, um in den
Wäldern um ihre Häuser zu pumpen.
Adding rare-word pool to training (Table 3 row (4)):
Patrizinpathie (Patrizinpathie) setzte sich in den meisten
Tagen um die Jagd in den Wäldern um ihre Häuser.
Speech→speech example (Table 4 row (5)): Sie heißen
Patrice und Patee (Their names are Patrice and Patee.).
Adapted ST + speech→speech (Table 3 row (7)): Patrice
und Pateetee setzten die meisten Tage, um in den Wäldern
um ihre Häuser herum jagen zu können.
Target: Patrice und Patee (Patrice and Patee) gehen fast
jeden Tag jagen in dem Wald rundum ihr Heim.

Table 7: An example of our retrieval-and-demonstration
approach improving the translation of rare words.

5.3 Analyses of Retrieval Performance

In our main experiments, we partially finetuned the
DPR encoders. We now investigate the impact of
different numbers of trainable parameters in the
retriever. As shown in Figure 2, the retrieval per-
formance of the SONAR-based retriever is stable
across 100 to 500M trainable parameters out of a
total of over 1.3B parameters. This indicates that
the retriever can maintain nearly consistent perfor-
mance despite changes in model capacity.
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Figure 2: Retrieval performance of the SONAR-based
retriever for different numbers of trainable parameters.

5.4 Potential of Using More Examples

Few-shot learning is more often performant than
one-shot learning because it provides the model
with a broader context and more varied examples.
However, as shown in Table 8, the increase in re-
trieval accuracy with additional top-10 examples

is still not substantial compared to the top-1 result.
Including multiple examples also makes input se-
quences significantly longer, especially as audio
inputs are factors longer than text. This not only
poses a challenge for the model but would also sig-
nificantly slow down the inference speed, which we
aim to avoid. For these reasons, we do not further
explore the potential of using more examples.

DPR + SONAR ft. T→T S→T S→S

Top 1 46.6 33.3 41.3
Top 5 60.4 48.0 56.2
Top 10 64.6 53.1 61.1

Table 8: Top-10 retrieval performance (%) of the
SONAR-based retriever on the tst-rare-word set.

5.5 Inference Latency of Including Examples
A downside of our approach is the additional infer-
ence latency due to longer prefixes, as inherent in
other vanilla in-context learning approaches. On
the same GPU (NVIDIA Titan RTX) with batch
size 1, the average inference time is 0.35s per
sentence (system in Row 1, Table 3) and 0.82s
after adding examples (average of the systems
in Row 2-7, Table 3). The main contributor of
the additional latency is the roughly doubled in-
put sequence length. The text prefixes from the
prepended examples are incorporated by forced
decoding and do not incur much latency.

5.6 Potential of Using Chunk-Based Examples
Our in-context examples are in the form of par-
allel data. An alternative is to use chunks in-
stead of unprocessed parallel data. In this case,
as the source and target of the in-context exam-
ples have to be aligned, creating the chunk-based
example pool requires two additional alignment
steps: audio-transcript alignment and transcript-
translation alignment. While both steps have es-
tablished off-the-shelf tools, this significantly com-
plicates the workflow. Increasing the number of
retrieval candidates may also increase the difficulty
of the retrieval task. A main advantage of using
chunks is the reduced inference latency as the pre-
fixes are shorter. Moreover, shorter context may be
easier for the model to locate and utilize. We leave
the exploration of this alternative for future work.

5.7 Reusing ST Encoder for Retrieval
In our main experiments, we use SONAR for re-
trieval. An attractive alternative is to use the en-
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coder of pretrained ST models for retrieval, which
would dramatically reduce the total model size at
inference. However, based on our comparison to
using the SpeechT5 encoder for retrieval (Row 3,
Table 4) and interpretations, models that do not ex-
plicitly shrink the sequence length dimension into
more compact representations are likely unable to
perform the retrieval task. Therefore, we believe
the encoders of existing ST models would need to
learn an aggregation mechanism like in SONAR to
be ready for the retrieval task.

6 Related Work

Retrieval-Augmented Translation Our work
falls within the paradigm of retrieval-augmented
translation (RAT) (Simard and Langlais, 2001;
Koehn and Senellart, 2010; Tu et al., 2018; Khan-
delwal et al., 2021), which augments a transla-
tion model with results retrieved from a transla-
tion memory. Prior works on RAT primarily focus
on text-to-text translation (Zhang et al., 2018; Gu
et al., 2018; Bulte and Tezcan, 2019; Xu et al.,
2020; Cai et al., 2021; Hoang et al., 2023; Hao
et al., 2023), where retrieval relies on textual fea-
ture matching such as n-gram overlap. These meth-
ods are therefore not readily applicable to direct ST
due to the continuous nature of speech and much
longer input lengths. In ST, Du et al. (2022) use
kNN-MT (Khandelwal et al., 2021) for domain
adaption. This approach requires a joint model for
speech and text input, with a fully text-based datas-
tore. Our work does not require modifying the ST
model to support speech and text inputs, and en-
ables the retriever to query from speech to speech
or text. Our retrieval module is related to the re-
cent work by Lin et al. (2024) as both are based
on DPR. The main difference is that their model is
for question answering and does not support cross-
modal retrieval. Chen et al. (2024) show that LLMs
adapted for speech could leverage in-context exam-
ples for speech recognition and translation. Our
work is orthogonal to theirs in that we show that
conventional encoder-decoder ST models can be
trained to exhibit in-context learning abilities.

Rare Words in ASR, MT, and direct ST In
ASR, some representative approaches to handle
rare words include language model rescoring or
fusion (Raju et al., 2019; Yang et al., 2021; Huang
et al., 2022; Weiran et al., 2022; Mathur et al.,
2023), data augmentation by text-to-speech (TTS)
(Guo et al., 2019; Zheng et al., 2021; Qu et al.,

2023), and context enhancement by an additional
memory module (Bruguier et al., 2019; Jain et al.,
2020; Chang et al., 2021; Huber et al., 2021; Qiu
et al., 2022; Huber and Waibel, 2024). In MT, rare
word translation has been tackled by, among other
techniques, constrained decoding (Chatterjee et al.,
2017; Hasler et al., 2018; Ailem et al., 2021; Zhang
et al., 2023), copying by source annotations (Dinu
et al., 2019; Song et al., 2019; Bergmanis and Pin-
nis, 2021) or pointing mechanisms (Gulcehre et al.,
2016; Pham et al., 2018; Gu et al., 2019; Zhang
et al., 2021), and retrieval-augmented translation
(Martins et al., 2023; Liu et al., 2023). In direct
ST, translating rare words is a significant challenge
due to the combined complexities of ASR and MT.
The amount of prior work is also relatively sparse.
Gaido et al. (2022) use multilingual models to im-
prove the accuracy of non-English names. Gaido
et al. (2023) propose to first detect named entities
(NEs) in the source audio that are present in a given
contextual dictionary and then inject these NEs in
text form into the decoder. Our approach does not
assume a readily available contextual dictionary,
but can instead leverage unprocessed parallel data.

7 Conclusion

We introduced a retrieval-and-demonstration ap-
proach to improve rare word translation accuracy
in direct ST. For real-world applications, e.g., trans-
lating scientific talks, we recommend adding ut-
terances from the same speaker to the example
pool and using speech-to-speech retrieval to iden-
tify examples. When feasible, one should consider
incorporating an additional verification step to en-
sure the relevance of the retrieved sentences, by
human-in-the-loop or automated techniques.

Limitations

Robustness to Irrelevant Examples Our ap-
proach effectively improves the accuracy of rare
word translation. However, as elaborated in the re-
sult discussions, we also observed that incorrectly
retrieved examples tend to harm translation quality.
As a next step, we hope to increase the robustness
of the ST models to irrelevant examples. This could
for instance be achieved by incorporating incorrect
rare words during training to enhance the model’s
resilience to such errors.

Targeted Solution for Rare Word Translation
Our approach is a targeted solution for the use-case
of rare word translation. When there is no rare
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word in the test sentence, the examples will harm
translation quality, as seen in the case of using ir-
relevant examples. Whether rare words exist in the
test sentences could be determined by ST model
confidence (decoding probability) or retriever dis-
tances to the closest neighbor in the example pool.
We leave this exploration to future work.

Language Coverage Our experiments were lim-
ited to the English-to-German language pair due
to resource constraints. Experiments on additional
language pairs, especially distant ones, would fur-
ther substantiate the findings.

Extension to other Audio Tasks This work fo-
cused on rare words in direct speech translation.
An extension to other audio tasks would enlarge
the impact of the proposed approach. As a partial
remedy, we performed preliminary experiments on
rare word ASR in Appendix G and found that the
results support the main findings in this work.
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A Details on Masked Loss

During the training of our adapted ST model, ex-
ample sentences are prepended to sentences in the
reduced training set. The translation of the exam-
ple sentence is used as a prefix and masked during
loss calculation. The cross-entropy loss function
we use for training can be expressed as Equation 1:

L = −
T∑

t=1

MtlogP (yt|y<t, u
e, ye, u) (1)

With Mt as a mask function Equation 2:

Mt =

{
0 if position t is part of ye

1 if position t is part of y
(2)

B Details of Rare Word Types

The detailed rare word analysis results for Table 2
are in Table 9.
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Rare Word Type Frequency

Person 130
Location 72
Technology 29
Food 27
Company 25
Biology 23
Organization 18
Health 18
Culture 14
Transport 14
Religion 14
Fashion 13
Medicine 12
Science 12
Geography 11
Chemics 11
Language 11
History 10
Politics 9
Architecture 9
Military 9
Environment 8
Education 7
Sport 7
Law 6
Society 4
Data 4
Book 4
Physics 4
Game 3
Economy 3
Literature 2
Art 2
Music 1
Entertainment 1
Award 1

Table 9: Detailed NER results on rare words in tst-rare-
word with the number of unique words in each category.

C ST Training and Inference Details

C.1 Training Details
We use the Transformer architecture
S2T_TRANSFORMER_S in FAIRSEQ S2T
(Wang et al., 2020) For all our ST models, the
encoder-decoder architecture consists of 12
transformer encoder blocks and 6 transformer
decoder blocks, with a model dimension of 256
and an inner dimension (FFN) of 2,048.

We initialized the ST model from a pre-trained
ASR model9. Subsequently, we fine-tuned the pre-
trained model for the ST task with hyperparameters
following (Wang et al., 2020), specifically, we set
dropout rate 0.1 and label smoothing 0.1. The ST
training used a tokenizer with a vocabulary size of
8,000. To prevent the tokenizer from seeing the rare
words during its training, which will cause an unfair

9https://dl.fbaipublicfiles.com/fairseq/s2t/
mustc_de_asr_transformer_s.pt

test condition, we train the SentencePiece (Kudo
and Richardson, 2018) tokenizer on the reduced
train set after the utterances containing rare words
are moved to other splits as discussed in §3.1.

During the training of the adapted ST model with
examples, we doubled the effective batch size to
maintain a comparable loss scale since the prefix
tokens do not contribute to the overall loss. Ad-
ditionally, we set dropout rate to 0.2 after doing
a search in {0.1, 0.2, 0.3} based on the dev loss
during the training of the adapted ST model. The
training was stopped after the validation perfor-
mance did not improve for 30 consecutive epochs
(patience 30). For evaluation, we averaged the last
10 checkpoints.

C.2 Inference Details
The inference uses a beam size of 5. Since the
rare-word-tst dataset includes example-prepended
sentences, the sentences are longer than typical
translation sentences. To keep all utterances in the
rare-word-tst set, we set a large allowed source size
with –max-source-positions 30000. This ensures
that even the longest utterances are not excluded
from the rare-word-tst set.

D Retriever Training and Inference
Details

D.1 Training Details
Our retriever is based on the DPR (Karpukhin et al.,
2020) architecture, where a dense passage encoder
EP and a question encoder EQ is constructed to
map candidate input c and query input q to latent
representation vectors respectively. The similarity
between the candidate representation and the query
representation is defined as the dot-product of their
vectors as shown in Equation 3:

sim(q, c) = EQ(q)
TEP (c) (3)

The encoders EP and EQ of DPR are initialized
with SpeechT5 encoder(Ao et al., 2022) or SONAR
encoder (Duquenne et al., 2023).

Speech T5 The SpeechT5 speech/text encoder
transforms speech or text input into a 768-
dimensional embedding vector. It comprises 12
Transformer encoder blocks, each with a model di-
mension of 768 and an inner feed-forward network
(FFN) dimension of 3,072. Before the encoder,
a speech/text-encoder pre-net preprocesses the in-
put. The speech-encoder pre-net includes the con-
volutional feature extractor of wav2vec (Baevski
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et al., 2020) for waveform downsampling. The
text-encoder pre-net applies positional encoding
to convert character-level tokenized indices into
embedding vectors.

SONAR The SONAR speech/text encoder en-
codes speech/text input to an embedding vector
of 1,024. The encoder consists of 24 transformer
encoder blocks with a model dimension of 1,024
and an inner dimension (FFN) of 8,192. The
speech encoder-frontend applies the wav2vec fea-
ture extractor (Baevski et al., 2020), while the text
encoder-frontend uses a position encoder.

Training The dual encoders in DPR are trained
on a reduced training set with prepended examples.
Each sentence’s example works as a positive ex-
ample, while examples from other sentences in the
batch serve as in-batch negatives. We set a batch
size of 4 and a learning rate of 2e-5 for training.

Given the large size of the SONAR encoder, for
memory efficiency, only the top layer of the en-
coder is trained. This approach is not only for
memory efficiency but also because the lower lay-
ers likely extract low-level acoustic features, which
are less relevant for our retrieval task focused on
word-level information. We further investigate the
retrieval accuracy under different numbers of train-
able parameters. As shown in Figure 2. We use the
settings with the best retrieval accuracy for our ST
task. which are:

• For the speech-to-speech retriever, the top 2
layers of both speech encoders are trained,
resulting in 205 million trainable parameters.

• For the speech-to-text retriever, the top 8 lay-
ers of both the text and speech encoders are
trained, with 422 million trainable parameters.

• For the text-to-text retriever, the top 8 layers
of both text encoders are trainable, totaling
335 million trainable parameters.

D.2 Inference Details
During inference time, we apply the passage en-
coder EP to all the candidates in the rare-word
pool. Given a question q, we can derive its em-
bedding vq = EQ(q) and then retrieve the top-1
candidate whose embedding is the closest to vq
from the rare-word pool.

E Comparison to Existing Results

We confirm that our baseline model performs on
par with those reported in the literature with the
results in Table 10.

BLEU

FAIRSEQ S2T (Wang et al., 2020) 22.7
Our baseline model 23.6

Table 10: The performance of our baseline model on
the tst-COMMON split of MuST-C is comparable to
existing baselines. Both models have the identical archi-
tecture using S2T_TRANSFORMER_S.

source (transcript): Murali Krishna (Murali Krishna)
comes from one of those villages.
baseline model (on train-reduced) (Table 3 row
(1)):Moralische Christen (Moral Christians) sind aus
einem dieser Dörfer.
train on {train-reduced + rare-word pool} (Table 3 row
(4)): Das Marate Krishna (Marate Krishna) kommt aus
einem dieser Dörfer.
speech→speech example (Table 4 row (5)): Sie arbeitet
mit Leuten wie Murali Krishna. (She works with people
like Murali Krishna.).
adapted + speech→speech (Table 3 row (7)): Murali
Krishna (Murali Krishna) kommt aus einem dieser Dörfer.
target: Murali Krishna (Murali Krishna) kommt aus einer
dieser Dörfer.

source (transcript): The McLaren (McLaren) just popped
off and scratched the side panel.
baseline model (on train-reduced) (Table 3 row (1)):Und
der Klient (client) stoppte ab und kratzte die Seite des
Paddels.
train on {train-reduced + rare-word pool} (Table 3 row
(4)): Und der Spieler (player) stürzte einfach ab und kratzte
auf den Bürgersteig.
speech→speech example (Table 4 row (5)): Aber als
Nebeneffekt sammelt er Kornette. (But as a sideline, he
happens to collect cornets.)
adapted + speech→speech (Table 3 row (7)): Als der
Klairner (Klairner) gerade ankam, stopfte er ein Nebenpan-
del.
target: Der McLaren (McLaren) bekam eine Beule und
einen Kratzer an der Seitenkarosserie.

Table 11: Additional examples of our retrieval-and-
demonstration approach.

F Additional Examples

Here we present two additional translation exam-
ples for comparison among the baseline model, the
model trained with an additional rare-word pool,
and our approach. In the first example, our ap-
proach successfully translates a zero-shot word per-
fectly. In the second example, we demonstrate a
case where our approach does not perform well.

G Preliminary ASR Results

To test the generalizability of our approach, we ad-
ditionally ran rare word ASR experiments on the
same data splits following the data construction
steps in §3.1. The results are in Table 12. Here
we directly used all hyperparameters for the ST
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ASR Model WER Overall
acc (%)

0-shot
acc (%)

1-shot
acc (%)

(1) baseline model (on train-reduced) 14.8 31.2 27.0 40.3
(2) adapted + gold example 22.0 72.1 71.4 73.8
(3) adapted + random example 25.3 19.8 18.6 22.4
(4) train on {train-reduced + rare-word pool} (more data) 13.9 42.8 38.7 51.7

Using retrieved examples
(5) adapted + text (gold transcript)→text 28.0 46.2 45.0 48.8
(6) adapted + speech→text 28.1 40.1 39.3 41.7
(7) adapted + speech→speech 21.7 46.8 46.2 48.1

Table 12: ASR quality (WER↓) and rare word accuracy↑ (overall, 0- and 1-shot) of different models on the
tst-rare-word split. The lower section uses retrieved examples from the retriever (§4.3).

models. The scores therefore may be not optimal.
However, pir main findings still hold given the ad-
ditional results:

1. ASR models can also effectively learn from
demonstration at inference time: Rare word
recognition accuracy in line (2) vs. (1) im-
proves from 31.2 to 72.1%.

2. Seeing rare words only in training does not
sufficiently improve their recognition accu-
racy: Rare word accuracy does not improve
as much in line (4) vs. (1) compared to (2) vs.
(1).

3. Speech→speech outperforms speech→text re-
trieval: In systems with retrieved examples,
line (7) has the best performance.
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