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Abstract

Existing speculative decoding methods typi-
cally require additional model structure and
training processes to assist the model for draft
token generation. This makes the migration of
acceleration methods to the new model more
costly and more demanding on device mem-
ory. To address this problem, we propose the
Make Some Noise (MSN) training framework
as a replacement for the supervised fine-tuning
stage of the large language model. The training
method simply introduces some noise at the
input for the model to learn the denoising task.
It significantly enhances the parallel decoding
capability of the model without affecting the
original task capability. In addition, we propose
a tree-based retrieval-augmented Jacobi (TR-
Jacobi) decoding strategy to further improve
the inference speed of MSN models. Experi-
ments in both the general and code domains
have shown that MSN can improve inference
speed by 2.3-2.7x times without compromis-
ing model performance. The MSN model also
achieves comparable acceleration ratios to the
SOTA model with additional model structure
on Spec-Bench.

1 Introduction

Large language models (LLMs) represented by
GPT-4 (OpenAI et al., 2024) and LLaMA (Touvron
et al., 2023) have made great breakthroughs to ar-
tificial intelligence (Kocoń et al., 2023). However,
LLMs suffer from high inference latency due to
the autoregressive (AR) decoding paradigm, which
constrains the model to generate only one token
per decoding step. It significantly limits the appli-
cations of LLMs when needs lengthy response.

To address the bottleneck introduced by AR,
speculative decoding (Leviathan et al., 2023; Chen
et al., 2023) is proposed to get more than one token
in one decoding step. It first guesses multi-step
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Figure 1: An illustration of the differences between the
proposed MSN framework and existing model-based
speculative decoding methods. The book icon repre-
sents task-specific capabilities and the rocket icon rep-
resents parallel decoding capabilities.

draft tokens and then verifies them simultaneously
in one model forward. Once any draft token is
accepted, it can effectively speedup the inference
process. Chen et al. (2023) employ a relatively
small LLM to generate multi-step draft tokens and
verify them in parallel on the target LLM. Medusa
(Cai et al., 2024) extends and train multiple lan-
guage model heads for existing models to predict
later draft tokes. It achieves considerable inference
speedup through efficient validation using tree at-
tentions. BiTA (Lin et al., 2024a) takes full ad-
vantage of the capabilities of LLM itself through
a parameter-efficient design that allows the model
to generate daft tokens based on trainable special
tokens. Kou et al. (2024) propose a post-training
method based on constructed Jacobi trajectories
that can accelerate the model’s own Jacobi decod-
ing capabilities.

Although the above methods improve the infer-
ence efficiency of the model to a certain extent,
there are still some problems to be solved as shown
in Figure 1. (1) Additional Structures. Most
current speculative decoding methods rely heav-
ily on additional model structures to accomplish
draft token prediction (e.g., separate models, lan-
guage model heads, trainable prompts, etc.). In the
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case of Medusa, for example, it adds 1.6B param-
eters (5 additional medusa heads) to the 7B target
model, which will undoubtedly increase the mem-
ory requirements for model inference. (2) Separate
Post-Training. Existing model-based speculative
decoding methods are trained after LLMs’ super-
vised fine-tuning (SFT) stage to obtain acceleration
capability. This process usually requires complex
model setups or time-consuming data construction,
and some methods even lose part of the model’s
original task capabilities. Separate training of task
and acceleration capabilities leads to an overly com-
plex approach which is not easy to deploy.

To address the above problem, we propose a
noisy training framework 1 Make Some Noise
(MSN) as a replacement for SFT, which enables
the model to acquire both task-relevant capability
as well as acceleration capability at the same stage
without the need for additional structures and train-
ing stages. Specifically, we consider the process of
Jacobi decoding (Santilli et al., 2023) as a denois-
ing process, and improve the denoising ability of
the model by including a causal language model de-
noising task in the SFT stage. Since the SFT stage
is almost a necessary aspect of LLM applications,
our proposed approach can be interpreted as a free
lunch to the parallel inference capability of LLMs.
In the inference phase, we use Jacobi decoding
to achieve inference acceleration through repeated
iterations of random noise tokens as well as verifi-
cation. Besides, in order to alleviate the cold-start
problem of Jacobi decoding and mitigate the ef-
fect of random initial noise, we also propose the
tree-based retrieval-augmented Jacobi (TR-Jacobi)
decoding method, which can effectively improve
the speedup ratio.

We have conducted detailed experiments in the
general and code domains. The results show that
the MSN training framework can significantly im-
prove the denoising ability of the model without af-
fecting the performance of the original SFT model,
which in turn achieves a 2.3-2.7x inference acceler-
ation effect. In addition, we performed a detailed
evaluation on Specbench, which is specifically de-
signed for speculative decoding. As a speculative
decoding method without additional structure and
training, the acceleration ratio of the MSN model
under TR-Jacobi decoding strategy significantly
outperforms other additional-structure-free meth-
ods and possesses comparable speedup ratios to the

1https://github.com/wyxstriker/MakeSomeNoiseInference

SOTA model with additional model structure and
training.

Our main contributions can be summarised as
follows:

• We propose a new training framework Make
Some Noise (MSN) as an alternative to SFT,
which can unlock the parallel decoding ca-
pability of the model through the denoising
task.

• We propose a tree-based retrieval-augmented
decoding method that effectively improves the
inference speed of MSN models under mem-
ory bottlenecks.

• Experiments show that MSN training enables
the model to have a comparable acceleration
ratio to the SOTA method without significant
loss of task performance.

2 Related Work

2.1 Jacobi Decoding
Jacobi decoding (Santilli et al., 2023) treats greedy
decoding of generative tasks as solving equations:





y1 = argmaxPθ(y1|x)
y2 = argmaxPθ(y2|y1, x)

...
ym = argmaxPθ(ym|y1:m−1, x)

(1)

Auto-regressive decoding solves the equations from
first to last based on the given input x, progressively
replacing the resolved variables. In contrast, Jacobi
decoding relies on Jacobi and Gauss-Seidel (GS)
fixed-point iteration methods (Ortega and Rhein-
boldt, 2000) to solve Equation 1 in parallel. Specif-
ically, it passes an initialisation sequence of length
m into the model for iterative generation until the
sequence converges to a fixed point. Jacobi de-
coding expects to solve the equation in less than
m iterations, but in fact existing models perform
poorly under this decoding strategy due to the lack
of denoising capability. Kou et al. (2024) greatly
improve the efficiency of Jacobi decoding by con-
structing the trajectory data during Jacobi decoding
and performing consistency training.

2.2 Speculative Decoding
Speculative decoding can effectively increase the
decoding speed without changing the output qual-
ity by guessing and verifying the output of the
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Figure 2: Illustrations of the Make Some Noisy training framework and Jacobi decoding strategy. The training
phase in the figure uses a noise segment of length 2, and the inference phase is shown as an example when the
length of the noise segment is set to 3.

auto-regressive language model in parallel. Current
mainstream work has focused on investigating how
to complete draft token generation efficiently. Stern
et al. (2018) complete the prediction of draft tokens
with additional model structures. Chen et al. (2023)
generate reliable draft tokens by a external small
model. Cai et al. (2024) train multiple heads for
the LLM model for predicting draft tokens based
on the previous work. Li et al. (2024) make full
use of the information in the hidden layer to accom-
plish high-quality predictions of draft models with
a separate decoder layer. Lin et al. (2024a) enable
the model to predict draft tokens by training prefix
tokens.

In addition, there are some speculative decoding
methods that do not require training. LLMA (Yang
et al., 2023) achieves 2x∼3x speedups on tasks
such as conversations by retrieving text segments
from reference texts. Fu et al. (2024) performs
more efficient verification by collecting n-gram seg-
ments generated during Jacobi decoding as draft
tokens. Saxena (2023) achieves acceleration in
specific domains simply by retrieving draft tokens
from the ahead prompt. REST (He et al., 2023) en-
ables plug-in draft token generation by retrieving a
constructed knowledge database. Zhao et al. (2024)
proposes Ouroboros that combines the advantages
of both the retrieval and draft model approaches. It

utilizes the retrieval method to further enhance the
generation length of the draft model, achieving a
significant speedup ratio.

In order to further improve the verification effi-
ciency of draft token, Miao et al. (2023) propose
to verify multiple paths as a token tree at a time
by designing an attention mask matrix. Nowadays,
token tree verification has become a widely used
technique to improve the verification efficiency of
speculative decoding.

3 Method

3.1 Overall

Our core idea is to consider parallel decoding as
a kind of text generation under noise, similar to
the Jacobi decoding. This requires the model to
have the ability to generate the corresponding cor-
rect token despite the noisy token, which is not
possible with the current teacher-forcing training
(Bachmann and Nagarajan, 2024).

Inspired by related work addressing exposure
bias (Bengio et al., 2015; Zhang et al., 2019), we
chose to enhance the denoising ability of the model
by adding some token-level noise to the input se-
quence in the SFT stage of LLMs. As shown in Fig-
ure 2, we incorporate a causal language model de-
noising task in the training phase to ensure that the
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model has the robust generation capability. During
the inference phase, we use random noise spliced
at the end of the sequence, and keep generating
and verifying draft tokens by iterative denoising,
consistent with the Jacobi decoding process.

To guarantee that the denoising ability is im-
proved without affecting the acquisition of task ca-
pabilities, we construct the method in terms of the
content and location of the noise segment(Section
3.2). In addition, to further enhance the validation
efficiency of the model, we propose a tree-based
retrieval-augmented Jacobi (TR-Jacobi) decoding
strategy (Section 3.3).

3.2 Noisy Training Framework

Teacher-forcing has been widely adopted as an effi-
cient training method by the dominant generative
models. It trains the model with the label at mo-
ment t as the input at moment t+ 1, which can ac-
celerate the model convergence. For the sequence
X = x0x1...xn, the loss function of a traditional
auto-regressive model can be formulated as:

LossAR =
n∑

i=0

− logP (Xi|X<i; θ) (2)

where θ is the set of parameters of the lan-
guage model and X<i represents the sub-sequence
x0x1...xi−1. The model is trained to generate re-
sults based on the correct labels, therefore each
generation step requires the results generated in the
previous step.

In order to equip the model with denoising ca-
pability, we introduce causal noise token in the
training phase. As shown in Figure 2, we insert
some noise tokens at the input to break the restric-
tion that teacher-forcing always takes golden labels
as input. To minimise the impact of noise on train-
ing, we only replace one short segment with noise
tokens in each sample. The noise sample can be ex-
pressed as X̂ = x0x1...x̂i...x̂j ...xn , where x̂i...x̂j
represents the noise segment. The loss function of
the noisy training method can be formulated as:

LossMSN =
n∑

i=0

− logP (Xi|X̂<i; θ) (3)

where Xi represents the token of golden labels
and X̂<i represents the sub-sequence with noise
tokens. It should be noted that even though the
input contains partially noise tokens, the target of
the model to learn is still the correct labels. Such

training with noise can unlock the parallel decoding
capability of the model to some extent. To further
reduce the impact of noise on the SFT task, we
investigate the content of the noise and the location
of the noise.

The Content of the Noise Segment. The main
motivation for noisy training is to equip the model
with the ability to generate correct tokens despite
noisy inputs, which is achieved through the loss
of the noise segments. However, the causal atten-
tion mask of the LLMs leads to the possibility that
the noise tokens may have an impact on the later
auto-regressive training objectives. To minimise
the impact, we chose the ahead noise as the main
content of the segments. Specifically, we randomly
sample the ahead tokens as the current noise token,
which can be formulated as:

x̂i = random_sample(X<i) (4)

where X<i represents for the sub-sequence ahead
of xi. Compared to random noise, ahead noise has
less impact on subsequent tokens. In addition, de-
noising the ahead noise tokens is more challenging
since they are more relevant to the context.

The Location of Noise Segment. Inspired by Lin
et al. (2024b), we have tried two noise location se-
lection methods, random selection and PPL-based
selection. Experiments (see the Appendix A for
details) have found that neither method has a sig-
nificant impact on the model task performance and
the speedup ratios are similar. We speculate that
our noise segments (less than 10) may be relatively
short on SFT datasets with an average length of
600 or more, and do not have an impact on the
training of the model itself. We therefore choose
the simpler random replacement noise method.

In practice, at each step of training, we only re-
place one fixed-length random segment with ahead
noise for the response of each sample.

3.3 TR-Jacobi Decoding

Tree-based Jacobi Decoding. As discussed in
Section 2.2, using token tree verification has be-
come a common method of verification in spec-
ulative decoding. In this paper, we also want
to improve the efficiency of Jacobi decoding by
constructing multiple candidate sequences. Like
Medusa (Cai et al., 2024), we heuristically chose a
sparse tree as our tree-attention template (see the
Appendix B for details). At the beginning of the
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generation, we initialise all the nodes of the tree
using ahead noise to start the tree-based Jacobi de-
coding. As shown in Figure 3, for each forward
process, each path performs an ordinary Jacobi de-
coding process via tree attention. We then choose
the longest accept-length path and continue to fill
the validation tree nodes for next round based on
the path’s subsequent predictions. It is important to
note that we use the ahead noise tokens to populate
the remaining positions in the validation tree, just
like regular Jacobi decoding.

Retrieval-Augmented Jacob Decoding. In ad-
dition, for methods that design draft token predic-
tions on the input side of the model (e.g., Jacobi,
BiTA, etc.), cold-start is also a key issue that needs
to be addressed. When all draft tokens of this in-
put are accepted, the model will have no way to
get new draft tokens in this round. Existing meth-
ods mitigate this problem by subsequently splicing
more tokens, but incur additional inference costs.
To avoid starting validation from completely ran-
dom noise in this case, we consider combining
retrieval-based draft token and model-based draft
token generation.

Specifically, we set a retrieval path in the to-
ken tree to hold the candidate tokens obtained by
retrieving the previous tokens. For retrieval, we
use a simple and efficient method called prompt
lookahead decoding (Saxena, 2023) to obtain draft
tokens with the same beginning directly from the
current ahead tokens for verification, which sig-
nificantly accelerates inference on tasks such as
summarization. The analysed experiments in Sec-
tion 5.3 demonstrate that incorporating retrieved
information is effective in improving the model’s
acceleration ratio in specific domains. Also, Jacobi
decoding can alleviate the inherent problems of
retrieval methods in domains such as translation.

4 Experiments

4.1 Experimental Setup
Datasets. To verify that our proposed Make
Some Noise (MSN) SFT training can bring in-
ference acceleration without compromising model
performance, we have constructed SFT datasets
in the general and code domains, respectively.
For the general domain, we follow Lin et al.’s
(2024a) setup to construct a training dataset con-
taining 190k samples from LIMA (Zhou et al.,
2024), Alpaca-GPT4 (Peng et al., 2023), CodeAl-
paca (Chaudhary, 2023), OpenPlatypus (Lee et al.,
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Figure 3: The main flowchart of TR-Jacobi decoding.
It should be noted that candidate generation and tree
verification are performed in the same step. For clarity,
we choose candidate generation at moment T and tree
verification at moment T+1 for analysis in the figure.

2023) and CIP (Palla, 2023). Note that we only use
100k samples from CIP. For the code domain, we
adopt a total of 185k samples from Magicoder-OSS
(Wei et al., 2023) and Evol-CodeAlpaca (Luo et al.,
2023) as the training dataset, which are widely used
in the program synthesis task.

Training Settings. To evaluate the proposed
method comprehensively, we select LLama3-8B-
Base (Touvron et al., 2023) and DeepseekCoder-
6.7b-Base (Guo et al., 2024) as the foundation mod-
els for the general and code domains, respectively.
The training settings for MSN are aligned with
the baseline (SFT), maintaining a sequence length
of 2048 tokens, a batch size of 512, and a training
epoch of 4. Full-parameter fine-tuning is performed
on two servers, each equipped with 8 A100-80GB
GPUs, utilizing bf16 precision. We determine that
a noise segment length of 4 is optimal for dynamic
noise replacement for each sample.

Evaluation Settings. In this paper, we conduct
experiments on the task performance and accel-
eration performance of MSN, respectively. For
task performance, we use the MT-bench (Zheng
et al., 2024) and MMLU (Hendrycks et al., 2020)
in the general domain, the HumanEval (Chen et al.,
2021) and MBPP (Austin et al., 2021) benchmarks
in the code domain for evaluation. Evalplus (Liu
et al., 2023) , which provides additional test cases
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Method Metric(+) Speed Speedup(tokens/s)

LLaMA3-8B-Base (General)

SFT
6.13/60.38

38.00 1.00×
+Jacobi 39.38 1.01×
+TR-Jacobi 72.04 1.90×
MSN (Ours)

6.12/60.87
44.69 1.00×

+Jacobi 72.53 1.62×↑60
+TR-Jacobi 99.32 2.28×↑20

DeepseekCoder-6.7B-Base (Code)

SFT
76.6 (68.6)

48.47 1.00×
+Jacobi 48.59 1.00×
+TR-Jacobi 90.81 2.08×
MSN (Ours)

77.0 (68.7)
48.03 1.00×

+Jacobi 89.73 1.97×↑97
+TR-Jacobi 128.50 2.68×↑29

Table 1: Results of task performance experiments in
general and code domains. The general domain metric
uses scores from MT-bench and MMLU-weighted from
MMLU. The code domain uses pass@1 under greedy
decoding. For the code domain, we choose the average
of HumanEval and MBPP as a composite metric. ‘(+)’:
Results after executing additional tests from evalplus.
‘↑’: Percentage improvement over models without MSN.

for problems in HumanEval and MBPP, is also
included. For acceleration performance, we per-
formed a speedup evaluation of the proposed par-
allel decoding methods on Spec-Bench (Xia et al.,
2024). This benchmark contains data from multi-
ple domains and provides a fair comparison with
existing acceleration methods. Following previous
work, all speed related experiments are done on
a single A100-80G device with the batch size as
1. For our MSN model, the draft token length dur-
ing inference is consistent with the noise segment
length during training, which is 4.

4.2 Comparison with SFT
Baselines. We first validate the impact of the pro-
posed MSN training framework on the performance
of the model tasks in the general and code domains.
The standard supervised fine-tuning (SFT) is cho-
sen as the baseline method for comparison. Specif-
ically, we perform domain-specific SFT and noise
training based on the same base model and com-
pare the performance of both on downstream tasks.

Results. The metric in Table 1 represents the task
performance of each model. There is no signif-
icant performance loss of the model trained by
MSN on the downstream task compared to SFT.

Futhermore, The MSN model even delivers a slight
performance boost in both domain. The enhance-
ment in the code domain is particularly noteworthy,
given that evaluating generated programs is more
rigorous than evaluating conversation. Programs
must be correctly formatted and pass all test cases
to be deemed successful. It indicates that MSN
does not hurt the model to acquire capabilities dur-
ing the SFT phase. Our analysis suggests that this
gain comes from the fact that noise mitigates the
negative effects of teacher forcing training on the
model to some extent. The causal denoising task
forces the model to focus on more distant tokens
when predicting the current location token because
the current input is noisy. We also conduct som
experiments comparing SFT and MSN with differ-
ent base models in the code domain, which can be
found in Appendix C.

In addition to this, we briefly test the accelera-
tion effect of the MSN method on the Jacobi-like
decoding strategy. We can see that targeted training
on the denoising ability of the model significantly
improves the acceleration ratio of Jacobi decoding
in different domains. Our proposed TR-Jacobi fur-
ther improves the acceleration ratio by verifying
multiple paths simultaneously.

4.3 Comparison with Other Speculative
Decoding Methods

Baselines. To further compare MSN with exist-
ing speculative decoding methods, we conducted
an evaluation on Spec-Bench (Xia et al., 2024). We
choose both speculative methods that include no ad-
ditional structures (Jacobi, LookAhead, PLD) and
those that require additional structures (Medusa2,
EAGLE) for comparison. EAGLE and Medusa2
are post-trained on Vicuna-7b-v1.3 (Chiang et al.,
2023), which is already a post-SFT model. Since
our proposed MSN is performed in the SFT stage,
we need to perform MSN SFT on a base model.
Therefore, we conduct MSN on LLaMA3-8B-Base
and perform acceleration evaluations on two differ-
ent foundation models for a rough comparison of
speedup ratios based on different auto-regressive
(AR) throughputs.

Results. The overall acceleration experiment re-
sults are shown in Table 2. After specific train-
ing on denoising capabilities, the MSN model im-
proves the speedup ratio on all Jacobi-like decoding
strategies. For LookAhead, the denoising ability
may produce incoherent n-grams, which can lead
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Method AS MT-B Trans Sum QA Math RAG #MAT #Speed Overall(tokens/s)

Vicuna-7B-v1.3

AR ✗ 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00 49.64 1.00×
PLD ✗ 1.60× 1.03× 2.58× 1.15× 1.72× 2.15× 1.85 84.23 1.69×
Medusa2 1.6B 2.54× 2.01× 2.22× 2.00× 2.59× 2.09× 3.12 111.49 2.25×
EAGLE 0.3B 2.59× 1.91× 2.25× 2.07× 2.61× 2.01× 3.58 111.58 2.25×
LookAhead ✗ 1.44× 1.14× 1.31× 1.26× 1.57× 1.21× 1.65 65.80 1.32×
Jacobi ✗ 0.95× 0.92× 0.94× 0.94× 0.98× 0.94× 1.05 47.06 0.95×
TR-Jacobi ✗ 1.69× 1.31× 2.10× 1.28× 1.74× 1.58× 2.00 80.30 1.62×

LLaMA3-8b-MSN (Ours)

AR ✗ 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 1.00 42.13 1.00×
LookAhead ✗ 1.51× 1.36× 1.46× 1.35× 1.65× 1.40× 1.75 61.51 1.46×↑11
Jacobi ✗ 1.62× 1.54× 1.75× 1.41× 1.67× 1.48× 1.86 66.68 1.58×↑66
TR-Jacobi ✗ 2.22× 2.03× 2.77× 1.85× 2.16× 1.96× 2.94 91.63 2.17×↑34

Table 2: Experimental results of acceleration ratios in various areas of Spec-Bench (Multi-turn Conversation,
Translation, Summarization, Question Answering, Mathematical Reasoning, Retrieval-aug. Generation). Under
the dashed line indicates the Jacobi-like decoding method. ‘AS’: Additional Structure. ‘#MAT’: #Mean Accepted
Tokens. ‘↑’: Percentage improvement over models without MSN.

L HEval(+) MBPP(+)
Speed

Speedup
(tokens/s)

1 74.4 (70.1) 75.9 (64.6) 58.35 1.55×
4 73.2 (68.3) 76.5 (64.3) 80.47 2.13×
8 71.3 (65.9) 76.5 (65.1) 80.02 2.12×

Table 3: The effect of the training noise segments length
on acceleration and task capability. ‘L’ represents the
length of the noise segment.

to a relatively low improvement. For both Jacobi
decoding and TR-Jacobi decoding acceleration ra-
tios, noisy training brings significant improvements.
TR-Jacobi has a fine blend of retrieved and gener-
ated draft tokens with respectable average receive
lengths in all domains.

The speedup ratio of the MSN model under TR-
Jacobi decoding is competitive with other methods.
As a method with no additional training stages and
no additional model structure, the proposed accel-
eration method is also comparable to the models
with additional structures. It is fair to say that MSN
is a lightweight and efficient way to achieve infer-
ence speedup comparable to existing SOTA models
while improving model robustness.

5 Discussion

5.1 Effect of Noise Segment Length
The span length includes the length of the noise
segment during training and the length of the draft

1 4 8 16
Length of the noise segment

1.30

1.50

1.70

1.90

2.10

#M
AT

The Effect of Inference Noise Segment Length

LLaMA3-8B-MSN(L4)
LLaMA3-8B-MSN(L8)
LLaMA3-8B-MSN(L1)

Figure 4: The effect of the inference noise segments
length on acceleration with Jacobi decoding. ‘#MAT’:
Mean Accepted Token.

sequence added during inference. The training span
length affects the difficulty of the model learning
from samples, while the span length during infer-
ence impacts both the hit length and the speculative
operation latency.

Training Noise Segment length. Traning Noise
segment length refers to the number of noise tokens.
If the length is too short, the denoising capability
of the model may be diminished, resulting in lim-
ited acceleration during inference. Conversely, if
the length is too long, it significantly increases the
difficulty of denoising, affecting the model’s un-
derstanding of the sample and thereby harming its
task performance. To observe the impact of vary-
ing training span lengths, we experiment with span
lengths of 1, 4, and 8 on Deepseek Coder and the
task performance and acceleration are shown in Ta-
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Figure 6: Acceleration experimental results of MSN
training for StarCoder2 models of different sizes.

ble 3. It demonstrates that a length of 1 yields high
task performance but offers minimal acceleration.
A length of 8 provides substantial acceleration but
at the cost of significant task performance degrada-
tion. A length of 4 achieves the highest acceleration
with a lower impact on performance.

Inference Noise Segment Length Inference
noise segment length represents the draft token
num for Jacobi iteration, which is also the max-
imum number of times the token can be itera-
tively denoised. We perform parallel inference ex-
periments with different inference noise segment
lengths for models trained with different training
noise segment lengths (described above). We find
that the model can generalize from a smaller train-
ing noise segment size to a larger inference noise
segment size. This suggests that even though we
only trained one step to go directly from noise to-
ken to gold token, the model is able to generalize
to obtain iterative denoising ability. In addition, the
training noise length of 8 does not outperform the
training noise length of 4, suggesting that length 4
has reached the bottleneck of the model’s denoising
ability in the SFT stage.

5.2 Effect of Model Scale

To assess the generalisation capability of MSN,
experiments are conducted on different sizes of

Starcoder2 (Lozhkov et al., 2024), specifically 3B,
7B, and 15B parameters. The training data remains
consistent with Section 4.1, and HumanEval with
Jacobi decoding is utilised to evaluate the acceler-
ation. The results of the experiment are shown in
Figure 6. Overall, MSN demonstrates significant
speedup across all model sizes, indicating its broad
applicability.

Specifically, when increasing the model size
from 3B to 7B, the Mean Accepted Tokens (#MAT)
only increases by 0.03, and the speedup ratio
slightly decreases. It suggests that a 3B model
is sufficient to learn the denoising capability and
that the effectiveness of denoising does not signifi-
cantly change with an increase in parameters from
3B to 7B. The incremental increase in MAT for
the 7B model is insufficient to offset the additional
computational cost of draft tokens during inference,
resulting in a decrease in the speedup ratio. How-
ever, when the model size reaches 15B, the denois-
ing capability increases dramatically. The #MAT
rises by nearly 1, and the additional computational
cost of draft tokens is mitigated by the substantial
improvement in hit rate, resulting in a 0.6 increase
in the speedup ratio. The outcomes on model scale
further exemplify the extensive applicability of our
method and demonstrate that larger models have
greater potential.

5.3 Effect of Retrieval Paths

In order to further analyse the performance en-
hancement brought by the retrieval paths to TR-
Jacobi decoding, we perform ablation experiments
with Llama3 on Mt-Bench. We compare the #MAE
for the pure retrieval method PLD, the pure Jacobi
method TR-Jacobi w/o R, and TR-Jacobi on each
domain. The results of the experiment are shown in
Figure 5. Our proposed TR-Jacobi integrates and
surpasses pure Jacobi and pure retrieval solutions
in terms of acceleration performance in various
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domains. Retrieval paths mitigate the cold start
and instability due to random noise of Jacobi’s ap-
proach. The Jacobi method can continue to iterate
over the retrieval path and can also handle tasks
with shorter contexts (e.g., translation).

6 Conclusion

In this paper, we propose an effective training
framework Make Some Noise (MSN) to be used
as a replacement for the SFT stage. It enhances
the denoising ability of the model without affecting
the SFT training performance. Combined with our
proposed TR-Jacobi decoding strategy, the MSN
model is able to achieve 2.3-2.7x speedup in the
general and code domains without additional struc-
ture and training.

Limitations

Causal denoising, as a more general task, is only
used for experiments in the SFT phase in this paper
due to limited computational resources. It is a
worthy exploration to merge the denoising task
with the next token prediction task into the pre-
training task. In addition to this, the optimal noise
fragment length may be related to the content of the
SFT training set (parallel prediction of code text is
less difficult, natural language text is more difficult).
For a new SFT dataset, confirming the optimal
noise segments may require some pre-experiments
for searching, which imposes a certain burden on
MSN training.
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A PPL-Based Location Selection

As discussed in Section 3.2, we try to use the PPL-
based selection method to select the location of the
noise segments. Inspired by Lin et al. (2024b), dif-
ferent tokens contribute differently to the learning
of that sample. Therefore, we consider using cross-
entropy loss to score the input tokens and select the
segment with the lowest loss for noise replacement,
which can be formulated as:

k = argmin
k+l∑

i=k

− logP (Xi|X<i; θ) (5)

where k represents the start index of the noise seg-
ment and l represents the length of the noise seg-
ment. Segments with low cross-entropy loss pos-
sess both correct prediction and high prediction
confidence. Correct predictions indicate that the
model has learnt this segment sufficiently and re-
placement with noise has minimal impact on model
performance. High prediction confidence means
that the segment is likely to be a commonly used
expression (Sun et al., 2024), which is useful for
learning acceleration capabilities.

The final results of the experiment are shown in
Table 4. Even in code domains with stringent out-
put requirements, ppl-based position selection has
no significant speed or performance advantage over
random selection. Considering that the ppl-based
training method is too complicated and increases
the training time to some extent, we subsequently
adopt random noise locations.

B Templates for Token Tree

As shown in Figure 7, token tree verification or-
ganizes multiple paths into a tree structure, which
is verified in parallel by sparse attention masks.
With high accuracy of draft token prediction, to-
ken tree verification can effectively improve the
average acceptance length. However, for Jacobi de-
coding, since no additional structure is introduced,
the correct prediction rate of its draft token is rel-
atively low, and the generation of draft fragments
is mainly achieved by iterative decoding. There-
fore the enhancement brought by tree verification
mainly depends on the topK of the first draft token,
and experiments show that TR-Jacobi decoding
is not sensitive to the structure of the verification
tree. In this paper, we use the same heuristic tree
structure as vicuna-7b in medusa (Cai et al., 2024),
containing 63 nodes. In particular, we also add a
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Figure 7: Illustration of token tree verification. The
model achieves simultaneous verification of multiple
candidate paths through a specially constructed sparse
attention matrix.

retrieval path of length 5 to store the retrieved draft
tokens.

C More Experiment Results

In addition to the previously mentioned DeepSeek-
Coder, we have experimented on a variety of differ-
ent code base models (CodeLlama (Roziere et al.,
2023), StarCoder (Li et al., 2023)). The results
of the experiments on Humaneval and MBPP are
shown in Table 5. We can see that the MSN and
SFT methods do not reflect a significant gap on
models of different sizes and sources.
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HumanEval (+) MBPP (+) Speed (tokens/s) Speedup

Baseline 77.4 (72.6) 75.7 (64.6) 44.01 1.00×
Random 76.8 (72.0) 75.4 (65.1) 99.96 2.11×
PPL-Based 77.4 (70.7) 76.5 (66.7) 101.18 2.13×

Table 4: The comparison between the randomly selected noise segment and the lowest loss noise segment.

BaseModel Method Humaneval Humaneval+ MBPP MBPP+

CodeLlama 7B SFT 62.20 57.90 65.60 57.70
CodeLlama 7B MSN 64.00 57.90 63.50 54.50
StarCoder 3B SFT 57.30 53.70 60.60 52.40
StarCoder 3B MSN 59.10 55.50 60.30 52.60
StarCoder 7B SFT 68.90 64.60 63.80 55.00
StarCoder 7B MSN 66.50 60.40 64.30 55.60

Table 5: Experimental results for different code base models.

Method humanities stem social-science other MMLU MMLU-weighted

SFT 65.18 51.74 69.72 64.71 61.55 60.38
MSN 66.32 51.20 71.09 64.33 61.83 60.87

Table 6: Complete experiment results on MMLU Benchmark. Both SFT and MSN methods are trained on Llama3-
8B-Base model.
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