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Abstract

Humans regularly engage in analogical think-
ing, relating personal experiences to current
situations (X is analogous to Y because of Z).
Analogical thinking allows humans to solve
problems in creative ways, grasp difficult con-
cepts, and articulate ideas more effectively. Can
language models (LMs) do the same? To an-
swer this question, we propose ANALOBENCH,
a benchmark to determine analogical reasoning
ability in LMs. Our benchmarking approach
focuses on aspects of this ability that are com-
mon among humans: (i) recalling related ex-
periences from a large amount of information,
and (ii) applying analogical reasoning to com-
plex and lengthy scenarios. We collect a set
of 340 high quality, human written analogies
for use in our benchmark, which constitutes the
largest such collection to date. We then test
a broad collection of models consisting of 12
open source and 3 proprietary in various sizes
and architectures. As in prior results, scaling
up LMs results in some performance boosts.
Surprisingly, scale offers minimal gains when,
(i) analogies involve lengthy scenarios, or (ii)
recalling relevant scenarios from a large pool
of information, a process analogous to finding
a needle in a haystack. We hope these observa-
tions encourage further research in this field.1

1 Introduction

Analogy is the ability to think about relational
patterns (Holyoak et al., 2001) and forms an in-
tegral aspect of human communication (Hofstadter,
2001; Gentner and Hoyos, 2017). This cognitive
ability helps humans understand new or difficult
concepts by relating them to more familiar expe-
riences (Holyoak and Thagard, 1996). Analogical
thinking plays a critical role in some of the ma-
jor breakthroughs in human history, such as the
discovery of gravity or even Einstein’s theory of

♡Co-first authors
1Code and data is available online: https://github.

com/JHU-CLSP/AnaloBench

Provided story. Maria spent years caring for 
everyone else's needs, barely taking a moment 
for herself. One day, she collapsed from 
exhaustion, finally understanding you can't 
pour from an empty cup; it was high time she 
cared for herself too.

Goal: Given the following story, find the analogous 
stories from the story bank. 

Story bank 

 Length of stories 
# of s

torie
s 

Story 1. Once a mighty oak, the tree 
had fallen during a violent storm, 
laying barren across the forest floor. 
The animals who used to rejoice in its 
shade now mourned its loss, the sun 
scorching down on them relentlessly.

Figure 1: The problem setup: given a story, the goal is to
identify an analogous story from a story bank. We study
the difficulty of this goal for LMs by varying the following
parameters: (i) length of stories, (ii) number of stories in
the story bank. In the example, both “Maria” and “the oak”
lose the ability to provide for others. While the strength of
analogies can vary, we design our benchmark to account for
this variation.

relativity (Hesse, 1965; Stepan, 1986; Hofstadter
and Sander, 2013). It was this very analogy-driven
progress that Newton aptly described as “standing
upon the shoulders of giants,” itself an analogy. If
modern language models (LMs) (OpenAI, 2023;
Touvron et al., 2023) can leverage analogical think-
ing, then we can expect wide-ranging implications
for future tasks.

We assess the ability of LMs to handle compo-
nents of analogy making. Two important features
characterize how humans form analogies in cre-
ative pursuits. (1) Humans are able to pinpoint
analogies between prolonged experiences (e.g. “ob-
taining a PhD is like running a marathon”). (2)
Humans can recollect relevant analogs from a large
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A fallen 
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Target: You can't pour from 
an empty cup.

✓ A fallen tree cannot provide shade.
✗ All that glitters is not gold.
✗ After letting off his rage he sat down like a…
✗ A succession of waves battered the rock.
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Q: Which of the following is the most analogous 
sentence to the target sentence?

Q: Retrieve the top 10 analogous stories 
from the sentence bank…

Query 
You can't 
pour from 
an empty 
cup.

Doc. n
Once upon a time, a 
man named Henry lived 
in a tiny, worn-out 
house. He…

Target: Lily was the kind of person who was always running 
around trying to help others. She had an exceptional kind …

✓ Once upon a time, a man named Henry lived in a tiny, worn-out house. He…
✗ In the small town of Baker's Crest, people lived simple lives, mostly untouched by…
✗ In the heart of a small, peaceful town lived a man named Gerald. He was an…
✗ A stormy morning on the coast revealed an awe-inspiring sight as a …

Query 
Lily was the kind of 
person who was always 
running around trying to 
help others. She had an 
exceptional kind …

Q: Which of the following is the most analogous sentence to the target sentence?

Q: Retrieve the top 10 analogous stories from the sentence bank…
Once upon a time, a 
man named Henry 
lived in a tiny, 
worn-out house. He …

Given the following 
sentence, expand it 
into a 10 sentence 
story:

Sentence: A fallen tree 
cannot provide shade

GPT-4

Shorter Longer

Figure 2: Overview of ANALOBENCH, for both the story expansion 3 and the task creation §3.3. Our abstract analogy
identification benchmark features two tasks: (T1) Identifying analogies from a mini story bank and (T2) Identifying analogies
from a large story bank. Each task is repeated at varying story lengths (∼ 1, 10, and 30 sentences), with GPT-4 extending
each story to target length. We find that while analogical reasoning shows signs of emergence, reasoning over longer and more
complex analogies remains a challenge for state of the art LMs.

collection of past experiences to form analogies
(Keane, 1987; Wharton et al., 1994). To what ex-
tent are LMs capable of such abilities?

To answer the above questions, we introduce
ANALOBENCH, a benchmark for analogical rea-
soning over natural language stories that convey
abstract concepts with varying level of difficulty.
While the dominant treatment of analogies has been
limited to word-level lexical analogies2 (Mikolov
et al., 2010), we instead focus on analogies defined
on natural language documents, such as the one
shown in Fig. 1. In the example, the central figure
of each stories (Maria / the “mighty oak”) loses
the ability to provide for the needs of others (“col-
lapsed from exhaustion” / “the tree had fallen”).
The use of stories as components of analogies pro-
vides a natural way to introduce abstract relational
patterns. In total, we collect 340 pairs of high-
quality analogous stories from human annotators
after multiple rounds of review and editing.

As Fig. 1 shows, we are interested in quantifying
the extent to which LMs are capable of identifying
analogous stories from a given pool of candidate
stories, similar to humans’ ability to recollect past
experiences and relate them to new situations. We
characterize this goal with two tasks (§3.3). First,
we consider a setup where the pool is limited to
a few stories. Among these few candidates, the
model is expected to select exactly one story as
the closest analogy to a given story (T1). Good
performance requires demonstrated ability in iden-
tifying complex analogies, assuming a small pool

2e.g. “rock” is to “solid” as “water” is to “liquid”

of candidates. In our second task, we maintain a
large (≈ 200) pool of candidate stories (T2) — in
performing well on this task, a model will have
demonstrated ability in identifying analogies from
long-context memory. Additionally, we explore
how well performance scales with length. We are
inspired by the remarkable ability of humans to ab-
stract over long and elaborate stories, and leverage
such abstractions to identify analogies. By eval-
uating our proposed tasks on longer stories, we
measure the extent LMs can abstract over com-
plexities of longer stories. In practice, we repeat
each experiment with the same stories told using
≈ 1 sentence, 10 sentences, and 30 sentences. We
benchmark existing open-source and private lan-
guage models to measure their ability to identify
abstract and long-context analogies (§4). We find
that, while scaling LMs leads to better performance
in 1-sentence stories, the gains afforded by scale is
minimal for longer stories. Furthermore, the gap
between humans and GPT4 is 6.9% on 1-sentence
stories, but increases to 28.8% on 30-sentence sto-
ries, demonstrating that long and complex analo-
gies pose a challenge for LMs.

In summary, we introduce ANALOBENCH (Fig-
ure 2), a novel benchmark with two analogical rea-
soning tasks, and provide a thorough analysis of
analogical reasoning ability in a wide range of state
of the art language models.

2 Related Work

Analogical reasoning datasets. Various efforts
have attempted to build analogical reasoning bench-
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marks. Within the AI literature, the majority of
these works focus on lexical analogies (i.e., “man”
to “woman” ≈ “boy” to “girl”) (Sternberg and
Nigro, 1980; Turney, 2008; Green et al., 2012; Jur-
gens et al., 2012; Mikolov et al., 2013b,c; Gladkova
et al., 2016; Lu et al., 2019; Ushio et al., 2021).
Most of these datasets are created manually, al-
though there are also lexical analogy resources that
are created semi-automatically. For example, Yuan
et al. (2023b) presents a dataset with over a million
lexical analogies derived from a knowledge base of
subject-object-verb triplets. However, lexical analo-
gies fail to properly test reasoning ability in LMs
(Yuan et al., 2023a). More recently, research has
turned towards proverbs and metaphors for richer
analogy benchmarks (Ghosh and Srivastava, 2022;
Wijesiriwardene et al., 2023). Yet proverbs and
metaphors no longer challenge modern LMs, with
datasets such as ePiC (Ghosh and Srivastava, 2022)
excluded from Big Bench Hard for this reason (Suz-
gun et al., 2023). Our work ventures beyond lexi-
cal analogies and focuses on challenging analogies
that involve paragraphs of raw-form text, without
any assumptions on their structure.

Another group of datasets are from cognitive sci-
ence, some of which involve long sentences. These
datasets were originally intended to be used for the
study of analogical reasoning in humans (Gick and
Holyoak, 1980; Keane, 1987; Gentner et al., 1993;
Weinberger et al., 2016). The majority of these
datasets are too small to provide reliable bench-
marking for models. Among these GENTNER (Gen-
tner and Toupin, 1986) contains 54 instances and
was created to examine the development of sys-
tematicity (i.e., sensitivity to parallels based on
more complex relations). Recently, (Webb et al.,
2023) observes strong performance of LLMs on
these datasets, which motivates introducing a more
challenging analogical reasoning benchmark.

Concurrent works include STORYANALOGY (Ji-
ayang et al., 2023), a benchmark of 24K sentence
pairs, which were generated semi-automatically us-
ing GPT-3 and then relabeled by human annotators,
and ParallelPARC (Sultan et al., 2024), a set of
4288 machine generated analogies with a subset
of 310 verified by humans. Compared to these
works, our benchmark is much smaller as we prior-
itize data quality over size (Appendix B). Our seed
data is all written by humans, at the cost of size,
mainly because we aimed at effective evaluation.
Other works derive benchmarks from established

data sources. ARN (Sourati et al., 2024) constructs
analogies between stories in ePiC, using shared
proverbs as a proxy for shared relational structure.
Unlike ARN, we contribute an entirely new set
of 340 seed stories for future work, and propose
a different method for coming up with narratives.
Furthermore, we evaluate the effect of story length
on model performance.

It is worth noting that there is also a literature on
visual analogies (Sadeghi et al., 2015; Bitton et al.,
2023; Reed et al., 2015; Zhang et al., 2019) that is
different from the scope of this work. Interested
readers can refer to Ichien et al. (2020) who pro-
vide a thorough review of the prior datasets both in
computer science and cognitive science literature.

Analogical reasoning in LMs. Since the rise of
pre-trained LMs, we have witnessed remarkable
gains in the abilities of these models in tackling
analogical reasoning (Ichien et al., 2023; Webb
et al., 2023). Even without using SOTA LMs, Sul-
tan and Shahaf (2023) demonstrated that analogies
could be mined and retrieved successfully from
a set of situations. Bhavya et al. (2022) studied
the ability of GPT3 in generating analogous state-
ments with prompting by literal mentions of “anal-
ogy” in prompts. Through crowdsourcing exper-
iments, they observe that the then largest models
(e.g., davinci) were able to generate analogies that
matched the quality of human-generated analogies.
Another remarkable milestone is reported by Webb
et al. (2023) who evaluate GPT3 on various ana-
logical reasoning tasks (Raven’s standard progres-
sive matrices, letter string analogies, etc.) and re-
port that “GPT-3 displayed a surprisingly strong
capacity for abstract pattern induction, matching
or even surpassing human capabilities in most set-
tings.” While our results align with these findings,
our benchmark reveals major limitations of LMs
that was not easily observable in the prior work
(e.g., the weakness of LMs in solving analogies
that involve longer inputs).

3 ANALOBENCH: A Benchmark for
Abstract and Long-Context Analogies

We discuss design considerations and challenges
of benchmarking analogies (§3.1), the construction
of ANALOBENCH (§3.2), and tasks devised based
on this dataset (§3.3).

Our analogies follow the definition given by
Structure Mapping Theory (Gentner, 1983), where
common relational structures between two domains
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(i.e, stories, in our setting) define an analogy. Suc-
ceeding on our tasks does not involve recalling the
surface form of stories, but rather pin-pointing the
shared relational structures. Longer stories pre-
serve the relational structures but are padded with
“noise.” When humans perform our task, we intend
for them to come up with their own internal repre-
sentation of salient features. Our benchmark then
focuses on the question of how LLMs fare when
they are presented with the same task.

3.1 Design Considerations and Challenges

Benchmarks come with design principles and nec-
essary assumptions. We discuss the unique quali-
ties of analogical reasoning that guide and motivate
our design and lay out important assumptions in
our benchmark.

Assess the breadth of analogies. The universe of
analogies is vast, and any LM is likely only able to
predict a small (often easy) subset of this universe.
While measuring the precision of LMs is impor-
tant, an ideal benchmark should also measure their
recall (how well they capture deep and abstract
analogies). Generative evaluation might not fully
capture this depth, as there may exist many analo-
gies that the LM cannot predict. To assess what
an LM cannot predict, we propose a set of analo-
gies of our own choosing, and evaluate analogical
identification on this set (§3.3). An LLM which
has trouble recognizing analogies would also likely
have trouble applying them in diverse and mean-
ingful ways. Since recognizing analogies seems to
be a bottleneck, we focus our research towards this
area.

Benchmark size and diversity The purpose of
our dataset is to probe the extent of analogical abil-
ity in LLMs, which we are able to show is some-
what limited. Our purpose is not to create a set
of analogies that covers the universe of possible
analogies, but rather to propose specific cases that
challenge an LLM’s capability. For example, it
would not be useful to construct a broad set of
simple analogies which all considered LLMs can
trivially solve. We thus design our benchmark to
explore the limitations of current LLMs in their
analogical reasoning ability.

Task objectivity The quality of real world analo-
gies inherently lie on a spectrum—some are
stronger and some are weaker (Gentner, 1983).
Ideally, a measure of analogical reasoning encom-

passes both stronger and weaker analogies. Our
task aims to capture the inherent subjectivity of
analogies while remaining fundamentally objec-
tive. We frame our analogical identification task
more specifically as a ranking task, where the best
answer must be preferred over evidently incorrect
choices. In doing so, we can measure performance
on analogies of differing strength, while maintain-
ing objectivity (§5.2).

Creativity of analogies. LMs perform worse on
creative (i.e. rare) data (Kandpal et al., 2023). Thus
a benchmark that aims to challenge LMs should fea-
ture analogies that are creative. To that end, we in-
troduce novel and diverse, human-written analogies
created through a semi-randomized process (§3.2).

3.2 Dataset Creation

1 Curating analogical sentence-pairs. We col-
lected 340 analogies from 4 human annotators (the
authors) after multiple rounds of editing. The hu-
man annotators included native English speakers
and non-native speakers who all attended university
in the United States. These analogies then served
as true positives in our experiments. We prioritized
quality over quantity, as initial attempts to collect
data using a large pool of crowdworkers (AMT and
Prolific) yielded low quality annotations. Since our
benchmark places high importance on the quality
of analogies (§3.1), we opted to use our current
annotation scheme instead. These annotations of
analogies are arranged in pairs of sentences that
share similar relational patterns. For example, in
Fig. 3 the sentences “He danced off his sugar high
then promptly fell asleep” and “The weather finally
became pleasant following the stormy week” form
an analogy. While these two sentences are topically
dissimilar (dancing vs weather), they nevertheless
share abstract relational patterns.

The construction of these sentence pairs follows
this process: For each annotation, a random sen-
tence is provided to the annotator, who is tasked
with creating a corresponding analogous sentence.
Source sentences were sampled from Cambridge
Dictionary examples of idioms found on an online
resource3 and a dataset of metaphors (Bizzoni and
Lappin, 2018) filtered down to keep only examples
with the strongest or second-strongest grades. To
encourage innovative and abstract analogies, the
annotator is given 3 random words to incorporate

3See this link .
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. . . 

②  Analogical Clusters① Analogical Pairs

Sentence A Sentence B

You can't pour from an empty cup. A fallen tree cannot provide shade.

You can't pour from an empty cup. It's hard to love with a broken heart.

He danced off his sugar high then 
promptly fell asleep.

After letting off his rage he sat down 
like a lamb.

He danced off his sugar high then 
promptly fell asleep.

The weather finally became pleasant 
following the stormy week.

. . . . . . 

● After letting off his rage he sat down like a lamb.
● He danced off his sugar high then promptly fell asleep.
● The weather finally became pleasant following the 

stormy week.

● You can't pour from an empty cup.
● A fallen tree cannot provide shade.
● It's hard to love with a broken heart.
● ...

Figure 3: An overview of dataset creation (§3.2). 1 Left: Human annotators are asked to create pairs of analogous sentences.
Sentences can be repeated from analogy to analogy. 2 Right: Pairs that share a sentence can be grouped into a cluster of
mutually analogous sentences by transitivity.

in the newly formed sentence.4 During our pilot
study, the introduction of random words was found
to induce more creative annotations.

There are guidelines that the annotators adhere
to. Firstly, they are instructed to avoid using simi-
lar topics or words as the original sentence. This
is to eliminate any easy shortcuts that might allow
LMs to recognize an analogy without having identi-
fied relational patterns. For example, an LM might
mistakenly use similar phrasing between a pair of
sentences to detect an analogy. Instead, the analogy
between two sentences should be established on
the basis of shared relational patterns. Finally, a
separate reviewer scrutinizes the contributed sen-
tence pairs to ensure their clarity, accuracy, and
effective use of analogy.

2 Forming analogical clusters. Our collected
data is structured such that the same sentence can
appear in several analogous sentence pairs. This
allows us to organize our dataset into sets of anal-
ogous clusters, where all pairs of sentences in a
cluster are mutually analogous by transitivity. Each
cluster is manually inspected and adjusted to con-
firm mutual analogousness. Furthermore, different
clusters that happen to share common relational
structures are combined. We then use these clus-
ters to setup the tasks in §3.3.

3 Analogy elaboration. To investigate the ef-
fect of story length on the complexity of analogies,
we collect elaborated versions of each story. First,
longer stories requires analogical reasoning over
longer contexts, a task which scales in difficulty for
LMs, as shown by the recent results (Chen et al.,
2023; Liu et al., 2023). Second, the longer the sto-
ries in an analogy, the more room for expressing
abstract relational patterns.

4Randomization was achieved by sampling nouns, verbs,
and adjectives from here.

To implement this elaboration, we use GPT-4 to
convert sentence-level analogies into detailed sto-
ries with a target length of 10 sentences and 30 sen-
tences. We selected GPT-4 for its advanced story
generation capabilities and proficiency over other
LMs in generating coherent and complex text.5

To balance creativity and logical consistency, we
configured the model with parameters such as tem-
perature = 1 and top-p = 0.95. We provide the
prompt templates used in Appendix C. Although
we later evaluate GPT-4 on its own generations,
we demonstrate that self-evaluation bias does not
affect our conclusions by testing GPT-4 on stories
generated by a different model (§5.1).

Statistics. Table 1 shows the overall statistics of
our collected analogical clusters and their elabora-
tions. Overall, we compiled a total of 340 stories
grouped into 47 clusters. On average, each cluster
consists of about 7.2 stories.

Measure Value

# of clusters 47.0
avg. size of clusters (stories) 7.2
avg. length (sentences) of 1 sentence stories 1.2
avg. length (sentences) of 10 sentence stories 11.9
avg. length (sentences) of 30 sentence stories 31.2
avg. length (subwords) of 1 sentence stories 21.3
avg. length (subwords) of 10 sentence stories 225.8
avg. length (subwords) of 30 sentence stories 552.8

Table 1: Summary of dataset statistics. The dataset consists
of 47 clusters with an average of 7.2 stories each, and stories
vary in average sentence and subword length.

3.3 Analogy Identification Tasks

With the clusters of analogies defined (§3.2), we
leverage this data to devise two tasks to benchmark
the capability of state of the art LMs at analogical

5In our pilot experiments, we compared the elaborations
using GPT-4, PaLM and Claude, and ultimately chose GPT-4
because of its accurate yet creative elaborations.
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reasoning. In §1, we introduced two components
of analogy making. Each task aims to evaluate both
components in conjunction. Given a query story,
both tasks involve identifying analogous stories to
the given one from a story bank. In the first task, we
maintain a small story bank to focus the challenge
on rating a few candidates, thereby disentangling
it from the challenge of long-context reasoning.
In the second task, given a story, a model must
identify analogous stories from a large story bank.
We intend this approach to be analogous to how
humans recollect and employ their past experience
to form analogies.

T1: Identify analogies from mini story bank.
This task confronts the model with choosing the
most fitting analogy from 4 options. Given a sen-
tence or story, the model must select the most suit-
able option from a lineup consisting of one correct
answer and three distractors to assess discernment
of analogical relationships. Negative examples are
identified with the help of the analogy clusters iden-
tified in §3.2. By construction, for a given story,
all stories within its cluster are analogous, and all
stories in the complement are not. Thus, nega-
tive examples are sampled from the complement.
Each answer choice is prefixed by a letter from
[A, B, C, D] (e.g. “D. A fallen tree cannot pro-
vide shade”). We prompt each model to answer
the question: “Which of the following is the most
analogous story to the target story?” To guide the
LM to make a selection, we impose an additional
condition in the prompt that the generation must be
one of the four letters. More details of our approach
can be found in Appendix D.

An example of this task is shown in Fig. 2. Note,
given the elaborated stories discussed in (step 3
in §3.2), we have three datasets of multiple-choice
questions for each story length (1-sentence, 10-
sentences, 30-sentences).

T2: Identify analogies from large story bank.
In this task, given a story, the model must identify
the top 10 most analogous stories from a carefully
assembled, fixed story-bank consisting of 200 dif-
ferent stories. This task can be thought of as an
extension of the previous task, where there are 200
candidates instead of 4. Each story is prefixed by a
number from 1 to 200 (e.g. “1. Kim checked the
papers...”). For this task, we prompt each model
to generate a list of integers representing the in-
dex numbers of its selections. Following this, we

employ precision and recall metrics to analyze its
performance. More details and examples are pro-
vided in Appendix F.

Like the earlier task, we study this task in three
distinct setups as a function of story length (1 sen-
tence, 10 sentences, 30 sentences). The size of
the story-bank provided to the model varies con-
siderably on different datasets. For 1-sentence
dataset, the story-bank for it contains 4K tokens.
For 30-sentence story-bank, it contains 110K to-
kens. The long-context nature of this task poses a
major challenge for LMs. Due to these constraints,
our evaluation of T2 (§4.3) is limited to the few
models (GPT-4 and Claude-v2) that can handle
long-context. Additionally, while human annota-
tion is possible for this task, it would be impracti-
cally expensive, and as such were unable to mea-
sure human performance on this task.

4 Main Experiments

We structure our experimental assessment around
two primary tasks aimed at evaluating the analogi-
cal reasoning of LMs. We discuss the experimental
setting including the metrics, models and human
evaluation (§4.1), followed by the results.

4.1 Experimental Setting
Metrics. All scores are reported as percentages.
For T1 (analogies from a small story bank, §3.3)
we use accuracy as the primary measure of success.
Each example has multiple candidate analogies. A
solver gets a score of 1 if it chooses the most anal-
ogous story and 1/k if it reports no-answer or a
k-way tie that includes the correct answer (k = 4
in our dataset.) For T2 (analogy from a large story
bank, §3.3), we report common retrieval metrics
such as Mean Average Precision (MAP), Preci-
sion@K, Recall@K, and Mean Reciprocal Rank
(MRR) (Manning et al., 2008).

Evaluated models. We include models of vary-
ing sizes and architectures in our benchmarks.
The models include GPT-4 (OpenAI, 2023), GPT-
3.5 (Brown et al., 2020), LLaMA2-chat (Touvron
et al., 2023), , XwinLM (Xwin-LM, 2023), Wiz-
ardLM (Xu et al., 2023), Tulu2 (Ivison et al., 2023),
Zephyr (Tunstall et al., 2023), Claude-v2 (An-
thropic, 2023), as well as text-to-text models such
as UnifiedQA (Khashabi et al., 2020, 2022). To
minimize variations in model responses, we set
the decoding parameters to temperature = 0.3 and
top-p = 0.95.
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Human evaluation. We conducted human evalu-
ation to measure whether the task is well-defined
and has a reasonable quality. This process was
meticulously applied to our T1 task (Analogy Se-
lection, §3.3) across different levels of complexity:
1-sentence, 10-sentence, and 30-sentence scenarios.
To make the 30-sentence task more manageable,
the annotations were done for 30 instances. How-
ever, for 1-sentence and 10-sentence settings, we
annotated 50 instances.

For each level of complexity, we enlisted three
additional annotators6 (who were not involved in
the dataset construction) to evaluate the analogy
scenarios. Each annotator began by selecting their
personal answer choice without conferring. This
exercise led to high-agreement among the annota-
tors (§5.2).

Following this individual judgment phase, dis-
agreements were adjudicated via discussion among
the annotators. During these discussions, the anno-
tators were encouraged to exchange their rationales
behind their initial selection and converge upon one
collective answer that we used for evaluation.

We did not run human annotations for T2 due to
the immense reading load expected of annotators.
Since the two tasks are based on the same set of
labeled data, we focus our human annotations on
T1 to establish the quality of the presented data.

4.2 Result: Mini Story Bank (T1)

We benchmark how well our models can identify
analogies from a mini story bank (so as to disentan-
gle this task from other challenges associated with
long-context reasoning). Our results are reported
in Table 2 and Fig. 4. More detailed results are
reported in Table 7 of the Appendix. Overall, our
analogical reasoning benchmark challenges state
of the art language models.

LMs do not outperform humans. The results
reveal that analogical ability varies widely among
modern LMs. While many models perform non-
trivially (i.e. better than 25% accuracy achieved
by random guessing), and some models such as
GPT-4 perform considerably well, no model is able
to outperform humans in any setting. Among open-
source models, the largest models (70B) dominate
the results for the shortest story length setting, with
the exception of UnifiedQA which is supervised

6These annotators share the same demographic as the other
annotators in §3.2 and were not aware of the experimental
design during annotation

with different data than the rest of the models.

Model � - Story length � 1-sent 10-sent 30-sent

Random 25 25 25

O
pe

n-
so

ur
ce

Zephyr (7B) 55.1 27.1 20.3
UnifiedQA (11B) 68.1 27.3 17.8
WizardLM (13B) 41.1 29.1 25.7
LLaMA2-chat (70B) 55.6 39.2 29.5
XwinLM (70B) 66.3 35.7 26.8
Tulu2 (70B) 71.8 51.2 31.5

Pr
iv

at
e Claude 68.2 30.2 25.9

GPT3.5 65.3 46.4 30.8
GPT4 89.1 66.5 60.7
Human 96.0 72.5 73.3

Table 2: Benchmarking various models for T1 (§4.2). For
open-source models, we only show the results of the largest
available sizes in their model family. While the best models
perform somewhat close to human in short analogies (1-
sentence), the human-AI gap increases in longer stories.

Analogy length degrades LM performance.
We evaluate our lineup of models on stories consist-
ing of 1, 10, and 30 sentences. In Fig. 4b all models
exhibit degradation as story length increases. In
contrast, while human performance also decreases
with longer length, their performance stops decreas-
ing for 10- and 30-sentence stories. Thus, the per-
formance gap between humans and LMs increases
with longer context-length. These results to sug-
gest that analogical reasoning over longer inputs
poses an inherent challenge for LMs.

Model scaling benefits are limited on long stories.
Even if performance diminishes with increased
story length across all models, as long as perfor-
mance improves with model size, a sufficiently
large model can solve this problem. To test this
possibility, we evaluate models of varying sizes
within the UnifiedQA, LLaMA2, XwinLM, and
Tulu2 families on T1. Our results in Fig. 4a indi-
cate that while performance scales with LLM size
in the single sentence setting, we do not observe
the same trend in longer settings. Specifically, in
longer stories performance plateaus across model
family as model size increases. The observed trend
indicates a limit to the benefits of scaling model
size when handling complex analogies.

4.3 Results: Large Story Bank (T2)

Having evaluated our lineup of models on the mini
story-bank setting, we now turn our attention to the
full story-bank setting. As stated in §3.3, fitting
the full story bank in the context window requires
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(a) Results with varying model scale. The error margins are based on the standard error.
While scaling LMs is effective among short (1-sent) stories (left), the benefit of scale is
negligible for longer stories (middle and right).

1-sent 10-sent 30-sent
Story Length

25

50

75

(b) With increasing story length,
model accuracy decreases,
while their gap with humans
increases.

Figure 4: Accuracy of LMs on T1 (§4.2).

us to consider only long-context models such as
GPT4 and Claude and precludes human annotation
due to the large workload (and corresponding mon-
etary cost) that the task entails. In this experiment,
given a story, each model must identify the top k
most analogous stories from the story-bank. We
report the precision-recall curves for k = 1, ..., 10
in Fig. 5 and provide further details in Table 8 of
the Appendix.

LM performance approaches random. We
evaluate both models as well as a trivial baseline
where k random documents are retrieved. Both
models perform similarly to the trivial baseline in
most cases. An exception is the performance of
GPT4-Turbo in the single-sentence setting, sug-
gesting that the task, though challenging, is not
impossible for LMs to perform. While impressive,
the performance of GPT4-Turbo is nevertheless
near trivial in lengthier settings. These evaluations
test the limits of the best modern LMs. If humans
can recollect relevant experiences to form analo-
gies (Keane, 1987; Wharton et al., 1994), then our
results suggest that further research is necessary to
achieve parity in LMs.

5 Further Analysis

5.1 Evaluating Self-Generated Stories
In past experiments we utilized GPT-4 to extend
single-sentence stories into versions containing 10
or 30 sentences. Consequently, the relatively high
accuracy of GPT-4 may stem from evaluating its
own generated content. To address this, we also
evaluate GPT-4 on stories generated by Claude. As
a baseline, we also evaluate Claude on its own sto-
ries and stories generated by GPT-4. We report our
results in Table 3 and find that GPT-4 encounters
negligible performance degradation upon switching

to Claude generations. Additionally, GPT-4 consis-
tently outperforms Claude on Claude generations.
These results suggest that the relatively high perfor-
mance of GPT-4 is likely attributed to factors other
than evaluating its own generations.

Eval.
Gen. 10 Sentences 30 Sentences

Claude GPT4 Claude GPT4

Claude 36.5 30.2 33.5 25.9
GPT4 69.7 66.5 57.6 60.7

Table 3: Perf. of different evaluators and generators on 10- and
30-sentence stories (§5.1). GPT-4 performance experiences
minimal change when evaluating Claude generations.

5.2 Effect of Dataset Error
Whether incorrect LM predictions are attributable
to dataset error/subjectivity is unclear. To reduce
the likelihood of dataset error affecting our con-
clusions, we deem analogies that were correctly
predicted by humans (in our human evaluation) to
be relatively free of error, and repeat experiment
T1 on those analogies. As Table 4 shows, all trends
reported in §4.3 are still observed in this low-error
setting, suggesting that our conclusions are unlikely
to be affected by marginal dataset error.

Model T1: Classification (accuracy%)

1 sentence 10 sentences 30 sentences

GPT4 91.7 58.3 22.7
Tulu7 47.2 30.1 16.7

Tulu13 52.8 30.1 22.2
Tulu70 74.0 34.7 25.0
Xwin13 27.8 19.4 22.9
Xwin70 42.2 31.9 29.1

Table 4: Model accuracy on true positive human predictions in
T1 (§5.2) at three different story lengths (1, 10, 30 sentences).
All trends are consistent with the original task.
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Figure 5: Precision-recall plot (in percentage) of LMs on T2 (§4.3) at three different story lengths (1, 10, 30 sentences). With
increasing story length, the precision-recall of the models approaches random.

Agreement among human annotators. Using
our task definition, when we measure the inter-
annotator agreement on our human-written analo-
gies (1-sentence), we find that all three human eval-
uators agree unanimously on 47 of 50 analogies.
The high degree of inter-annotator agreement is
a quantitative indicator of our dataset’s objective
evaluation and quality. In the 10- and 30-sentence
settings, agreement decreases to 0.70% and 0.73%
of analogies respectively. Given the quality of the
extended stories as attested in Appendix C, we at-
tribute this decrease in agreement to the increased
difficulty of these settings.

5.3 Longer Analogies are Easier for Humans
In §3.2 we hypothesized that analogy length cor-
responds to complexity. While our results clearly
indicate that longer analogies pose a greater chal-
lenge for LMs, perhaps a more interesting question
is whether they pose a greater challenge for humans.
Surprisingly, qualitative feedback from human an-
notators indicated that they found the 30 sentence
setting easier than the 10 sentence setting, observ-
ing that added details in the longer setting aid in
disambiguation when performing the task. While
we expected annotator performance and agreement
to decrease in the longest setting, we did not ob-
serve this trend in either result (Table 2, §5.2).

6 Discussion

Limits of modern LMs in analogical thinking.
A clear consensus on whether LMs can adequately
perform analogical thinking has remained elusive.
While some find that LMs are proficient analogical
reasoners (Webb et al., 2023; Ichien et al., 2023),
others have challenged this notion (Jiayang et al.,
2023). Throughout our experiments, we repeat-
edly find that modern LMs display limited ability
to engage in key aspects of analogical thinking.
Crucially, performance does not scale with model

size on longer stories. Unlike the LMs evaluated,
humans can identify analogies between even the
longest stories with relative ease. These observa-
tions clearly suggest that LMs lack some key mech-
anism to think analogically. Overall, our results
establish the need for further research to encourage
analogical thinking in LMs.

Downstream applications and future work.
What downstream applications can we expect from
analogically reasoning LMs? We discuss examples
to illustrate the potential of analogical LMs. In
science, analogy provides a source of inspiration
for innovation. For instance, the design of artificial
neural networks was inspired by biological neural
networks (Rosenblatt, 1958). An analogy driven
scientific search engine would accelerate such in-
novation, allowing researchers to consider relevant
ideas across vastly different contexts (Hope et al.,
2017). In law, Xinrui Zou et al. (2024) has repre-
sented consistency in legal decisions as an analogi-
cal reasoning problem, where decisions in a current
case should follow that of an analogous case. An
analogical search engine would aid in the identifi-
cation of relevant cases. Given these wide-ranging
applications, we hope that our findings motivate
future work towards equipping LMs with better
analogical reasoning capabilities.

7 Conclusion

Analogical reasoning is an important aspect of hu-
man cognition, with wide-ranging potential for fu-
ture research. To benchmark this ability in LMs, we
define a general approach by scaling the length of
stories and the context from which they need to be
retrieved. Our benchmark exposes the limitations
of analogical reasoning in modern LMs. We release
ANALOBENCH to motivate further research.
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Limitations

In our experiments we benchmark many models.
While trying more models and performing addi-
tional prompt-engineering could have affected re-
sults, in the end we were constrained by the avail-
able computing resources. Additionally, we can-
not exclude the possibility that LMs encountered
labelled analogies during training or finetuning, es-
pecially proprietary models such as GPT-4. While
our dataset is more challenging than existing ones,
it comes with various simplifying assumptions
and cannot capture the potentially-infinite range
of analogies. Future work should extend the ex-
isting datasets to capture more complex forms of
analogical reasoning and experiment with different
prompting strategies.

Analogical reasoning w/ parametric knowledge.
Pretraining provides LMs with ample parametric
knowledge (Brown et al., 2020), which may be
leveraged for analogical reasoning (Yasunaga et al.,
2023). Our benchmark does not evaluate this ability
in LMs, as it would make the evaluation of analog-
ical reasoning difficult to conduct in an objective
manner. Compared to our current approach, which
controls exactly what stories an LLM has access
to, the information stored in the parameters of a
network is less certain. Properties such as the diffi-
culty of a question/example are greatly affected by
the LLM’s knowledge, which we cannot ascertain.
To make our benchmark more objective, we leave
the evaluation of parametric knowledge to future
work, and focus our research on retrieving stories
in-context. Our results nevertheless yield valuable
insight on the limitations of LLMs.

Ethical Considerations

We hereby acknowledge that all authors of this
work are aware of the provided ACL Code of Ethics
and honor the code of conduct. The work presented
here does not immediately raise any ethical con-
cerns, to our knowledge. Beyond the scope of this
work, analogical reasoning should be applied with
care, otherwise due to its inherent subjectivity it
may potentially lead to misleading or incorrect con-
clusions.
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Bevilacqua, Michihiro Yasunaga, Mihir Kale, Mike
Cain, Mimee Xu, Mirac Suzgun, Mitch Walker,
Mo Tiwari, Mohit Bansal, Moin Aminnaseri, Mor
Geva, Mozhdeh Gheini, Mukund Varma T, Nanyun
Peng, Nathan A. Chi, Nayeon Lee, Neta Gur-Ari
Krakover, Nicholas Cameron, Nicholas Roberts,
Nick Doiron, Nicole Martinez, Nikita Nangia, Niklas
Deckers, Niklas Muennighoff, Nitish Shirish Keskar,
Niveditha S. Iyer, Noah Constant, Noah Fiedel, Nuan
Wen, Oliver Zhang, Omar Agha, Omar Elbaghdadi,
Omer Levy, Owain Evans, Pablo Antonio Moreno
Casares, Parth Doshi, Pascale Fung, Paul Pu Liang,
Paul Vicol, Pegah Alipoormolabashi, Peiyuan Liao,
Percy Liang, Peter Chang, Peter Eckersley, Phu Mon
Htut, Pinyu Hwang, Piotr Miłkowski, Piyush Patil,
Pouya Pezeshkpour, Priti Oli, Qiaozhu Mei, Qing
Lyu, Qinlang Chen, Rabin Banjade, Rachel Etta
Rudolph, Raefer Gabriel, Rahel Habacker, Ramon
Risco, Raphaël Millière, Rhythm Garg, Richard
Barnes, Rif A. Saurous, Riku Arakawa, Robbe
Raymaekers, Robert Frank, Rohan Sikand, Roman
Novak, Roman Sitelew, Ronan LeBras, Rosanne
Liu, Rowan Jacobs, Rui Zhang, Ruslan Salakhut-
dinov, Ryan Chi, Ryan Lee, Ryan Stovall, Ryan
Teehan, Rylan Yang, Sahib Singh, Saif M. Moham-
mad, Sajant Anand, Sam Dillavou, Sam Shleifer,
Sam Wiseman, Samuel Gruetter, Samuel R. Bow-

man, Samuel S. Schoenholz, Sanghyun Han, San-
jeev Kwatra, Sarah A. Rous, Sarik Ghazarian, Sayan
Ghosh, Sean Casey, Sebastian Bischoff, Sebastian
Gehrmann, Sebastian Schuster, Sepideh Sadeghi,
Shadi Hamdan, Sharon Zhou, Shashank Srivastava,
Sherry Shi, Shikhar Singh, Shima Asaadi, Shixi-
ang Shane Gu, Shubh Pachchigar, Shubham Tosh-
niwal, Shyam Upadhyay, Shyamolima, Debnath,
Siamak Shakeri, Simon Thormeyer, Simone Melzi,
Siva Reddy, Sneha Priscilla Makini, Soo-Hwan Lee,
Spencer Torene, Sriharsha Hatwar, Stanislas De-
haene, Stefan Divic, Stefano Ermon, Stella Bider-
man, Stephanie Lin, Stephen Prasad, Steven T. Pi-
antadosi, Stuart M. Shieber, Summer Misherghi, Svet-
lana Kiritchenko, Swaroop Mishra, Tal Linzen, Tal
Schuster, Tao Li, Tao Yu, Tariq Ali, Tatsu Hashimoto,
Te-Lin Wu, Théo Desbordes, Theodore Rothschild,
Thomas Phan, Tianle Wang, Tiberius Nkinyili, Timo
Schick, Timofei Kornev, Titus Tunduny, Tobias Ger-
stenberg, Trenton Chang, Trishala Neeraj, Tushar
Khot, Tyler Shultz, Uri Shaham, Vedant Misra, Vera
Demberg, Victoria Nyamai, Vikas Raunak, Vinay
Ramasesh, Vinay Uday Prabhu, Vishakh Padmaku-
mar, Vivek Srikumar, William Fedus, William Saun-
ders, William Zhang, Wout Vossen, Xiang Ren, Xi-
aoyu Tong, Xinran Zhao, Xinyi Wu, Xudong Shen,
Yadollah Yaghoobzadeh, Yair Lakretz, Yangqiu Song,
Yasaman Bahri, Yejin Choi, Yichi Yang, Yiding
Hao, Yifu Chen, Yonatan Belinkov, Yu Hou, Yu-
fang Hou, Yuntao Bai, Zachary Seid, Zhuoye Zhao,
Zijian Wang, Zijie J. Wang, Zirui Wang, and Ziyi
Wu. 2023. Beyond the imitation game: Quantifying
and extrapolating the capabilities of language mod-
els. Transactions on Machine Learning Research
(TMLR).

Nancy Leys Stepan. 1986. Race and gender: The role
of analogy in science. Isis, 77(2):261–277.

Robert J Sternberg and Georgia Nigro. 1980. Develop-
mental patterns in the solution of verbal analogies.
Child Development, pages 27–38.

Oren Sultan, Yonatan Bitton, Ron Yosef, and Dafna
Shahaf. 2024. Parallelparc: A scalable pipeline for
generating natural-language analogies.

Oren Sultan and Dafna Shahaf. 2023. Life is a circus
and we are the clowns: Automatically finding analo-
gies between situations and processes.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny
Zhou, and Jason Wei. 2023. Challenging BIG-bench
tasks and whether chain-of-thought can solve them.
In Findings of the Association for Computational Lin-
guistics: ACL 2023, pages 13003–13051, Toronto,
Canada. Association for Computational Linguistics.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,

13072

https://arxiv.org/abs/2206.04615
https://arxiv.org/abs/2206.04615
https://arxiv.org/abs/2206.04615
https://www.jstor.org/stable/232652
https://www.jstor.org/stable/232652
https://doi.org/10.2307/1129586
https://doi.org/10.2307/1129586
http://arxiv.org/abs/2403.01139
http://arxiv.org/abs/2403.01139
http://arxiv.org/abs/2210.12197
http://arxiv.org/abs/2210.12197
http://arxiv.org/abs/2210.12197
https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/2023.findings-acl.824


Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schel-
ten, Ruan Silva, Eric Michael Smith, Ranjan Sub-
ramanian, Xiaoqing Ellen Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin
Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, An-
gela Fan, Melanie Kambadur, Sharan Narang, Aure-
lien Rodriguez, Robert Stojnic, Sergey Edunov, and
Thomas Scialom. 2023. LLAMA 2: Open Founda-
tion and Fine-Tuned Chat Models. arXiv preprint
arXiv:2307.09288.

Lewis Tunstall, Edward Beeching, Nathan Lambert,
Nazneen Rajani, Kashif Rasul, Younes Belkada,
Shengyi Huang, Leandro von Werra, Clémentine
Fourrier, Nathan Habib, Nathan Sarrazin, Omar San-
seviero, Alexander M. Rush, and Thomas Wolf. 2023.
Zephyr: Direct distillation of lm alignment. arXiv
preprint 2310.16944.

Peter Turney. 2008. A uniform approach to analogies,
synonyms, antonyms, and associations. In Proceed-
ings of the 22nd International Conference on Compu-
tational Linguistics (Coling 2008), pages 905–912.

Asahi Ushio, Luis Espinosa Anke, Steven Schockaert,
and Jose Camacho-Collados. 2021. Bert is to nlp
what alexnet is to cv: Can pre-trained language mod-
els identify analogies? In Annual Meeting of the
Association for Computational Linguistics (ACL).

Taylor Webb, Keith J Holyoak, and Hongjing Lu. 2023.
Emergent analogical reasoning in large language
models. Nature Human Behaviour, 7(9):1526–1541.

Adam B Weinberger, Hari Iyer, and Adam E Green.
2016. Conscious augmentation of creative state en-
hances “real” creativity in open-ended analogical rea-
soning. PloS one, 11(3):e0150773.

Charles M Wharton, Keith J Holyoak, Paul E Down-
ing, Trent E Lange, Thomas D Wickens, and Eric R
Melz. 1994. Below the surface: Analogical similar-
ity and retrieval competition in reminding. Cognitive
Psychology, 26(1):64–101.

Thilini Wijesiriwardene, Ruwan Wickramarachchi, Bi-
mal Gajera, Shreeyash Gowaikar, Chandan Gupta,
Aman Chadha, Aishwarya Naresh Reganti, Amit
Sheth, and Amitava Das. 2023. Analogical-a novel
benchmark for long text analogy evaluation in large
language models. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 3534–
3549.

Patrick H Winston. 1980. Learning and reasoning by
analogy. Communications of the ACM, 23(12):689–
703.

Xinrui Zou, Ming Zhang, Nathaniel Weir, Benjamin Van
Durme, and Nils Holzenberger. 2024. Reframing tax
law entailment as analogical reasoning. In arXiv.org.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. WizardLM: empowering large lan-
guage models to follow complex instructions. arXiv
preprint arXiv:2304.12244.

Team Xwin-LM. 2023. Xwin-lm.

Michihiro Yasunaga, Xinyun Chen, Yujia Li, Panupong
Pasupat, Jure Leskovec, Percy Liang, Ed H. Chi,
and Denny Zhou. 2023. Large language models as
analogical reasoners.

Siyu Yuan, Jiangjie Chen, Xuyang Ge, Yanghua Xiao,
and Deqing Yang. 2023a. Beneath surface similarity:
Large language models make reasonable scientific
analogies after structure abduction.

Siyu Yuan, Jiangjie Chen, Changzhi Sun, Jiaqing Liang,
Yanghua Xiao, and Deqing Yang. 2023b. Analo-
gyKB: unlocking analogical reasoning of language
models with a million-scale knowledge base. arXiv
preprint arXiv:2305.05994.

Chi Zhang, Feng Gao, Baoxiong Jia, Yixin Zhu, and
Song-Chun Zhu. 2019. Raven: A dataset for rela-
tional and analogical visual reasoning. In Proceed-
ings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 5317–5327.

13073

hhttps://arxiv.org/abs/2307.09288
hhttps://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2310.16944
https://aclanthology.org/C08-1114
https://aclanthology.org/C08-1114
https://arxiv.org/abs/2105.04949
https://arxiv.org/abs/2105.04949
https://arxiv.org/abs/2105.04949
https://arxiv.org/abs/2212.09196
https://arxiv.org/abs/2212.09196
https://doi.org/10.1371/journal.pone.0150773
https://doi.org/10.1371/journal.pone.0150773
https://doi.org/10.1371/journal.pone.0150773
https://doi.org/10.1006/cogp.1994.1003
https://doi.org/10.1006/cogp.1994.1003
https://doi.org/10.1145/359038.359042
https://doi.org/10.1145/359038.359042
https://arxiv.org/pdf/2401.06715.pdf
https://arxiv.org/pdf/2401.06715.pdf
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2304.12244
https://github.com/Xwin-LM/Xwin-LM
http://arxiv.org/abs/2310.01714
http://arxiv.org/abs/2310.01714
http://arxiv.org/abs/2305.12660
http://arxiv.org/abs/2305.12660
http://arxiv.org/abs/2305.12660
https://arxiv.org/abs/2305.05994
https://arxiv.org/abs/2305.05994
https://arxiv.org/abs/2305.05994
https://arxiv.org/abs/1903.02741
https://arxiv.org/abs/1903.02741


Supplemental Material

A Additional Related Work

Here we cover additional related work that did not fit in the main text.

Analogical reasoning before LMs. The research on analogical reasoning in AI and cognitive science
for the longest time has focused on four-term analogies (Hesse, 1965) (e.g., “Baltimore to Maryland is
like NYC to New York”). In the era of symbolic AI era, an extensive literature focused on engineering
symbolic systems that processed analogical reasoning (Winston, 1980; Carbonell, 1983; Hofstadter, 1984;
Schank, 1999). These works focus on richer representation for alignment of analogous symbols and their
dynamic retrieval from a memory structure.

The more complex the analogies are, the more complex representation they require (Holyoak et al.,
2001). Naturally, it meant that solving the analogy problem require solving the representation problem.
The increasing progress in extracting representations of language led to more progress in analogical
reseasoning. A decade ago, the earlier generation of representation learning algorithms such as Word2Vec
(Mikolov et al., 2010, 2013a) famously showed linguistic regularities equivalent to lexical analogies (Pen-
nington et al., 2014; Ethayarajh et al., 2018) Thereafter, a large body of works focused on effective ways
of eliciting analogies from word embeddings (Murena et al., 2020), sometimes through neural networks
or symbolic reasoning frameworks built atop these embeddings (Lamm et al., 2018; Alsaidi et al., 2021;
Marquer and Couceiro, 2023).

Analogical reasoning in humans. The cognitive ability to process analogies likely has been with
homosapiens since the time they developed their languages, as evidenced by written Babylonian or
Egyptian relics (Holyoak and Thagard, 1996). These written documents convey a variety of ideas:
friendship and emotions, dangers and enemies, power and greed, and so on.

Analogies also made their way to science. Greeks used analogies to describe their understanding of
physical concepts, such as sound waves spreading like water waves. Physicists used similar abstractions
to understand light waves by formulating analogies to known physical waves, leading to “wave theory of
light”. Analogies are so prevalent in scientific development that renowned physicist J. Robert Oppenheimer
called it an “indispensable and inevitable tool for scientific progress” (Oppenheimer, 1956).

Cognitive science is the community which adopted a scientific and systematic treatment of analogical
reasoning in human cognition. Within cognitive science, analogical reasoning was viewed as mental mod-
els that utilize structure alignment via relations (Gentner, 1983; Clement and Gentner, 1991). Analogical
reasoning was also studied under pragmatic contexts such as the goal of the environment or the problem
solving (Gick and Holyoak, 1980). Hofstadter (2001); Gentner and Hoyos (2017) argue that analogical
reasoning is the “core of cognition”.
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B Examples of seed analogies

We compare seed story examples below between our dataset and STORYANALOGY. Each row represents
a pair of analogous stories. We find that the analogies in StoryAnalogy share syntactic/surface patterns
between stories, which we propose may act as shortcut features in the task of analogy identification.

Story 1 Story 2

The life of a celebrity looks like they have
it all, but in fact they have more problems
than anyone can possibly imagine.

Don’t trust everything on the social media.
It appears that people are having the best
time of their lives, but remember, it can be
fake.

It is not that cold today, but I’d still go by
car since I can’t afford to get sick.

To avoid burning your hands, use oven
mitts when removing the cake, as it will
be hot unlike how it is now.

I am determined to cook the Thanksgiving
dinner from scratch this time no matter
how difficult it is.

Harry prepared tirelessly for the final race
and put in each and every ounce of energy
he had into the training.

Table 5: Examples from our approach (ANALOBENCH)

Story 1 Story 2

Magma rises from deep in the earth. The
magma goes into volcanos

Food goes up from the stomach. The food
enters the esophagus.

The stream becomes a river. The river con-
tinues to flow along the same path for a
long time.

A person grows from a child into an adult.
As time passes, the person experiences on-
going growth and maturation.

The plasma membrane encloses the animal
cell. It controls the movement of materials
into and out of the cell

Security guards monitor the doors of the
factory. They manage the entry and exit of
personnel to and from the factory

Table 6: Examples from STORYANALOGY (Jiayang et al., 2023)
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C Further Details on Analogy Elaboration

We expand a single sentence to craft a story spanning 10 or 30 sentences. This directive applies to both
GPT-4 in §3.2. Below is an example:

Example prompts provided to GPT-4 for story elaboration:

Input:

Given the following sentence, expand it into a 10-sentence story.
Sentence: All that glitters is not gold.

Output:

In the small town of Baker’s Crest, people lived simple lives, mostly untouched by the allure of
wealth and luxury. The quiet town was buzzing one day with the news of a travelling merchant who
claimed to sell "real gold" artifacts. The townspeople gathered at the market square, attracted
by the glinting objects displayed on his cart.
The items glittered under the sunlight, their sheen unmatched, making everyone believe they were
indeed made of gold. The merchant, a persuasive man, told captivating tales of the artifacts
being lost treasures of ancient kings. An air of greed and desire blew over the town, as everyone
wanted a piece of this assumed wealth. They traded their hard-earned savings for the glittering
items, believing they had struck a fortune.
It was not until a wise old man from the town examined the artifacts closely and declared them
to be mere brass, cleverly polished to resemble gold. All the glitter had indeed fooled them,
reinforcing the adage, "All that glitters is not gold." The realization dawned, leaving the
townspeople embarrassed, having learned their lesson the hard way.

Throughout this creative process, we regulate it with a temperature setting of 1 and a top_p value of
0.95. We experimented with different temperatures, but these adjustments introduced additional issues. A
high temperature caused the narrative to diverge from the core meaning of the original sentence, whereas
a low temperature led to repetitive elements which rendered generated stories highly similar due to shared
analogous traits.

Assessing the quality of story expansion. We conduct an experiment to test the ability of GPT-4
to extend stories while hewing to the original source. If GPT-4 is successful, then the original source
(hypothesis) must entail from the extended story (premise). Modern LLMs are understood to be highly
performant on the textual entailment task (Srivastava et al., 2023; Suzgun et al., 2023). Thus, we use
the recently-released Claude-3 to predict entailment, taking care to avoid any potential bias in these
evaluations that might unfairly favor the generations of GPT-4. As baselines, we randomly pair the
premise and hypothesis for the 10- and 30-sentence setting.

Story Comparison Entailment Rate

1 vs 10 sentence (random) 0.01
1 vs 10 sentence 0.95

1 vs 30 sentence (random) 0.03
1 vs 30 sentence 0.97

We show that nearly all our source stories entail from the extended versions.
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D Prompts Used for Evaluating LMs for T1

Fig. 6 demonstrates the adaptation of a basic prompt to run various model evaluations for T1 task. We
begin with the basic prompt and adjust it slightly to comply with the specific instructions of each model,
as depicted in the second tier of the diagram. The third tier presents examples of responses generated by
the models. Also, we set the temperature=0.3 and top_p=0.95 for all of the model evaluations.

Prompt:
Which of the following is the most analogous story to the target story?
Note: Only generate a letter from [A, B, C, D] without any additional text.
Target Story:
All that glitters is not gold.
Options:
A. Don't trust everything on the social media. It appears that people are having the best time
of their lives, but remember, it can be fake.
B. They think they’ve won the contract but we’ve still got a couple of ideas to win it back.
C. After seeing Tim being disappointed over not making the basketball team, Barry advised
him to stray away from his emotions and work hard to try again next year.
D. A fallen tree cannot provide shade.

{prompt}

Human

<|user|>
{prompt}
<|assistant|>

Zephyr, Tulu Xwinlm, Wizard

A chat between a curious user and an artificial
intelligence assistant. The assistant gives helpful,
detailed, and polite answers to the user's questions. 
USER: {prompt}
ASSISTANT: 

Claude

\n \n Human:
{prompt}
\n \n Assistant: 

{prompt}

GPT4, GPT3.5,
Llama2 Chat

...
Target Story:
All that glitters is not gold.
\\n
Options:
....

UnifiedQA

Output

A

Zephyr Tulu

Wizard

Output GPT4 GPT3.5

UnifiedQA UnifiedQA
V2

D. A fallen
tree cannot
provide
shade.

Analogous
sentence:

Not
everything
that seems
beautiful or
valuable is
actually so.

Options:

A. Not
everything
you see on
social media
is true or
accurate.

...

A

Xwinlm

The most analogous
sentence to the target
sentence is:

A. Don't trust everything on
social media. It appears
that people are having the
best time of their lives, but
remember, it can be fake.

This sentence shares the
theme of the target
sentence, warning against
assuming that something is
valuable or true based on
appearances. In this case,
it cautions against trusting
everything seen on social
media, as it may not
accurately represent reality.

The most analogous
sentence to the target
sentence "All that
glitters is not gold" is
"A fallen tree cannot
provide shade."

This is because both
sentences convey a
similar message
about appearances
being deceiving. The
target ....

A A A.
A. Ever since
she got her
first
smartphone,
Emily had
spent
countless
hours scrolling
through
endless social
media feeds.

A.

A. Don't trust
everything on the
social media. It
appears that people
are having the best
time of their lives, but
remember, it can be
fake.

Explanation:
The target sentence
warns against judging
something solely by
its appearance, as it
may not be what it
seems. Option A
conveys a similar
message, cautioning
against trusting
everything on social
media, as it may be
misleading or fake.

Llama2

Figure 6: Analogy Selection Prompt for Different Models
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E Detailed Results for T1

Table 7 in our research paper presents the comprehensive set of results from our T1 experiments discussed
in §4.2. We assessed the abilities of numerous open-source models as well as GPT-4 and Claude-v2 on
this particular task. We use 4xA100 to evaluate all of the models.

Model Number of params T1Analogy Selection (accuracy)

1 sentence 10 sentences 30 sentences

Random – 25% 25% 25%
UnifiedQA 11B 68.1% 27.3% 17.8%
UnifiedQA v2 11B 53.8% 29.1% 23.6%
LLaMA2-chat 7B 35.6% 26.5% 26.3%
LLaMA2-chat 13B 40.9% 26.5% 23.7%
LLaMA2-chat 70B 55.6% 39.2% 29.5%
XwinLM 13B 28.2% 27.7% 23.5%
XwinLM 70B 66.3% 35.7% 26.8%
WizardLM 13B 41.1% 29.1% 25.7%
Tulu2 7B 50.0% 25.0% 27.9%
Tulu2 13B 55.3% 25.6% 23.8%
Tulu2 70B 71.8% 51.2% 31.5%
Zephyr 7B 55.1% 27.1% 20.3%
GPT3.5 175B 65.3% 46.4% 30.8%
GPT4 ? 89.1% 66.5% 60.7%
Claude ? 68.2% 30.2% 25.9%
Human – 96.0% 72.5% 73.3%

Table 7: Performance of different models on analogy selection tasks.
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F Prompts used for evaluating LMs for T2

In §3.3 we discuss T2, which is identifying the top 10 most analogous stories from a fixed bank of 200
stories. The following example shows the detail of the prompt.

GPT-4 Model Input and Output

Input:

Retrieve the top 10 analogous stories from the sentence bank for the following target story:
NOTE: Only generate an index number without any additional text. For example: 1, 2, 3, 4, 5, 6,
7, 8, 9, 10
Target Story:
All that glitters is not gold.
Sentence Bank:
1.Kim checked the papers in a rush so that she can have more free time. But, now she needs to
redo them as half of the class complained.
2. Liam lied to get into the school; Lary did not. Liam had a difficult time trying to hide the
deception as a result. But unlike Liam, Lary did not have to worry about anything else, so he
had a terrific time.
3. I am sorry, but you would now have to present your work before you can go for the vacation.
4. A fallen tree cannot provide shade.
5. He is the winner of three Grammy awards for god’s sake! People consider him to be the god of
rap.
...
197. It is not that cold today, but I’d still go by car since I can’t afford to get sick.
198. I do not want to spoil your mood but I have to babysit my nephew today.
199. Every cigarette you smoked is a threat to your health.
200. He knocked the nail into the wall with a hammer.

Output:

4, 14, 29, 59, 97, 111, 113, 137, 172, 188

We also considered using the LM to assign likelihoods to analogous stories, then ranking the entire
story-bank by likelihood. However, the extent to which modern LMs are well-calibrated remains unclear,
especially in this domain. We conducted preliminary studies that attempted to score the strength of an
analogy between two sentences. Scores were wildly inconsistent between runs and different in-context
examples, even on low temperature settings. The factors that contribute to the inconsistent behavior
remain unclear, and thus we do not define our task in this manner.
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G Detailed Results for T2

Table 8 in our research paper presents the comprehensive set of results from T2. We assessed the abilities
of GPT-4 Turbo and Claude-v2 on this particular task(§4.3). We use 4xA100 to evaluate all of the models.
Here are some detailed results of it:

Metrics T2: [GPT4-turbo] Claude-v2 Random Oracle

1 sentence 10 sentences 30 sentences 1 sentence 10 sentences 30 sentences

P@3 42.9% 6.5% 3.9% 10.2% 5.3% 5.4% 3.9% 100%
P@5 38.5% 5.2% 3.6% 8.9% 4.6% 4.7% 3.6% 100%
R@3 20.1% 2.9% 1.8% 4.3% 2.4% 2.2% 1.6% 48.9%
R@5 29.7% 3.8% 2.7% 6.6% 3.6% 3.2% 2.5% 81.6%
MAP 55.4% 14.2% 10.8% 6.3% 1.9% 3.4% 1.7% 100%
MRR 64.2% 15.6% 11.3% 18.9% 9.8% 13.4% 11.1% 100%

Table 8: Performance metrics for T2 using and Claude-v2 at different sentence lengths.
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Figure 7: The figures indicate that GPT-4 and Claude-v2 excel in the task of retrieving 1 sentence, but their performance
decreases with the retrieval tasks of 10 sentences and 30 sentences.

Calculation of ‘Random’ and ‘Oracle’ Baselines In the context of the table above, precision and
recall calculations involve two lists of integers: "result" and "golden." In typical precision and recall
computations, the "result" list is derived from the models’ generations. However, for random calculations,
the "result" list consists of integers from 1 to 10. This choice is influenced by our prompt: "NOTE:
Only generate an index number without any additional text. For example: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10".
Specifically, for challenging tasks, GPT-4 and Claude tend to generate a list ranging from 1 to 10 based on
this prompt as default. The random calculation is then performed using this list. In the case of the Oracle
calculation, we designate the "result" list to be the same as the "golden" list.
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H Experiment: Evaluation on Different Stories Lengths for a Fixed Total Context
Window

In our earlier experiments in §4.2 and §4.3 upon changing the length of each story, we also change the
length of the total prompt (i.e., the concatenation of all the stories in the story bank). This essentially
creates a confounding two variables that impact the difficulty of the tasks for LMs: (i) length of each
story; (ii) the total length of the context. To address this confounding variable, here we fix (ii) and vary (i).

We fix a total context window length budget. Specifically, we fix this budget to be 2K and 1.5K tokens.
Then, we fit as many stories that would fit within this total context window budget. The number of the
stories that fit in the context window are shown in Table 9.

Total Context Length Number of stories Scaled Accuracy Accuracy

1-sent 10-sent 30-sent 1-sent 10-sent 30-sent 1-sent 10-sent 30-sent

1500 72 6 3 0.04 0.15 0.07 0.05 0.29 0.38
2000 100 10 4 0.01 0.03 0.08 0.02 0.13 0.31

Table 9: Merged performance metrics for predictions across varying context lengths and story lengths for Tulu2 70B, with and
without scaled accuracy.

We report the accuracy values for these evaluations, but these values are not comparable to across
different length since they have different lower-bounds. For example, a story bank of size 3 leads to a
lowerbound of 1/3, while the lowerbound for a story bank with 72 stories is 1/72.

Besides the accuracy metric, we also report a scaled accuracy. The scaling is necessary here to make
sure that the numbers are all ranged from 0 to 100. To scale a given accuracy value x, we can plug it in
the following formula:

scaled-acc =
x− random-acc
1− random-acc

,

where random-acc = 1/(size of story bank). Overall the results of scaled accuracy values in Table 9 are
small. Essentially all of our stories of varying length remain difficult, even after accounting for a fixed
context window size. Whether story length is a stronger factor or the context window length remains
somewhat inconclusive and requires more future work.
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I Using Claude-v2 for Story Elaboration

Similar to §3.2, in §5.1 we expand a single sentence to craft a story spanning 10 or 30 sentences with
Claude-v2 this time. This directive is similar to how we prompt GPT-4 (example shown in §C), albeit
with a slight modification in the guidance given to Claude-v2. Below is the instruction:

Input:

\n\n Human:
Given the following sentence, expand it into a 30-sentence story.
Sentence: All that glitters is not gold.
\n\n Assistant:

Output:

Here is a 10-sentence story expanding on the sentence "All that glitters is not gold":
Lisa was browsing the jewelry store, looking for a new necklace. So many of the pieces caught
her eye with their glittering gems and shiny metals. She tried on a beautiful gold necklace set
with bright green emeralds that seemed to glow. Although it was very pretty, when she looked at
the price tag she gasped - it cost a small fortune! Lisa realized that just because something
glitters, doesn’t mean it’s as valuable as it appears. She put the necklace back and continued
browsing for something more affordable. In a corner case, she found a simple silver chain with
a small pearl pendant. It didn’t sparkle as brightly, but she knew pearls were classic and
elegant. Lisa tried on the necklace and loved how it looked on her. She decided it was perfect,
and happily purchased it for a fraction of the price of the emerald necklace. Though it didn’t
glitter quite as much, she knew this beautiful pearl pendant was the true treasure.
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