
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 12983–12997
November 12-16, 2024 ©2024 Association for Computational Linguistics

UNICORN: A Unified Causal Video-Oriented Language-Modeling
Framework for Temporal Video-Language Tasks

Yuanhao Xiong1,2, Yixin Nie2, Haotian Liu3, Boxin Wang4,
Jun Chen2, Rong Jin2, Cho-Jui Hsieh1, Lorenzo Torresani2, Jie Lei2

1UCLA, 2Meta, 3University of Wisconsin–Madison, 4UIUC
{yhxiong, chohsieh}@cs.ucla.edu, lht@cs.wisc.edu, boxinw2@illinois.edu

{ynie, junchen20, rongjinml, torresani, jielei}@meta.com

Abstract

The great success of large language models
has encouraged the development of large multi-
modal models, with a focus on image-language
interaction. Despite promising results in var-
ious image-language downstream tasks, it is
still challenging and unclear how to extend
the capabilities of these models to the more
complex video domain, especially when deal-
ing with explicit temporal signals. To address
the problem in existing large multimodal mod-
els, in this paper we adopt visual instruction
tuning to build a unified causal video-oriented
language modeling framework, named UNI-
CORN. Specifically, we collect a comprehen-
sive dataset under the instruction-following for-
mat, and instruction-tune the model accord-
ingly. Experimental results demonstrate that
without customized training objectives and in-
tensive pre-training, UNICORN can achieve
comparable or better performance on estab-
lished temporal video-language tasks includ-
ing moment retrieval, video paragraph caption-
ing and dense video captioning. Moreover, the
instruction-tuned model can be used to automat-
ically annotate internet videos with temporally-
aligned captions. Compared to commonly used
ASR captions, we show that training on our gen-
erated captions improves the performance of
video-language models on both zero-shot and
fine-tuning settings. Source code can be found
at https://github.com/xyh97/UNICORN.

1 Introduction

Recent breakthroughs in large language mod-
els (LLMs) (Ouyang et al., 2022; cha, 2023; Ope-
nAI, 2023; vic, 2023; Touvron et al., 2023a,b) have
reignited the enthusiasm about the achievement of
artificial general intelligence where a single foun-
dation model can accomplish a large variety of
downstream tasks based on human instructions. To-
wards this ultimate goal, the community has wit-
nessed promising advances in large multimodal
models (LMMs) for vision and language (Liu et al.,

Visual input example, Playing Tennis (34s in total):

Task 1: Moment Retrieval
Instruction Please predict start and end time of the fol-

lowing moment: He hits the ball over the net
several times. The output format should be
<start><end>.

Response <16><48>

Task 2: Video Paragraph Captioning

Instruction Provide a detailed description of the video, cap-
turing its key moments.

Response A man is bouncing a tennis ball on an outdoor
court. He hits the ball over the net several times.
The balls roll over to the opposing fence, broken
in half from the impact.

Table 1: Example of instruction-following data. The
response of moment retrieval is computed by time tok-
enization for the window [7.7s, 22.1s] with 75 bins.

2023b,a; Wang et al., 2023b; Dai et al., 2023; Bai
et al., 2023; Li et al., 2023a; Zhu et al., 2023), the
two essential modalities to understand the world.
Most of these LMMs follow the pipeline of visual
instruction tuning (Liu et al., 2023b) and demon-
strate strong capabilities in vision-centric tasks like
image classification and object detection (Wang
et al., 2023b), and vision-language tasks like im-
age captioning and visual question answering (Dai
et al., 2023; Liu et al., 2023b).

Despite impressive results in the image domain,
videos, another important data format in the vision
modality, are under-explored. In contrast to images,
videos have an extra temporal dimension and are
much more difficult to process due to increased
complexity. Existing approaches either directly ap-
ply LMMs trained on image-text pairs (Dai et al.,
2023) to the video domain without fine-tuning or
develop video-oriented LMMs (Zhang et al., 2023a;
Muhammad Maaz and Khan, 2023; Li et al., 2023c)
on short trimmed videos. However, such models
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focus more on problems which are less dependent
on temporal information like action recognition
and video question answering. It still remains un-
clear how to solve video-language tasks that re-
quires explicitly modeling temporal information,
including moment retrieval (Hendricks et al., 2017;
Lei et al., 2021), video paragraph captioning (Park
et al., 2019), and dense video captioning (Krishna
et al., 2017) in one single LMM.

In fact, the inherent disparities among these task
formats pose a challenge to the development of
such models: moment retrieval requires predicting
the temporal location of a moment described by
language, paragraph captioning entails to write a
coherent story from an untrimmed video, while
the goal of dense video captioning is to gener-
ate captions and temporal locations for a series
of moments simultaneously. These tasks are typi-
cally solved individually by specifically-designed
models (Lei et al., 2020a; Yang et al., 2023; Lei
et al., 2021; Lin et al., 2023). While attempts have
been made to unify these temporal video-language
tasks (Wang et al., 2023a; Yan et al., 2023), sep-
arate modules and training objectives tailored for
each task are involved in these methods, making
them complicated in both training and inference.

To address the above challenge, we propose a
UNIfied Causal videO-oRiented laNguage model-
ing framework (UNICORN) that unifies the tasks
as a simple yet generic language modeling prob-
lem. For moment retrieval and video paragraph
captioning, we convert original training datasets
into corresponding instruction-following formats,
as shown in Table 1. In particular, inspired by
previous efforts in discretizing bounding box coor-
dinates (Chen et al., 2022; Peng et al., 2023; Zhang
et al., 2023b), our approach represents the continu-
ous event boundaries as a sequence of discrete time
tokens and processes them similarly as language
tokens. On a range of datasets and tasks, we show
that this unified approach achieve comparable or
better performance over previous methods.

On the other hand, the development of large
video-language models is hindered by the lack
of semantically- and temporally-aligned video-
text pairs, an issue unique to the video domain.
As pointed out in (Han et al., 2022), the mod-
els pre-trained on commonly-used noisy datasets
such as HowTo100M (Miech et al., 2019) and YT-
Temporal-1B (Zellers et al., 2022) suffer from the
misalignment between videos and ASR captions
severely. Thanks to the generalization ability of

LMMs, our UNICORN can be leveraged to au-
tomatically generate captions for internet videos.
We demonstrate that qualitatively the generated
captions are better semantically- and temporally-
aligned with the videos than the original ASR cap-
tions, and quantitatively incorporating our gener-
ated captions in either instruction-tuning for mo-
ment retrieval or end-to-end video representation
learning leads to significant performance gains.

Our contributions are threefold: (1) We propose
UNICORN, a simple and generic framework that
unifies various temporal video-language tasks via
language modeling; (2) Our approach achieves
comparable or better performance to state-of-the-
art methods on multiple downstream tasks, includ-
ing moment retrieval, video paragraph captioning,
and dense video captioning; (3) Compared to exist-
ing captions, those automatically generated by our
method have shown to be better aligned with the
videos, both semantically and temporally. Empiri-
cally, the generated captions have demonstrated to
improve performance of models trained on them.
Our automatic annotation pipeline is useful for em-
powering the development of future LMMs.

2 Related Work

Large Multimodal Models. Large language mod-
els are taking the world by storm with their in-
credible capabilities to answer questions in a co-
herent and informative way aligned with human
instructions (cha, 2023; Ouyang et al., 2022; vic,
2023; OpenAI, 2023; Touvron et al., 2023a,b). The
universality and generalization of LLMs make it
potential to unlock the door to a foundation general-
purpose model. Towards this goal, a variety of large
multimodal models are emerging to bridge different
modalities, in particular vision and language (Liu
et al., 2023b,a; Wang et al., 2023b; Dai et al., 2023;
Bai et al., 2023; Li et al., 2023a; Zhu et al., 2023).
Such LMMs adopt the pipeline of visual instruction
tuning (Liu et al., 2023b) by converting original
datasets into the instruction-following format and
casting traditional vision problems as a language
modeling task. For instance, LLaVa (Liu et al.,
2023b) generates multimodal language-image in-
structional data using GPT-4 (OpenAI, 2023) and
develops an LMM connecting a pre-trained image
encoder and a pre-trained large language model to
deal with vision-language tasks. InstructBLIP (Dai
et al., 2023) enlarges the task coverage by gath-
ering 26 publicly available datasets and proposes
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an instruction-aware visual feature extraction pro-
cess. These models achieve the state-of-the-art
performance on numerous downstream tasks, rang-
ing from vision-centric ones such as image clas-
sification and object detection to vision-language
ones such as image captioning and visual reason-
ing. Despite efforts in understanding images, few
attempts have been made for video-language tasks
due to additional complexity. Thus, in this paper
we study how to model the interaction between
long untrimmed videos and captions from the per-
spective of language modeling.
Video-Language Modeling. Video-language tasks
have been widely studied, especially these requires
specific temporal modeling, such as moment re-
trieval (Lei et al., 2021; Lin et al., 2023; Mun et al.,
2020; Zeng et al., 2020), video paragraph caption-
ing (Lei et al., 2020a; Park et al., 2019; Yang et al.,
2023; Wang et al., 2021), and dense video caption-
ing (Krishna et al., 2017; Yang et al., 2023; Wang
et al., 2021). Some methods (Lin et al., 2023; Yan
et al., 2023; Wang et al., 2023a; Li et al., 2022)
pre-train a model on large-scale corpus to generate
latent video and language representations, which
can be then adapted to different downstream tasks.
This line of work typically requires elaborate ar-
chitectural designs and multiple training objectives
tailored for each target task. In contrast, we pro-
pose a more elegant unified framework to integrate
various temporal video-language tasks into a sim-
ple yet generic language modeling problem. Com-
pared with existing video-oriented LMMs targeting
at short video clips (Li et al., 2023c; Zhang et al.,
2023a; Muhammad Maaz and Khan, 2023), UNI-
CORN attaches more attention to long untrimmed
videos. The most relevant method to UNICORN
is Vid2Seq (Yang et al., 2023), which also formu-
lates dense video captioning as language modeling.
However, it should be emphasized that Vid2Seq
depends heavily on video-language pre-training
and is unable to handle tasks other than caption-
ing. On the contrary, by visual instruction tuning
on high quality datasets, UNICORN demonstrates
superior performance on a series of video-language
tasks without intensive pre-training. Moreover, our
method can be applied towards noisy video datasets
to generate better-aligned captions.

3 Method

In this section, we introduce our unified framework
UNICORN in detail. We start by discussing how to

transform the original datasets for different down-
stream tasks into the general instruction-following
format in Section 3.1. Then in Section 3.2, we
describe the model architecture designed for video-
language interaction. In Section 3.3, we present the
training pipeline of UNICORN including datasets
and training objective. Finally in Section 3.3, we
demonstrate how to conduct inference with the ob-
tained model on downstream tasks together with
the process to generate captions for noisy datasets.

3.1 Instruction-Following Data Generation
As the ultimate goal is to unify various temporal
video-language tasks, we cast moment retrieval and
video paragraph captioning datasets into a common
instruction following format. For dense video cap-
tioning, it can be regarded as a two-stage procedure
of paragraphing captioning and moment retrieval
and thus no specific training data are required. We
provide details in following sections.
Moment Retrieval In moment retrieval (MR)
(Hendricks et al., 2017; Gao et al., 2017; Krishna
et al., 2017; Lei et al., 2020b, 2021), a continu-
ous time window is predicted given an untrimmed
video and a language moment query. With the task
definition, an example instruction can be: “Please
predict start and end time of the following mo-
ment: {target}”, where {target} is replaced by the
specific query. We curate a template instruction list
in Appendix B, to explicitly teach the underlying
model the concepts of the task and the objective.

A key challenge here is how to generate output
sequences to represent moment locations. To re-
duce the exploration space for more controllable
predictions, we follow previous sequence genera-
tion strategies for such continuous values (Chen
et al., 2022; Peng et al., 2023; Yang et al., 2023;
Wang et al., 2023b; Chen et al., 2023), and dis-
cretize the timestamp t in a d-s long video into an
integer in {0, 1, . . . , Nbin − 1} with Nbin equally-
spaced bins by ⌊t×Nbin⌋/d. Moreover, since re-
cent LLMs exhibit surprising performance in math-
ematical reasoning, we use the original vocabulary
without extra time tokens, which in turn reduces
the number of trainable parameters and avoids pre-
training to re-acquire the ability to reason about
numbers. Meanwhile, to distinguish our discrete
relative timestamps from other numerical expres-
sions such as “5 apples”, we enclose the timestamp
values by “<start><end>” where start and end are
replaced by corresponding converted timestamps.
For instance, the moment in Table 1 starting at
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Figure 1: UNICORN framework using video paragraph captioning as an example. We encode each video frame
separately and concatenate their resulting visual tokens to represent the video. We highlight the encoding process of
one frame in red. All modules are instruction-tuned with the language modeling loss except the image encoder.

7.7s and ending at 22.1s within a 34s-long video
is transformed into the desired output sequence
“<16><48>” after our proposed time tokenization
with 75 bins. To make output predictions consis-
tent in format, we append a language constraint
to our instruction: “The output format should
be <start><end>.” For a moment query associ-
ated with multiple time windows, we regard each
query-location pair as an individual data sample.

Video Paragraph Captioning The task of video
paragraph captioning (VPC) (Park et al., 2019; Lei
et al., 2020a) aims at generating a set of coherent
sentences to describe an untrimmed video that con-
tains several events. While previous pipelines (Park
et al., 2019; Lei et al., 2020a) segment the video
into multiple clips from ground-truth event bound-
ary proposals, our method takes as input frames
sampled from the whole video together with the
instruction “Provide a detailed description of the
given video, capturing its key moments.”. We
generate a diverse template set in Appendix B to
reduce overfitting and strengthen the understanding
of the task. We leverage the paragraph caption of
the target video as the prediction.

Dense Video Captioning The goal of dense video
captioning (DVC) (Krishna et al., 2017) is to gener-
ate multiple corresponding captions for a series of
events together with their temporal locations from
the untrimmed video. It is much harder than mo-
ment retrieval and paragraph captioning since it re-
quires predicting events and their timestamps simul-
taneously. The most straightforward way to convert
the task into the instruction-following format is to

construct a sequence with both events and locations
given a specific input prompt. However, design
choices such as event serialization (e.g., chronolog-
ical or random) and where to insert time windows
might affect the performance significantly (Chen
et al., 2022; Yang et al., 2023). Furthermore, the
training of such models is challenged by the longer
input sequence with both timestamps and event de-
scriptions. It also takes extra computational costs
to learn redundant information from moment re-
trieval and video paragraph captioning again. Con-
sidering the inherent property of DVC, we find that
it can be naturally decomposed into a two-stage
procedure of video paragraph captioning followed
by moment retrieval. Thus, no additional training
data are required and this task can be addressed at
inference-time by the model instruction-tuned on
two tasks above, with more details in Section 3.3.

3.2 Model Architecture
To bridge together video frames and natural lan-
guage instructions as the ultimate input sequence,
we propose a large multimodal language model,
demonstrated in Figure 1. Specifically, a sequence
of visual tokens are obtained by feeding frames and
the corresponding instruction from an untrimmed
video into our per-frame encoding module. Visual
tokens are then processed by a projection layer to
the same latent space as the large language model
(LLM). The LLM takes the concatenation of visual
tokens and instruction tokens as input and generates
the desired output given different task instructions.

Compared with image-language interaction, few
attempts have been made in the video domain due
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to increased complexity. However, using image
encoders to conduct per-frame encoding for videos
by brute force will lead to an extremely long se-
quence of visual tokens proportional to the number
of frames. On the other hand, a completely new
encoder might require a considerable amount of
training to align modalities of vision and language
again. To strike a balance between two aforemen-
tioned issues, we resort to the recently proposed
InstructBLIP (Dai et al., 2023) with a Q-Former.
Specifically, Q-Former is a stack of self-attention
and cross-attention layers with a number of learn-
able query tokens and aims at compressing the
information of image embeddings and reducing the
number of vision tokens. On top of Q-Former, we
make some adaptions to handle the video input. In
detail, our method first extracts nq visual tokens
from each frame using the frame-based encoding of
the original Q-Former. For efficiency, we then ap-
ply average pooling in a frame-wise manner, which
results in one token for each frame. Given a video
of N frames, these N tokens are further processed
by a module with two self-attention layers to inte-
grate temporal information. Our design maintains
a reasonable length of visual tokens for instruction
tuning and takes advantage of pre-trained LLMs
for feature alignment between the two modalities.

3.3 Training and Inference

With the data in instruction-following format, we
now present a unified framework of instruction
tuning on various downstream tasks.
Training. The instruction-following format makes
it feasible to train the model to predict next to-
kens with an auto-regressive language modeling
loss. Given input video frames X={xi}Ni=1 and
task instruction Y = {yj}Mj=1, we maximize the
log likelihood of the output sequence Z={zk}Lk=1:
max

∑L
k=1 log pθ(zk|X,Y, z1:k−1), where L is the

output sequence length, pθ is the output probability
distribution over the LLM vocabulary given model
parameters θ. We finetune the whole model except
the image encoder using LoRA (Hu et al., 2022).
Inference. For moment retrieval and paragraph
captioning, we prompt the instruction tuned model
using corresponding task instructions to generate
responses via beam search. For dense video cap-
tioning, we divide it into two stages, where the
model first generates a paragraph caption, and then
temporally locate each sentence in the paragraph
with moment retrieval task instruction.

4 Experiments

In this section, we evaluate UNICORN compre-
hensively against state-of-the-art methods to show
its effectiveness. We first introduce experimen-
tal setup in Section 4.1. Then we present results
on downstream tasks including moment retrieval,
video paragraph captioning and dense video cap-
tioning in Section 4.2. Ablation studies are con-
ducted in Section 4.3 for better understanding of
our designs. Finally, in Section 4.4 we investigate
the quality of the automatic annotation generated
by UNICORN on HowTo100M.

4.1 Experimental Setups

Architecture. The backbone of our video encod-
ing module is adapted from InstructBLIP (Dai
et al., 2023). Specifically, we implement the
video encoder with the same image encoder (ViT-
G/14) (Fang et al., 2023), Q-Former with 32 learn-
able query embeddings and a fully-connected pro-
jection layer as the original InstructBLIP struc-
ture, plus a temporal modeling module with 2 self-
attention layers. For the language side, we select
Vicuna-7B (vic, 2023), a publicly available LLM
fine-tuned from LLaMa (Touvron et al., 2023a).
Datasets. Rather than intensive pre-training on a
large scale noisy dataset without annotations, we di-
rectly fine-tune our model on a comprehensive set
of publicly available video-language datasets, in-
cluding QVHighlights (Lei et al., 2021), Charades-
STA (Gao et al., 2017), ActivityNet Captions (Kr-
ishna et al., 2017), and YouCook2 (Zhou et al.,
2018a). The collection covers various domains
with different length distributions. More details
about datasets are included in Appendix C.
Implementation details. We adopt LAVIS (Li
et al., 2023b) under BSD 3-Clause License to run
all the experiments and our usage is compatible
with its license. The model is instruction tuned for
5 epochs with a batch size of 32. We randomly
sample a task at a time based on data size. We
use AdamW (Loshchilov and Hutter, 2019) with
β1=0.9, β2=0.999, and weight decay 0.05 for op-
timization. The learning rate is warmuped from
10−6 to 10−4 in the first epoch, followed by a co-
sine decay with a minimum of 10−5. We freeze the
image encoder and fine-tune the rest of the model,
with LoRA applied on the LLM. There are around
243M trainable parameters. UNICORN is trained
with 8 NVIDIA A100 (80G) GPUs in 12 hours.
Evaluation. For moment retrieval, we evaluate
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Method QVHighlights Charades-STA ActivityNet Captions
R@0.5 R@0.7 mAP avg R@0.5 R@0.7 mIoU R@0.5 R@0.7 mIoU

LGI (Mun et al., 2020) — — — 59.5 35.5 51.4 41.5 23.1 41.1
2D TAN (Zhang et al., 2020b) — — — 46.0 27.5 41.2 44.5 26.5 —
VSLNet (Zhang et al., 2020a) — — — 42.7 24.1 41.6 43.2 26.2 43.2
MDETR (Lei et al., 2021) 59.8 40.3 36.1 52.1 30.6 45.5 — — —
GVL (Wang et al., 2023a) — — — — — — 48.9 27.2 46.4
UnLoc (Yan et al., 2023) 64.5 48.8 — 58.1 35.4 — 48.0 29.7 —
UniVTG (Lin et al., 2023) 58.9 40.9 35.5 58.0 35.6 50.1 — — —
UniVTG, PT (Lin et al., 2023) 65.4 50.1 43.6 60.2 38.5 52.2 — — —
UNICORN 68.4 51.9 45.0 69.0 45.6 58.9 48.4 29.8 47.1

Table 2: Moment retrieval on QVHighlights (test), Charades-STA (test), and ActivitityNet Captions (val_2). We
bold the best, underline the second-best.

on QVHighlights, Charades-STA, and ActivityNet
Captions. We report the standard metrics Recall
at 1 under temporal Intersection over Union (IoU)
thresholds of 0.5 and 0.7, abbreviated as R@0.5
and R@0.7. Besides, we use the average mAP
over IoU thresholds [0.5:0.05:0.95] on QVHigh-
lights with multiple ground-truth segments for
one moment, and mean IoU (mIoU) for the other
two datasets. For video paragraph captioning, we
use commonly-adopted metrics CIDEr (Vedantam
et al., 2015) (C) and METEOR (Banerjee and
Lavie, 2005) (M) and report results on YouCook2
and ActivityNet Captions. As to dense video cap-
tioning, we follow the existing protocol (Krishna
et al., 2017) to compute captioning metrics over the
matched pairs between generated sentences and the
ground truth. SODA_c (Fujita et al., 2020) (S) is
also used to measure the temporal coherence for a
set of captions. This task is evaluated on YouCook2
and ActivityNet Captions as well.

4.2 Results

We evaluate our instruction-tuned model on three
video-language tasks: moment retrieval, video para-
graph captioning, and dense video captioning. Note
that all results are obtained from one shared model
and different tasks are addressed by changing the
prompting instructions at inference time only.
Moment retrieval. In Table 2, our method is com-
pared with state-of-the-art algorithms for this task
on three representative datasets, QVHighlights (Lei
et al., 2021), Charades-STA (Gao et al., 2017), and
ActivityNet Captions (Krishna et al., 2017). It can
be observed that our method achieves comparable
(mostly better) performance on all three datasets. In
particular, on QVHighlights we achieve 68.4, 51.9,
and 45.0 for R@0.5, R@0.7 and average mAP re-
spectively, improving the best-performing baseline
UniVTG with pre-training substantially by +3.0,

Method Backbone YouCook2 ActivityNet
C M C M

With GT Proposals
VTransformer (Zhou et al., 2018b) V (ResNet-200) + F 32.3 15.7 22.2 15.6
Transformer-XL (Dai et al., 2019) V (ResNet-200) + F 26.4 14.8 21.7 15.1
MART (Lei et al., 2020a) V (ResNet-200) + F 35.7 15.9 23.4 15.7
GVDSup (Zhou et al., 2019) V (ResNet-101) + F + O — — 22.9 16.4
AdvInf (Park et al., 2019) V (ResNet-101) + F + O — — 21.0 16.6
PDVC (Wang et al., 2021) V + F (TSN) — — 27.3 15.9
With Learned Proposals
MFT (Xiong et al., 2018) V + F (TSN) — — 19.1 14.7
PDVC (Wang et al., 2021) V + F (TSN) — — 20.5 15.8
PDVC (Wang et al., 2021) V (CLIP) — — 23.6 15.9
TDPC (Song et al., 2021) V (ResNet-200) + F — — 26.5 15.6
Vid2Seq (Yang et al., 2023) V (CLIP) — — 28.0 17.0
GVL (Wang et al., 2023a) V (TSN) — — 26.0 16.3
Video-LLaMA (Zhang et al., 2023a) V (CLIP) 36.2 16.5 32.8 15.9
MovieChat (Song et al., 2023) V (CLIP) 38.5 18.8 35.6 18.2
UNICORN V (CLIP) 37.8 18.3 34.8 17.3

Table 3: Video paragraph captioning results on
YouCook2 (val) and ActivityNet Captions (ae-test).
V/F/O refers to visual/flow/object features.

+1.8 and +1.4. In contrast to complicated designs
such as a localization loss in previous approaches,
we remove most of the specification and only use
a generic language modeling loss: UNICORN is
mainly based on the intuition that if a model knows
about where the moment is, we just need to teach
it how to read the location out. In summary, UNI-
CORN makes minimal assumptions on the task yet
accomplishes it with superior performance.
Video paragraph captioning. Table 3 shows the
video paragraph captioning results. In UNICORN,
we consider this task as a general captioning prob-
lem. Without any customized training objectives or
prior knowledge on the input such as ground-truth
event proposals as in previous methods (Park et al.,
2019; Lei et al., 2020a), our method demonstrates
outstanding performance over other baselines un-
der both settings of ground truth or learned pro-
posals. It further showcases the strong adaptation
of LMMs to downstream tasks through instruction
tuning with high-quality instruction-following data.

Dense video captioning. We generate dense video
captions following the procedure in Section 3.1 and
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(a) Comparison of training strategies.

Training Setup QVHighlights ActivityNet
R@0.5 R@0.7 mAP C M

Single-task, single-dataset 66.3 51.5 42.8 33.6 16.4
Single-task, multi-dataset 68.2 52.3 44.8 34.6 16.9
Multi-task, multi-dataset 69.5 54.4 45.3 34.8 17.3

(b) The number of frames.

#frames QVHighlights ActivityNet
R@0.5 R@0.7 mAP C M

25 61.5 37.4 35.0 33.4 16.9
50 65.4 47.9 41.4 34.5 17.0
75 69.5 54.4 45.3 34.8 17.3
100 67.8 52.8 44.7 34.6 17.3

(c) LoRA & temporal modeling.

LoRA Temporal QVHighlights ActivityNet
modeling R@0.5 R@0.7 mAP C M

✗ ✗ 60.6 36.4 33.2 23.0 16.0
✓ ✗ 66.7 49.2 39.8 34.4 17.2
✗ ✓ 65.5 47.0 40.4 27.6 16.8
✓ ✓ 69.5 54.4 45.3 34.8 17.3

Table 4: Ablation studies on training strategies and model designs of LoRA and temporal modeling.

Method Backbone YouCook2 ActivityNet
S C M S C M

MT (Zhou et al., 2018b) TSN — 6.1 3.2 — 9.3 5.0
ECHR (Wang et al., 2020) C3D — — 3.8 3.2 14.7 7.2
PDVC (Wang et al., 2021) TSN 4.4 22.7 4.7 5.4 29.0 8.0
PDVC (Wang et al., 2021) CLIP 4.9 28.9 5.7 6.0 29.3 7.6
UEDVC (Zhang et al., 2022) TSN — — — 5.5 26.9 7.3
E2ESG (Zhu et al., 2022) C3D — 25.0 3.5 — — —-
Vid2Seq (Yang et al., 2023) CLIP 5.7 25.3 — 5.9 30.2 8.5
GVL (Wang et al., 2023a) TSN 4.9 26.5 5.0 6.2 32.8 8.5
UNICORN CLIP 5.7 37.0 7.7 6.3 35.4 9.2

Table 5: Results of DVC on YouCook2 (val) and Activi-
tyNet Captions (val_1 and val_2).

evaluate the performance in Table 5. It can be ob-
served that our method takes the lead among the
compared approaches, including Vid2Seq which
leverages language models to predict captions and
timestamps simultaneously. These promising re-
sults also validate our divide-and-conquer strategy
for dense video captioning. Such an inference
design makes the training more efficient without
learning on redundant and lengthy DVC data again
while still achieving competitive results.

4.3 Ablation Studies

We conduct ablation studies to analyze effects of
the key components in UNICORN, including train-
ing strategies, the choice of time tokens, and vari-
ous model designs. We evaluate on QVHighlights
(val) for moment retrieval and ActivityNet Cap-
tions (ae-test) for video paragraph captioning. Ad-
ditional analysis including base model selection
can be found at Appendix D.
Training strategies. We study the effects of train-
ing strategies for UNICORN. Specifically, three
strategies are considered: single-task & single
dataset, single task & multi-dataset, and multi-
task & multi-dataset. For the single-task version,
we fine-tune two separate models with correspond-
ing instructions tailored for moment retrieval and
video paragraph captioning respectively, and select
one representative dataset for each task for eval-
uation. For the single-dataset version, we train
only on the training split of the evaluation dataset
(i.e., QVHighlights for moment retrieval and Activ-

ityNet Captions for video paragraph captioning)
We report detailed results in Table 4a. By in-

troducing datasets from different domains for the
same task, we can improve the model’s capability
on the single dataset. Besides, in contrast to tra-
ditional multi-task training strategies, instruction
tuning on various descriptions works as a unified
approach to integrate different tasks and can even
boost the performance from understanding a video
from multiple perspectives. Meanwhile, it is more
convenient to store only one model to accomplish
distinct tasks, which narrows the gap from con-
structing a general-purpose foundation model.
Number of frames. By default, we evenly sample
75 frames from a video as model inputs. In Table
4b, we study the impact with #frames of 25, 50,
75, and 100. The performance generally improves
when we adopt more frames while it saturates or
even gets worse around 100 frames. Since the
videos in the datasets we studied are usually not
very long (e.g., videos in QVHighlights are on av-
erage 150 seconds long), we hypothesize that 75
frames are enough to cover the semantic informa-
tion needed for the tasks. We report more results
about #frames in Appendix D.
LoRA. We use a parameter-efficient fine-tuning
method LoRA to fine-tune the LLM of UNICORN.
In Table 4c, LoRA has been proven effective in
boosting performance for downstream tasks (row
1 vs. 2 and row 3 vs. 4). It is expected that frozen
LLM would not work properly as we have assigned
new meanings to original digit tokens to represent
discrete time bins, and LoRA training mitigates the
issue without tuning the whole LLM intensively.
Temporal modeling. Since our model is adapted
from image-based InstructBLIP, we include an ad-
ditional module with self-attention layers to incor-
porate temporal information for videos in Figure
3. As shown in Table 4c, when temporal modeling
is enabled from average pooling to self-attention
interaction (row 1 vs. 3 and row 2 vs. 4), there is
substantial improvement in moment retrieval and
paragraph captioning, indicating the necessity of
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A woman is seen speaking to the camera and 
leads into her holding up various objects

She then holds up a piece of clay and 
begins creating an egg out of the clay

She paints the egg with several 
colors using a brush.

More eggs are shown 
hanging on a string

Input
Video

HTM-
UNICORN Various pictures of clay eggs are shown 

followed by a woman speaking to the camera.
The woman then begins drawing on the clay and ends with her 
showing off the product.

Several different colored clay eggs 
are shown hanging from the string.

She shows how she makes the clay eggs into necklace.

She ties them onto a string 
and hangs them up.

My name is Anna and 
I make DIY videos 
about fashion lorraine

Each egg is the combination of 
two colors to make the blue egg

You let the paint dry and then 
take web cord and tie two notesHTM-AA

The eggs are made out of
air drying clay. You can 
use some water to make

Add an eye pin and let them dry 
completely. Each egg is the combination 
of two colors to make the blue egg

Tell me which one 
is your favorite. 
I’ll see you soon

HTM-ASR
My name is Anna and 
I make DIY videos 
about fashion lorraine

You let the paint dry 
and then take web 
cord and tie two notes

…

Timestamp

Figure 2: Comparison among captions from HTM-ASR, HTM-AA, and UNICORN respectively. For HTM-
UNICORN, we show three sets of generated captions via beam search, coded with different colors.

this module for temporal video-language tasks.

Time tokens R@0.5 R@0.7 mAP

Dedicated 64.1 48.2 40.7
Original vocab 66.3 51.5 42.8

Table 6: Different time token.

Time tokens. We
can either introduce
new dedicated time
tokens or directly
use the digits in the original vocabulary to rep-
resent time. We investigate the impact of the two
strategies in the single-task, single-dataset setup
on QVHighlights in Table 6. We observed that
the original vocabulary performs better than new
dedicated tokens, which indicates the knowledge
of digits in LLM can be readily transferred to our
tasks. Meanwhile, new tokens would introduce ex-
tra training overheads and increase the number of
trainable parameters by 262M, more than double
of the original value, see details in Appendix D.

4.4 Auto Annotation of HowTo100M

Thanks to the generalization of LMMs, the model
to handle temporal video-language tasks can be
deployed on unseen public internet videos such as
HowTo100M (Miech et al., 2019). These videos
are paired with auto speech recognition (ASR) tran-
scripts, a majority of which are not visually and
temporally aligned (Miech et al., 2020; Tang et al.,
2021; Han et al., 2022). Since our model is ca-
pable of generating dense captions, it is promis-
ing to leverage UNICORN for annotating the
dataset automatically. We use our trained model
to densely caption a subset of 240K videos from
HowTo100M (Han et al., 2022) and denote the
dataset as HTM-UNICORN. We anonymize names
with their pronouns and prompt the model not to
generate offensive responses. We compare it with

two variants with the same set of videos, HTM-
ASR (Miech et al., 2019) with original ASR tran-
scripts, and HTM-AA (Han et al., 2022) which
has been aligned temporally via an automated pro-
cess. Note that UNICORN can output diverse cap-
tions using beam search (Vijayakumar et al., 2016),
which can increase the training data size and as a
result improve model performance with more data.

In Figure 2, we present an qualitative compar-
ison of three variants. Our HTM-UNICORN is
the best aligned with the input video both visu-
ally and temporally, compared with HTM-ASR
and HTM-AA. In addition, captions from different
sets can complement each other, leading to more
comprehensive descriptions of the video. Quan-
titatively, we use three HowTo100M variants to
pre-train the model for moment retrieval, and eval-
uate on QVHighlights under zero-shot and fine-
tuning settings. We convert these datasets into the
instruction-following format described in Section
3.1, and train the model from the same initializa-
tion. In Table 7, we observe that our automatically
annotated HTM achieves superior zero-shot perfor-
mance, which shows the better alignment of mo-
ments and timestamps. For fine-tuning, we notice
that performance even degrades when pre-trained
on HTM-ASR and HTM-AA, potentially due to
data noise, while the model pre-trained on HTM-
UNICORN outperforms other variants, reflecting
the high quality of the generated dataset.

Besides, we follow (Han et al., 2022) to conduct
end-to-end representation learning with an Info-
NCE loss (Miech et al., 2020). After contrastive
pre-training, we evaluate video representations by
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Dataset #queries Zero-shot Fine-tuning
R@0.5 R@0.7 mAP R@0.5 R@0.7 mAP

InstructBLIP — — — — 66.3 51.5 42.8
HTM-ASR (Miech et al., 2019) 5.0M 7.7 2.8 1.9 63.5 48.3 40.3
HTM-AA (Han et al., 2022) 3.3M 13.0 4.8 3.5 65.8 50.6 42.1
HTM-UNICORN 690K 44.2 26.4 26.0 68.9 53.6 45.0
HTM-UNICORN ×2 1.4M 47.5 30.8 29.9 69.5 54.0 45.2
HTM-UNICORN ×3 2.1M 50.0 32.7 30.4 70.2 54.6 45.5

Table 7: Zero-shot and fine-tuning moment retrieval
evaluation on QVHighlights (val). HTM-UNICORN
×n indicates we generated n sets of captions for a video.

PT Dataset Backbone UCF101 HMDB51 K400

HTM-ASR (Miech et al., 2020) S3D 82.1 55.2 55.7
HTM-AA (Han et al., 2022) S3D 83.2 56.7 56.2
HTM-UNICORN S3D 84.1 57.7 56.6

Table 8: Linear probing accuracy for action recognition.

linear probing on three action recognition datasets,
UCF101 (Soomro et al., 2012), HMDB51 (Kuehne
et al., 2011), and Kinetics-400 (K400) (Kay et al.,
2017) in Table 8. UNICORN achieves the highest
accuracy on all three datasets, which again demon-
strates the best quality of our generated captions.

Captions generated from our automated annota-
tion pipeline has shown to be better than noisy web
data both qualitatively and quantitatively. As data
quality and quantity are crucial for the performance
of large models (Zhou et al., 2024; Ji et al., 2023;
Liu et al., 2023a), we hope such a pipeline could be
useful for empowering the development of future
large multimodal models.

5 Conclusion

In this paper, we propose a unified causal video-
oriented language modeling framework UNICORN
to address temporal video-language tasks. By fine-
tuning on instruction-following data constructed
from existing datasets, our model achieves out-
standing performance on various downstream tasks
including moment retrieval, video paragraph cap-
tioning and dense video captioning. We further
show that UNICORN can be leveraged in automatic
annotation on internet videos such as HowTo100M
for semantically- and temporally-aligned captions.
These captions can be used to improve video-
language model performance against ASR ones.
In conclusion, UNICORN paves the way towards
a general-purpose foundation model that explicitly
considers temporal information.

6 Limitations

Currently, UNICORN is good at localizing an event
which only appears once in the video, but would be
confused when an event happens more than once.

This is due to the training data mostly have events
appearing once. Future work can be collecting data
with events that appear more than once to improve
models’ ability on these scenarios. Besides, it is a
promising direction to include more sophisticated
and efficient temporal designs, such as leveraging a
video perceiver to encode video information more
comprehensively using more frames. We will also
consider human evaluation to better understand the
quality of generated captions.
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A Societal Impact

Similar to many data-driven methods, the predic-
tions from our model might be inaccurate and bi-
ased towards the distribution of data on which it is
trained on. Therefore, users should not completely
rely on the model in real-world scenarios.

B Instruction Templates

We provide the list of instruction templates for mo-
ment retrieval and video paragraph captioning re-
spectively in Table 9 and Table 10.

• “Please predict start and end time of the fol-
lowing moment.”

• “Can you tell me the time window of this
event?”

• “What is the location of the moment?”

Table 9: The list of instructions for moment retrieval.

• “Provide a detailed description of the given
video, capturing its key moments.”

• “Describe the following video in detail, includ-
ing the actions and scenes.”

• “Clarify the contents of the displayed video
with great detail, focusing on its progression.”

• “Offer a thorough analysis of the video, dis-
cussing its various elements and storyline.”

Table 10: The list of instructions for video paragraph
captioning.

C Datasets

In this section, we present more details about
datasets used for both instruction-tuning and evalu-
ation. An overview of statistics of training data
is presented in Table 11. We mix all samples
of the same task across datasets and obtain two
large training sets: one for moment retrieval SMR
with |SMR|=71829 video-query pairs, and the other
for paragraph captioning SVPC with |SVPC|=16533
videos. These datasets are introduced comprehen-
sively below.

QVHighlights (Lei et al., 2021). This dataset
includes 10,148 trimmed videos with an average
length of 150 sec that covers daily vlogs, travel
vlogs, and news events scenarios. There are in total
10,310 queries associated with 18, 367 moments.
Following (Lei et al., 2021), we use train split for

Dataset Domain #Videos #Queries MR VPC

QVHighlights Vlog 7100 12803 ✓ ✗

Charades-STA Activity 5336 12404 ✓ ✓

ActivityNet Captions Activity 10009 37421 ✓ ✓

Youcook2 Instruction 1188 9201 ✓ ✓

Table 11: Statistics of training data.

instruction tuning of moment retrieval, test split for
evaluation, and val split for ablation studies. The
license is Attribution-NonCommercial-ShareAlike
4.0 International and our usage is consistent with
its license.

Charades-STA (Gao et al., 2017). The dataset
contains 6,672 videos with an average duration of
30.6 sec and 16,128 moment/caption pairs. Each
video is annotated with 2.4 segments on average.
We use train split for instruction tuning and test for
evaluation. The license is License Non-Commercial
Use and our usage is consistent with its license.

ActivityNet Captions (Krishna et al., 2017).
The dataset contains 14,934 untrimmed videos of
various human activities from YouTube. On aver-
age, each video lasts 120s and is annotated with
3.7 temporally-localized sentences. The dataset is
split into 10,009 and 4,925 videos for training and
validation, respectively. train split is included in
instruction tuning for both moment retrieval and
video paragraph captioning. The validation set has
two independent dense video captioning annota-
tions (val_1 and val_2). For moment retrieval, we
evaluate on val_2 according to prior work (Yan
et al., 2023). For video paragraph captioning, we
report results on the ae-test split following (Lei
et al., 2020a; Zhou et al., 2019). For dense video
captioning, we use both val_1 and val_2 for evalu-
ation, by computing the average of the scores over
each set for SODA_c and by using the standard
evaluation tool (Krishna et al., 2017) for all other
dense event captioning metrics. The license is not
specified by the original authors.

YouCook2 (Zhou et al., 2018a). It has 1,790
untrimmed videos of cooking procedures. On av-
erage, each video lasts 320s and is annotated with
7.7 temporally-localized sentences. The dataset is
split into 1,333 videos for training and 457 videos
for validation. We use train split for instruction
tuning and evaluate on val split. The license is MIT
License and our usage is consistent with its license.

Besides, we adopt a subset of HowTo100M (Han
et al., 2022) with 240K videos for automatic an-
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#frames QVHighlights Charades-STA ActivityNet Captions
R@0.5 R@0.7 mAP avg R@0.5 R@0.7 mIoU R@0.5 R@0.7 mIoU

25 61.5 37.4 35.0 63.4 38.0 55.0 43.6 25.9 43.9
50 65.4 47.9 41.4 67.3 46.0 58.1 46.2 28.3 46.1
75 69.5 54.4 45.3 69.0 45.6 58.9 48.4 29.8 47.1
100 67.8 52.8 44.7 68.4 46.0 58.4 48.5 29.3 46.5

Table 12: Effects of the number of frames on moment retrieval.

LoRA Temporal modeling QVHighlights Charades-STA ActivityNet Captions
R@0.5 R@0.7 mAP avg R@0.5 R@0.7 mIoU R@0.5 R@0.7 mIoU

✗ ✗ 60.6 36.4 33.2 62.3 36.8 55.0 43.1 25.9 43.8
✓ ✗ 66.7 49.2 39.8 67.6 44.5 58.2 44.3 27.5 45.1
✗ ✓ 65.5 47.0 40.4 66.8 43.4 57.3 44.9 27.7 45.3
✓ ✓ 69.5 54.5 45.3 69.0 45.6 58.9 48.4 29.8 47.1

Table 13: Effects of LoRA and temporal modeling on moment retrieval.

notation. It is a large-scale dataset of narrated
videos with an emphasis on instructional videos
where content creators teach complex tasks with
an explicit intention of explaining the visual con-
tent on screen (Miech et al., 2019). The license is
not specified by the original authors. For evalua-
tion, we leverage three action recognition tasks:
UCF101 (license not specified) (Soomro et al.,
2012) , HMDB51 (CC BY 4.0) (Kuehne et al.,
2011) and Kinetics-400 (CC BY 4.0) (Kay et al.,
2017). Our usage is consistent with their licenses.

D Additional Results

Additional experimental results are reported in this
section, including the analysis of dedicated time
tokens, effects of the number of frames, effects of
LoRA and temporal modeling, and the influence
of different pre-training data ratios. We only run
instruction tuning once and all results in Section 4
and this section are from this single model.

Extra overheads of dedicated time tokens. As
mentioned in Section 4.3, new dedicated time to-
kens would introduce a considerably larger number
of trainable parameters. In particular, given the
current implementation of LLMs, it is challenging
to train new tokens only without affecting the rest
of parameters in the embedding layer and the fi-
nal output layer. Thus, we take an alternative to
tune all parameters in these two layers: given the
original vocabulary size of 32000, the number of
new time tokens of 75, and the hidden dimension
of 4096, the total number of trainable parameters is
computed as: (32000 + 75)× 4096× 2 = 262M.

Number of frames. In addition to results pre-
sented in Table 4b, we show more complete exper-
iments on moment retrieval and video paragraph
captioning in Table 12 and Table 14. The trends
are consistent with what we observed in Table 4b,
where 75 frames are enough to cover all the seman-
tic information needed for these two tasks.

#frames YouCook2 ActivityNet
C M C M

25 29.2 16.9 33.4 16.9
50 34.3 17.8 34.5 17.0
75 37.8 18.3 34.8 17.3

100 37.4 18.5 34.6 17.3

Table 14: Effects of the number of frames on video
paragraph captioning.

LoRA and temporal modeling. We present
more thorough and comprehensive experimental
results to understand the effects of LoRA and tem-
poral modeling. In Table 13 and 15, we can con-
clude that both LoRA training and temporal mod-
eling contribute to performance gains in moment
retrieval and video paragraph captioning.

LoRA Temporal modeling YouCook2 ActivityNet
C M C M

✗ ✗ 25.7 16.9 23.0 16.0
✓ ✗ 32.3 17.7 34.4 17.2
✗ ✓ 26.5 17.4 27.6 16.8
✓ ✓ 37.8 18.3 34.8 17.3

Table 15: Effects of LoRA and temporal modeling on
video paragraph captioning.
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Base model selection. It should be emphasized
that UNICORN is a generic framework to which
we can flexibly utilize various LMMs as the base
model with a simple re-design to take video in-
puts. We analyze the effects of adopting different
base models like LLaVA (Liu et al., 2023b) here
to justify our framework design. Specifically, we
instruction-tuned LLaVA for moment retrieval and
video paragraph captioning. Results are shown in
Table 16 and it is expected that the performance of
LLaVA variant drops compared with our Instruct-
BLIP variant, due to the information loss from 256
frame-level tokens pooled to one token. Besides,
InstructBLIP has a QFormer while LLaVA only
uses a simple projection layer, which may be insuf-
ficient to align video and language. We also added
an experiment with InstrutBLIP-13B and observed
performance gains with a larger model size.

Base model QVHighlights ActivityNet
R@0.5 R@0.7 mAP C M

LLaVA-7B (Liu et al., 2023b) 66.3 51.5 42.8 33.6 16.4
InstructBLIP-7B (Dai et al., 2023) 68.2 52.3 44.8 34.6 16.9

InstructBLIP-13B (Dai et al., 2023) 69.5 54.4 45.3 34.8 17.3

Table 16: Comparison of different base models.

Ratios of PT dataset. We also alter the ratio of
pre-training dataset and record corresponding per-
formance in Figure 3. With only 25% of the videos,
the model using UNICORN captions far outper-
forms other counterparts trained on all videos,
demonstrating the effectiveness of our captions
compared to ASR captions and its de-noised ver-
sion. Meanwhile, UNICORN can generate multiple
captions for the same video, with more sets of cap-
tions, we see a consistent performance gain from
the model. Notably, when using 3 sets of captions
(×3), the performance is improved from 44.2 to
50.0 for R@0.5.

25% 50% 75% 100%
Data Ratio

10

20

30

40

50

R@
0.

5

×3
×2

Moment Retrieval on QVHighlights
HTM-ASR
HTM-AA
HTM-UNICORN

Figure 3: Zero-shot moment retrieval on QVHighlights
(val) under different data ratios.
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