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Abstract

Preference optimization techniques have be-
come a standard final stage for training state-of-
art large language models (LLMs). However,
despite widespread adoption, the vast major-
ity of work to-date has focused on a small set
of high-resource languages like English and
Chinese. This captures a small fraction of the
languages in the world, but also makes it un-
clear which aspects of current state-of-the-art
research transfer to a multilingual setting.

In this work, we perform an exhaustive study
to achieve a new state of the art in aligning
multilingual LLMs. We introduce a novel, scal-
able method for generating high-quality mul-
tilingual feedback data to balance data cover-
age. We establish the benefits of cross-lingual
transfer and increased dataset size in prefer-
ence training. Our preference-trained model
achieves a 54.4% win-rate against Aya 23 8B,
the current state-of-the-art multilingual LLM
in its parameter class, and a 69.5% win-rate or
higher against widely used models like Gemma,
Mistral and Llama 3. As a result of our efforts,
we expand the frontier of alignment techniques
to 23 languages, covering approximately half
of the world’s population.

1 Introduction

What languages are favored in technological
progress is often deeply intertwined with histor-
ical patterns of technology access and resources (∀
et al., 2020; Bird, 2022; Singh et al., 2024). Prefer-
ence optimization is a valuable and widely adopted
post-training technique to align large language
models (LLMs) with human preferences (Chris-
tiano et al., 2017b; Stiennon et al., 2022; Ouyang
et al., 2022a; Bai et al., 2022). It has also been
shown to lead to large gains in performance across
a wide variety of NLP tasks (Wang et al., 2024;
Ivison et al., 2023; Xu et al., 2024; Lightman et al.,
2024). To-date, the majority of progress in prefer-
ence optimization has over-fit to a small handful of

Figure 1: Win-rates between our preference-trained
model with the other state-of-the-art open weight
models: Our preference-trained model based on Aya-
23-8B significantly outperforms the original Aya-23-
8B, Gemma-1.1-7B-it, Meta-Llama3-8B-Instruct, and
Mistral-7B-Instruct-v0.3. Win-rates are computed with
GPT-4-Turbo as a judge.

languages, resulting in large gaps in performance
outside of English (Schwartz et al., 2022; Kotek
et al., 2023; Khandelwal et al., 2023; Vashishtha
et al., 2023; Khondaker et al., 2023), and also risks
introducing security flaws for all users (Yong et al.,
2024; Nasr et al., 2023; Li et al., 2023a; Lukas
et al., 2023; Deng et al., 2023).

While expanding the frontier of what languages
are supported by AI is an increasingly urgent prob-
lem, extending preference optimization to a mul-
tilingual setting is a non-trivial challenge. First,
numerous works have shown that multilingual mod-
eling typically faces both a data scarcity and data
quality problem (Singh et al., 2024; Üstün et al.,
2024; Dodge et al., 2021; Kreutzer et al., 2022; Luc-
cioni and Viviano, 2021). This is even more pro-
nounced for high-quality preference data which is
virtually non-existent in many languages. Collect-
ing multilingual preference datasets through human
annotation is expensive and time intensive (Boub-
dir et al., 2023; Chaudhari et al., 2024), and while
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prior works have proposed the use of LLMs to
synthetically create preference datasets (Bai et al.,
2022; Yuan et al., 2024; Pace et al., 2024), these
efforts predominantly focus on English. The few
efforts that have focused on multilinguality have
relied on translation, introducing artifacts and re-
sulting in a lack of diversity in preference pairs
(Lai et al., 2023), which is known to be critical to
model performance (Naik et al., 2023; Chung et al.,
2023; Li et al., 2023b; Lahoti et al., 2023; Kirk
et al., 2024a).

Second, preference optimization in many lan-
guages simultaneously is a difficult machine learn-
ing task. The lack of studies in preference optimiza-
tion outside of English raises questions on how find-
ings from monolingual optimization would transfer.
Training dynamics of RLHF are known to be often
unstable (Casper et al., 2023; Gao et al., 2022a;
Chaudhari et al., 2024), which can be exacerbated
by the involvement of multiple languages where
preference data is from a heterogeneous distribu-
tion and negative transfer between languages is
possible (Wang et al., 2020, 2019). The few exist-
ing works on multilingual RLHF (Lai et al., 2023,
2024) exhibit poor results and are outperformed by
massively multilingual language models without
any preference optimization (Üstün et al., 2024;
Aryabumi et al., 2024).

Poor performance of the few existing multilin-
gual preference optimization works begs the ques-
tion: Is this a result of fundamental limitations
with standard preference optimization techniques
(especially in heterogeneous optimization settings
like multilingual ) or whether we are lacking high
quality multilingual data?

In this work, we exhaustively study the
aforementioned challenges. Our goal is to
systematically understand key variables which
might impact multilingual alignment, including
the source and amount of available preference
data, offline vs online RLHF techniques, and
the effect varying number of languages covered
in preference optimization training data. We
complete a comprehensive set of experiments with
state-of-the-art alignment techniques including
DPO (Rafailov et al., 2023) and RLOO (Kool
et al., 2019; Ahmadian et al., 2024) starting from
the 8-billion-parameter instruction-finetuned
Aya model covering 23 languages (Aya-23-8B;
Aryabumi et al., 2024). Our findings can be
summarized as follows:

1. Preference optimization exhibits cross-
lingual transfer. We show that preference-
optimization even with only English data im-
proves performance in other languages. How-
ever, the addition of a few more languages
significantly increases cross-lingual transfer,
achieving win-rates on unseen languages up to
54.9% when including 5 languages in training
data compared to 46.3% when training only
on English.

2. Multilingual preference data is necessary
for aligning multilingual LLMs. We find
that increasing the number of languages in
preference optimization training data con-
sistently improves multilingual performance
compared to English-only training data, in-
creasing win-rates by up to 7.0% from 46.4%
to 53.4% when all languages are included.

3. Online preference optimization outper-
forms offline optimization. RLOO as an
online method achieves better overall perfor-
mance than DPO by a maximum 10.6% dif-
ference in their average win-rates (54.4% vs
43.8%). Furthermore, we find that RLOO also
enables better cross-lingual transfer, achiev-
ing up to 8.3% increase over DPO in average
win-rate on languages not included in train-
ing.

4. Preference optimized Aya 23 8B outper-
forms other open weights models Preference
optimization leads to large gains in win-rates
against both the original Aya model (54.4%
win-rate) and widely used models including
Meta-Llama3-8B-Instruct (AI@Meta, 2024)
(72.4% win-rate), Gemma-1.1-7B-it (Gemma-
Team, 2024) (69.5% win-rate), Mistral-7b-
Instruct-v0.3 (77.5%win-rate) (Jiang et al.,
2023) across all 23 languages as shown in
Figure 1.

2 Methodology

2.1 Addressing Data Scarcity

The limited prior work on multilingual preference
training involved fully translated preferences from
English (Lai et al., 2023), however the Okapi model
has since been outperformed by non-preference
aligned models including the base Aya 23 8B model
we experiment with here (Aryabumi et al., 2024).
We hypothesize that the poor performance may be
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due to the reliance on translated preferences. While
language coverage may be improved by translation
(Ranaldi and Pucci, 2023; Üstün et al., 2024), the
introduction of translation artefacts known as trans-
lationese (Bizzoni et al., 2020; Vanmassenhove
et al., 2021) can hurt performance. Furthermore,
repeatedly translating the same preference pairs
can hurt preference diversity. The exact trade-off
between the positive and negative benefits is not
well understood and is difficult to isolate empir-
ically (Yu et al., 2022; Dutta Chowdhury et al.,
2022)

Here, we attempt to avoid some of the issues
with translation by creating preference pairs that
intentionally aim to steer model generations away
from translationese. First, we construct a diverse
set of general instruction-following multilingual
prompts by translating approximately 50K English
prompts from ShareGPT1 into the remaining 22 lan-
guages supported by Aya 23 8B. Automatic trans-
lation is done by using NLLB 3.3B (NLLB Team
et al., 2022).

Source of completions After translating
prompts, we generate completions for each lan-
guage by using multiple LLMs of varying mul-
tilingual capability. This ensures increased com-
pletion diversity versus the alternative of simply
translating the original English preference mod-
els. More specifically, we use Cohere’s Command2

and Command R+3 models, where the latter is ex-
plicitly trained for multilingual performance.4 For
Command, we generate English completions as
the model is primarily proficient in English, and
translate them into the other 22 languages. For
Command R+, we generate a completion from the
same prompt in-language. This method enables ob-
taining a pair of multilingual completions for each
prompt with varying quality based on the differ-
ence in models’ capabilities and the use of machine
translation.

The use of translated completions and compar-
ing with high-quality direct multilingual genera-
tions allows the model to steer away from transla-
tion artifacts. Note that the translated completions
are ranked as “bad completions” 91% of the time
by our reward model annotator, hence, in most
cases the preference ranking acts as a proxy label

1https://sharegpt.com
2https://docs.cohere.com/docs/command-beta
3https://docs.cohere.com/docs/command-r-plus
4https://docs.cohere.com/docs/command-r-plus#

unique-command-r-model-capabilities

for translated completions.

2.2 Offline vs Online Preference Training
Reinforcement Learning from Human Feedback
(RLHF; Christiano et al., 2017b; Stiennon et al.,
2022; Ouyang et al., 2022a; Bai et al., 2022) pro-
posed as the first framework for aligning language
models to human preferences, has become a key for
training state-of-the-art LLMs (OpenAI et al., 2023;
Touvron et al., 2023; Anthropic, 2024; Reid et al.,
2024). Canonically, PPO (Schulman et al., 2017b)
has been used in RLHF as the online RL algo-
rithm (Stiennon et al., 2022; Ouyang et al., 2022b;
Nakano et al., 2021). However, recent offline meth-
ods such as Direct Preference Optimization (DPO)
(Rafailov et al., 2023) and subsequent works in the
same direction (Azar et al., 2024; Ethayarajh et al.,
2024; Choi et al., 2024), have proven increasingly
popular due to reduced computational complexity.
Traditional online methods such as PPO and RE-
INFORCE (Williams, 1992) require an additional
network in addition to the policy, maintaining a
reward model in memory, and also using the policy
to generate doing training, all of which DPO does
not require as it is fully offline.

A fractured experimental ecosystem and non-
standardized datasets have made it difficult to eval-
uate the relative merits of both approaches compre-
hensively. However, recent work in an English set-
ting (Tajwar et al., 2024; Tang et al., 2024) suggests
that although the DPO-family of methods theoreti-
cally optimize the same objective as traditional RL
algorithms, they under-perform compared to well-
tuned traditional online RL methods due to the lack
of online generations (on-policy or off-policy) and
critique as provided by the reward model. (Tajwar
et al., 2024) also provides empirical evidence that
explicit negative gradients during training improve
over online methods without them. Given that mul-
tilingual datasets are far more heterogeneous than
most datasets, it is unclear how these findings apply
to massively multilingual settings.

Additionally, it is of great interest what
method most benefits from cross-lingual trans-
fer to unseen languages. Thus, in addition to
DPO, we benchmark REINFORCE-Leave-one-
out (RLOO; Kool et al., 2019; Ahmadian et al.,
2024). Ahmadian et al. (2024) shows that PPO
may not be the right tool for RLHF, and that sim-
pler REINFORCE-style methods such as Vanilla
Policy Gradient and RLOO, are competitive or out-
perform PPO. In their experiments, RLOO outper-
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forms both PPO and DPO, and incurs significantly
lower computational overhead compared to PPO.
Additionally, it has a contrastive loss by nature,
which (Tajwar et al., 2024) improves learning com-
pared to traditional RL. In Appendix Section A, we
give a brief background and introduction to each
method.

Preference data mixtures To evaluate if the mul-
tilingual preference data is essential in all lan-
guages and also to measure the cross-lingual trans-
fer during preference training, we design various
preference data mixtures where we control the num-
ber of languages covered and the amount of the
preference data per language:

1. English-only: English-only preference data
mixture that includes 50K prompts with ranked
generations. We term this this variant EN-1-50K
and use it to understand cross-lingual benefits that
accrue from English-only preferences. This is
important, given it is the standard formulation of
research to date.

2. 5 language subset: Multilingual mixture that in-
cludes English, Vietnamese, German, Turkish, and
Portuguese with a total amount of 50K prompts
(10K per language). These 5 languages contain a
mixture of higher and lower resource languages,
and in their language families and scripts. We refer
to this variant as ML-5-50K, training on only this
mixture and evaluating on the remaining 18 lan-
guages allows us to measure the impact of multilin-
gual preference data on cross-lingual transfer to
unseen languages in comparison to English-only
preference data.

3. All languages (fixed data budget): Multilingual
mixture with all 23 languages supported by Aya
23 8B. This is our fixed budget variant where the
total number of prompts is kept the same at 50K
(approximately 2.2K examples per language) to
compare with EN-1-50K and ML-23-50K. This
variant measures performance trade-offs includ-
ing all languages given the same data budget.
We refer to this variant as ML-23-50K.

4. All languages (not-fixed data budget): Our
most comprehensive preference data mixture
where we include all 23 languages with 10K
prompts per language (230K in total). This mixture
which we refer to as ML-23-230K enables us
to evaluate the impact of a larger preference data
budget in comparison with ML-23-50K.

Agreement between RM and GPT-4
English 87.9%
Vietnamese 88.7%
Turkish 84.4%
Portuguese 91.0%
German 85.5%
Avg 23 Languages 87.3%

Table 1: Ranking agreement rate for the Reward Model
used in our experiments and GPT-4 Turbo on randomly
selected Multilingual Dolly responses generated from
Command and Command R+ (512 randomly selected
per language). Unlike the Reward Model, GPT-4-Turbo
is capable of outputting ties. GPT-4-Turbo selects tie
result 3.1% of the time on dataset.

3 Experimental Set-up

Multilingual Base Model We perform all exper-
iments with Aya 23 8B (Aryabumi et al., 2024)
which is chosen because it (1) is massively mul-
tilingual, pre-trained and supervised fine-tuned
for 23 languages, and (2) it achieves state-of-
the-art multilingual performance in 23 languages
compared to other commonly used LLMs in
its class, outperforming Mistral-7B (Jiang et al.,
2023), Gemma-7B (Gemma-Team, 2024), and
Aya-101-13B (Üstün et al., 2024). On multilin-
gual benchmarks and open-ended generations, Aya
23 achieves a 65% win-rate or higher in head-to-
head comparisons with popular open sourcee mod-
els(Aryabumi et al., 2024). Furthermore, Aya 23
is an open weights model that is not preference-
trained, allowing us to isolate the impact of multi-
lingual preference optimization.

Reward Model We use a closed-source multilin-
gual reward model (RM) which is competitive with
top-scoring state-of-the-art RMs on the Reward-
Bench Leaderboard (Lambert et al., 2024). This
reward model achieves high LLM response rank-
ing agreement with GPT-4-Turbo on English and
Non-English languages as shown in Table 1. We
intentionally use a separate reward model from the
model we use for llm-as-a-judge evaluation (GPT-
4-Turbo5) given the known biases incurred by using
the same model for both (Verga et al., 2024; Bansal
et al., 2024).

Preference Optimization Training We train
Aya 23 8B model for 2 epochs in both DPO

5https://platform.openai.com/docs/models/
gpt-4-turbo-and-gpt-4
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and RLOO experiments. DPO runs are trained
with KL-penalty β = 0.5, learning rate 5e-7,
and AdamW optimizer (Kingma and Ba, 2014).
RLOO runs are trained with RLOO k = 2, KL-
penalty β = 0.01, learning rate 5e−6, AdamW
optimizer, and online generation sampling temper-
ature of 0.75. All runs are performed on a sin-
gle node with either 8 x Nvidia A100 80GB or
8 x Nvidia H100 80GB GPUs with DeepSpeed
ZeRO Stage 3 (Rajbhandari et al., 2020) and full
fine-tuning of all 8 billion model parameters. We
performed hyperparameter sweeps for learning
rate lr ∈ {5e−8, 5e−7, 5e−6, 5e−5} and for KL-
penalty β ∈ {0.05, 0.1, 0.5} for both DPO and
RLOO to the best of our ability. For a fair compari-
son with DPO, we utilize the same reward model
for RLOO which is used to generate our synthetic
multilingual preference dataset (for ranking the
generations).

3.1 Model Comparisons
We evaluate against multiple state-of-the-art open-
source models to ensure a comprehensive evalua-
tion. Details of each model are below:

• Meta-Llama-3-8B-Instruct (AI@Meta,
2024) is an 8B parameter open-source
instruction fine-tuned model which has
been pre-trained on over 15T tokens. Over
5% of the pretraining data is high-quality
non-English data, covering over 30 languages.
The model is supervised fine-tuned and
preference optimized with both offline (DPO)
and online (PPO) algorithms

• Mistral-7B-Instruct-v0.3 (Jiang et al., 2023)
is an open-source instruct fine-tuned edition
of the Mistral-7B pre-trained model. The
model is trained on instruction datasets pub-
licly available on the HuggingFace repository.

• Gemma-1.1-7B-it (Gemma-Team, 2024) is
a 7B parameter instruction fine-tuned model
trained with Gemini models’ architectures,
data, and training recipes (Gemini-Team et al.,
2024) on 6T tokens of data from web docu-
ments, mathematics, and code that are primar-
ily English. In addition to the supervised fine-
tuning, this model is also further fine-tuned
using RLHF on collected pairs of preferences
from human annotators.

We note that while the models we evaluate do
not explicitly claim to support multiple languages,

in practice, they are heavily used by multilingual
users relative to explicitly multilingual models like
mT0 and BLOOMZ (Muennighoff et al., 2023a).
We also observe that they perform well in practice.

3.2 Evaluation
We assess the preference-optimized models on the
multilingual open-ended generation and summa-
rization tasks using LLM-simulated evaluation:

1. Open-ended generations For open-ended
generations, we use dolly-machine-translated
test set from the Aya evaluation suite (Singh
et al., 2024) which is a held-out test set of
200 instances from the Dolly-15k dataset
(Conover et al., 2023) translated into 101 lan-
guages. This test set was curated by avoiding
instructions that include culturally-specific or
geographic references. For languages that are
available (Arabic, French, Hindi, Russian, and
Spanish), we use dolly-human-edited test
set (Singh et al., 2024), an improved version
of dolly-machine-translated post-edited by
professional human annotators to correct any
translation issues.

2. Summarization Task For summarization, we
use XLSum (Hasan et al., 2021), for the sub-
set of 15 languages covered by the benchmark
within the Aya 23 language coverage.

Across both tasks, we measure LLM-simulated
win-rates which have been shown to be highly cor-
related with human evaluation for both monolin-
gual English settings (Dubois et al., 2024) and mul-
tilingual settings (Üstün et al., 2024). We use GPT-
4-Turbo as an LLM-judge and follow the same
procedure described by Üstün et al. (2024). To
minimize bias, we randomize the order of model
outputs. The judge prompt can be found in Ap-
pendix D. For evaluation, we use max prompt con-
text length of 512, maximum generation length of
512, and sampling temperature of 0.75.

4 Results and Discussion

Win-rates Against Open-Weights Models Fig-
ure 1 and Table 2 show the win-rates of our
preference-trained models against state-of-the-art
open-source models. Importantly, the base Aya 23
8B already achieves high win-rates against Gemma-
1.1 (62.1%), Llama-3 (66.6%), and Mistral-v0.3
(69%) averaged across all 23 languages on Dolly
open-ended generations. Preference-optimized Aya
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1 5 23
Number of training languages

42.5
45.0
47.5
50.0
52.5
55.0 RLOO

DPO

(a) Avg. win-rates on 23 languages

1 5 23
Number of training languages

42.5
45.0
47.5
50.0
52.5
55.0

RLOO
DPO

(b) Win-rates on English

1 5
Number of training languages

42.5
45.0
47.5
50.0
52.5
55.0

+7.3

+19.4

+2.0 +3.8

RLOO
DPO

(c) Avg. win-rates on unseen langs.

Figure 2: DPO and RLOO results with an increasing number of languages in preference training data. We report
win-rates for (a) the average of 23 languages, (b) only English, and (c) the average of unseen languages, reflecting
the cross-lingual transfer.

models extend this lead further. Concretely, our
best variant of RLOO leads to 69.5% (+7.4), 72.4%
(+5.8), and 77.5 (+8.5) win-rates against Gemma,
Llama-3, and Mistral respectively.

Win Rates Against Aya-23-8B Table 3 shows
win-rate results for open-ended generations and
summarization respectively. Win-rates are mea-
sured against Aya 23 8B. We report win-rates
for both DPO and RLOO trained with different
preference data mixtures. Due to the space con-
straints, summarization results are shown in Ap-
pendix (Table 8). Our best variant across experi-
ments achieves 70.7% over the base Aya model.

Online optimization vs offline We find that
RLOO (online RL) outperforms DPO (offline)
across the board in multilingual performance. As
shown in Table 3, RLOO achieves higher win-
rates with all the preference data mixtures com-
pared to DPO. For the 23-language mixture, RLOO
achieves 54.0% win-rates whereas DPO reaches
47.0%.

Furthermore, RLOO achieves higher cross-
lingual transfer with English-only and 5-language
preference training in comparison to DPO. On lan-
guages unseen during training, RLOO achieves
3.4% higher win-rate compared to DPO (46.3%
vs 42.9%) when training only on English and an
11.6% higher win-rate (54.9% vs 43.3) when train-
ing on the 5-language subset as shown in Table 5.
This is inline with recent works (Tajwar et al., 2024;
Tang et al., 2024) which suggest that online sam-
pling outperforms fully offline methods. Addition-
ally, the significant improvement in cross-lingual
transfer with RLOO compared to DPO, suggests
that online sampling also enables generalization be-

yond the distribution of the training prompts. This
is complementary to findings of (Kirk et al., 2024b)
which show that online RLHF enables better gener-
alization than Supervised Fine-Tuning (SFT).

Increasing multilinguality in preference data im-
proves winrates For a fixed dataset size of 50K
pairwise preferences, we find that increasing the
number of languages in training data improves the
overall performance as shown in Figure 2a and Ta-
ble 3. For DPO, win-rates against the base model
on 23 languages increases from 43.3% to 47.0%.6

For RLOO, this gain is most visible when the num-
ber of training languages is 5 where win-rate im-
proves from 46.4% to 54.0% (+7.6 increase). In-
terestingly, in open-ended generations, using all
23 languages does not improve performance fur-
ther for RLOO, however, in summarization, the
23-language training mixture increases win-rates
compared to the 5-language subset (from 65.1% to
70.7%, Table 8).

English also benefits from multilingual training
Our experiments also show that English can benefit
from multilingual preference training and positive
transfer, even when there are fewer total English ex-
amples in the training data. As shown in Figure 2b
(and Table 4), our RLOO ML-23-50K variant out-
performs our RLOO EN-1-50K variant (53.0% vs
47.5% win-rate) on English, despite being trained
on 23 times less English data. However, English
win-rates drop for DPO as the number of languages
increases when there is a fixed budget of 50K ex-
amples, showing that DPO may be more prone to

6Win-rates that are under 50% do not correspond lower
performance since our evaluation allows for Tie. To indicate
if there is a performance gain, we also report the difference
between win- and loss-rates (∆W-L) in the results.
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Average 23 Languages
Win% Loss% ∆W-L%

GEMMA-1.1 62.1 29.4 32.7
LLAMA-3 66.6 29.4 37.2BASE
MISTRAL-V0.3 69.0 26.8 42.2

GEMMA-1.1 67.7 27.1 40.6
LLAMA-3 71.0 24.7 46.3DPO
MISTRAL-V0.3 74.7 21.8 52.9

GEMMA-1.1 69.5 26.3 43.2
LLAMA-3 72.4 24.0 48.4RLOO
MISTRAL-V0.3 77.5 18.9 58.6

Table 2: Open-ended generation (Dolly) win-rates for
the base Aya 23 8B, and DPO/RLOO preference op-
timized Aya 23 8B models against Gemma-1.1-7B-it,
Meta-llama-3-8B-Instruct and Mistral-7B-Instruct-v0.3.
We report average win-rates on 23 languages for the
best ML-23-230K checkpoints for DPO and RLOO.

negative interference.

Cross-lingual transfer to unseen languages
Preference training only with English, achieves
performance gains for languages not seen in the
training data as shown in Figure 2c (and Table 5).
This gain (∆W-L) is 2.0% for DPO and 7.3% for
RLOO. Furthermore, using a 5-language subset
(ML-5) significantly increases these gains to 3.8%
and 19.4% for DPO and RLOO respectively. These
results provide strong evidence of cross-lingual
transfer in preference optimization, which is signif-
icantly more present after online training, with an
increased degree of transfer facilitated by multilin-
gual training data.

Role of data size and reward over-optimization
For DPO, increasing the amount of multilingual
data from approximately 2K to 10K per language in
the 23-language mixture improves win-rates from
47.0% to 50.2% (Table 3). For RLOO, however, the
same increase does not lead to an improvement. For
all runs, the best checkpoint was the last one (epoch
2), except for the RLOO ML-23 230K run where
we observed significant performance degradation
after 0.5 epochs, which may be caused by reward
model overoptimization (Gao et al., 2022b). Prior
works have shown that low-resource languages can
jailbreak LLMs (Yong et al., 2024) and it is likely
that reward models, which usually are initialized
from LLMs, likely share similar vulnerabilities.
The degradation for the RLOO ML-23 230K run
we observe may be caused by online optimization
exploiting more languages and prompts where the
reward model may be more prone to reward hack-

Average 23 Languages
Win% Loss% ∆W-L%

EN-1 43.3 40.6 2.7
ML-5 43.8 39.1 4.7
ML-23 47.0 37.1 9.9DPO

ML-23* 50.2 39.0 11.2

EN-1 46.4 38.9 7.5
ML-5 54.4 35.8 18.6
ML-23 54.0 38.0 16.0RLOO

ML-23* 53.4 37.0 16.4

Table 3: Open-ended generation (Dolly) win-rates for
DPO/RLOO preference optimized Aya models against
the original Aya 23 8B. We report average win-rates on
23 languages for multiple training data mixtures: EN-1
(English Only), ML-5 (5 Languages), and ML-23 (23
Languages). All the data mixtures consist of 50K total
training examples with the exception of ML-23*, which
includes 230K total training examples. We report results
for the best checkpoint across 2 epochs.

ing, as this run includes all 23 languages and more
prompts per language than other runs.

Is there a multilingual alignment tax? Post-
training stages of LLMs including supervised fine-
tuning and preference optimization have increas-
ingly been torn between objectives: improving
traditional discriminative benchmarks like Hel-
laSwag (Zellers et al., 2019), MMLU (Hendrycks
et al., 2021) and training LLMs to follow instruc-
tions, acquire conversational abilities, and be help-
ful and harmless (Askell et al., 2021). Recent work
on multilingual instruction finetuning (Üstün et al.,
2024) has found that improvements in open-ended
generative tasks introduce trade-offs with discrimi-
native tasks. However, this work only studies the
tensions introduced by supervised instruction fine-
tuning. More recent work (Tang et al., 2024) on
preference training suggests that offline methods
impart improved ability for discriminative tasks,
whereas on-policy sampling improves generative
quality. Here, we explore whether this holds in a
multilingual setting and characterize the trade-off
between discriminate and generative performance.

Table C shows multilingual benchmark results of
our preference optimized Aya models and original
Aya-23-8B. We follow Aryabumi et al. (2024) and
evaluate models on the unseen tasks (XWinograd
(Muennighoff et al., 2023b), XCOPA (Ponti et al.,
2020), XStoryCloze (Lin et al., 2022)), mMMLU
(Lai et al., 2023), and MGSM (Shi et al., 2023)
using eval-harness framework (Gao et al., 2021).

We find that both DPO and RLOO are robust in
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English
Win% Loss% ∆W-L%

EN-1 52.0 33.5 18.5
ML-5 50.5 28.5 22.0
ML-23 44.5 36.5 8.0DPO

ML-23* 57.5 31.0 26.5

EN-1 47.5 38.5 9.0
ML-5 55.5 30.5 25.0
ML-23 53.0 37.0 16.0RLOO

ML-23* 53.0 35.0 18.0

Table 4: English Dolly win-rate results for DPO/RLOO
preference optimized Aya 23 8B on multiple training
data mixtures: EN-1 (English Only), ML-5 (5 Lan-
guages), ML-23 (23 Langauges). All runs are done
with 50K total training examples with the exception of
ML-23*, which is done with 230K total training exam-
ples. We report results for the best checkpoint across 2
epochs.

terms of their results in multilingual benchmarks,
matching the performance of the base Aya 23 8B
model. More specifically, multilingual preference
optimization through both DPO and RLOO only
lead to a slight drop in MGSM by an accuracy of
0.6 (36.6 vs 36.0) and 1.5 (36.6 vs 35.1) respec-
tively. In contrast to recent work (Tang et al., 2024)
in a monolingual setting, this shows that multi-
lingual preference optimization can substantially
improve generative performance as discussed in
Section 4, while incurring minimal tax on common
multilingual NLP tasks.

5 Related Work

Reinforcement Learning from Human Feed-
back (RLHF) RLHF has become the dominant
paradigm for aligning LLMs to human preferences.
Canonically, this involves training a reward model
and using a reinforcement learning algorithm like
PPO (Schulman et al., 2017a) or RLOO (Ahmadian
et al., 2024) to optimize the LLM policy to maxi-
mize reward of online samples generated through-
out training. (Ouyang et al., 2022b; Stiennon et al.,
2020; Christiano et al., 2017a). There has been
a plethora of work attempting to take the online
inference aspect, and the optimization difficulties
and complexities of RL that come with it, out of
RLHF. The most prominent of these, is the family
of methods base upon Direct Preference Optimiza-
tion (DPO) (Rafailov et al., 2023), such as IPO
(Azar et al., 2024), KTO (Ethayarajh et al., 2024),
and SRPO (Choi et al., 2024). This family of meth-
ods directly fine-tunes an LLM to be impicitly con-

Avg. Unseen Langs.
Win % Loss % ∆W-L%

DPO 42.9 40.9 2.0EN-1 RLOO 46.3 39.3 7.3

DPO 43.3 39.5 3.8ML-5 RLOO 54.9 35.5 19.4

Table 5: Win-rates for the 22 and 18 unseen languages
that are not included in the training data for EN-1 and
ML-5 respectively. We observe cross-lingual transfer
from preference optimization, with an increased degree
of transfer enhanced by multilingual training.

sistent with collected preference data, forgoing the
need for training a separate reward model.

Reinforcement Learning from AI Feedback
(RLAIF) Collecting human feedback is often
very expensive. Thus many recent works (Bai et al.,
2022; Yuan et al., 2024), make use of feedback gen-
erated from AI, which can be LLMs which have
been already optimized for alignment with human
preferences with AI. Often these LLMs can be used
to provide additional rankings, ratings, or natural
language feedback, which can be used in subse-
quent RLHF training.

Preference Optimization for Multilingual LLMs
There have been limited efforts on multilingual
preference optimization to-date. (Lai et al., 2023)
present a multilingual instruction tuning frame-
work, where they preference train multilingual
LLMs such as BLOOMZ (Muennighoff et al.,
2023a) for 26 non-English languages with RLHF.
They synthetically generated a preference dataset
by translating an extended version of the Alpaca
dataset (Taori et al., 2023), generating responses
from their target LLM and ranking back-translated
(into English) responses with ChatGPT.7 In con-
trast to our work, they perform preference optimiza-
tion for each language separately. However, due
to their potentially low-quality dataset which heav-
ily relies on translations, their resulting language-
specific models are outperformed by other mas-
sively multilingual LLMs without preference opti-
mization (Üstün et al., 2024; Aryabumi et al., 2024).
Wu et al. (2024) study cross-lingual transfer in re-
ward model (RM) training where they propose us-
ing preference data in one source language to train
an RM for target language alignment. They show
that RMs based on a multilingual base model ex-
hibit zero-shot cross-lingual transfer consistently

7https://openai.com/blog/chatgpt/
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across different languages. However, they do not
experiment with using multiple source languages in
training, which we show is crucial in the preference
optimization both for offline optimization such as
DPO and online RL methods such as RLOO.

6 Conclusion

Our work presents a comprehensive study on mul-
tilingual preference optimization. We show that
the inclusion of multilingual data in preference
optimization leads to significant improvements in
multilingual performance over English-only prefer-
ence optimization. This improvement scales both
with the number of languages and the total number
of examples included in the training data. Addi-
tionally, we show that preference training exhibits
cross-lingual transfer, leading to significant gains
in languages not present in the training data. We
also find that using online preference optimization
outperforms offline preference optimization, high-
lighting the importance of online samples during
training.

As a result of our study, we expand the frontier
of alignment techniques to 23 languages which
cover half the world’s population, by successfully
preference-training an 8 Billion Aya 23 model that
outperforms both the original Aya 23 8B base and
widely used models including Gemma, Mistral, and
Llama 3.

7 Limitations

A potential risk of relying on synthetic and trans-
lated datasets is the presence of particular cultural
biases in model behavior. The prompts used in
ShareGPT to seed the creation of the synthetic data
over-index on contributions from the Global North
or Western regions (Longpre et al., 2023). This
could introduce a skew towards a narrow selection
of cultural viewpoints.

Our preference-trained model covers 23 lan-
guages and improves performance relative to the
closest open-source model. However, this is still
only a tiny fraction of the world’s linguistic di-
versity which encompasses 7000 languages. Fur-
thermore, in this research we do not distinguish
between dialects within the languages we cover,
which are an important part of how language is used
in practice (Zampieri et al., 2020; Wolfram, 1997;
Brown et al., 2020; Lent et al., 2022; Blaschke et al.,
2023; Falck et al., 2012). Future work, should aim
to include more of the world’s population and there-

fore languages.
Due to compute constraints, we are limited in our

ability to run preference optimization experiments
for larger models. Many of the runs we describe
in this work for a single run can take 5 days to
complete on a single 8 x H100 80GB GPU instance.
Future work should explore the impact of scaling
model size and further tune other hyperparameters
for multilingunal preference optimization.
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A Background on DPO and RLOO

(1) Instruction fine-tuning (SFT) stage: A pre-
trained LM is instruction-tuned using a dataset con-
sisting of a given instruction prompt, and (typi-
cally) a human-written completion. The LM/policy
is trained with a cross-entropy loss over the comple-
tion only. Often, the SFT model, denoted as πsft is
used to initialize both the reward model (for online
RL optimization) and the RLHF policy model.

(2) Preference optimization stage: In this stage,
the preference data such as rankings of model re-
sponses, are collected through humans or AI feed-
back. This data is then used to further fine-tune
the SFT model (policy) to align the model with
human feedback via the collected preferences data.
Since collecting human feedback is often very ex-
pensive, many preference optimization methods
train a separate reward model, on collected pref-
erence data to act as a proxy for human prefer-
ences, enabling for online preference feedback on
LLM responses without requiring human interven-
tion. Preference optimization can be performed in
a number of ways:

Online Preference Optimization includes train-
ing a reward model, typically through binary clas-
sification, which is then used to provide online
feedback in the optimization of the policy with the
following objective:

max
πθ

Ex∼D,y∼πθ(.|x)[rϕ(x, y)− βpKL],

with pKL = DKLπθ(.|x)||πref(.|x)

where β is meant to control the distance from the
initial policy πref during the optimization of reward
rθ(x, y) as proposed in (Stiennon et al., 2022). The
KL-penalty pKL is crucial as penalty-free optimiza-
tion of the reward model leads to degradation in
the coherence of the model.

Direct Preference Optimization (DPO; Rafailov
et al., 2023) collects pairwise preferences (often
over LLM responses) and fine-tunes the policy to
beimplicitly consistent with the collected prefer-
ence pairs by using the following loss:

− log σ(β log
πθ(y+|x)
πref(y+|x)

− β log
πθ(y−|x)
πref(y−|x)

)

Different from the online RL methods, DPO
skips the reward modeling and enables preference
optimization in an offline manner without requiring

Average 23 Languages
Model Win Tie Loss
Base Aya 23 8B 49.9% 13.0% 37.1%
Gemma-1.1-7B 77.9% 3.5% 18.6%
Llama-3-8B 75.9% 4.4% 19.7%
Mistral-7B-v0.3 82.1% 3.3% 14.6%

Table 6: Win-rates for RLOO ML-23-230K model
against other models with Claude 3.5 Sonnet as a judge
averaged across 23 languages on Dolly. We observe
similar trends to results Figure 1 where GPT-4-Turbo is
the judge model.

online samples from the policy during the training.
At its core, DPO uses the analytical formulation of
the canonical KL-controlled RLHF objective de-
tailed in equation A and the assumption that prefer-
ences can be modeled by the Bradelly-Terry model
(Bradley and Terry, 1952), to for-go reward mod-
eling, simplifying the problem into a supervised
style classification task.

While reinforcement learning approaches share
the components above, techniques differ in for-
mulating the reward and the sample-based loss.
In this work, we use REINFORCE-Leave-one-
out (RLOO; Kool et al., 2019; Ahmadian et al.,
2024) estimator as the online preference optimiza-
tion method as it is effective and more efficient than
Proximal Policy Optimization (PPO) (Schulman
et al., 2017b). RLOO is a multi-sample extension
of REINFORCE (Williams, 1992), where multiple
online generations are sampled from the policy per
prompt which enables to reduce variance without
requiring an additional network as opposed to PPO:

1

k

k∑

i=1

[R(y(i), x)−
1

k − 1

∑

j ̸=i

R(y(j), x)]

∇ log π(y(i)|x) for y(1), ..., y(k)
i.i.d∼ πθ(.|x)

RLOOk considers each y(i) individually and uses
the remaining k − 1 samples to create an unbiased
estimate of the expected return for the prompt, akin
to a parameter-free value-function, but estimated
at each training step.

B Additional Win-Rate Results

B.1 Claude 3.5 Sonnet as a Judge

Table 6 provides additional win-rate results with
Claude 3.5 Sonnet as a Judge on Dolly averaged
across 23 languages.
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English Avg. 23 Langs.
Num Examples Win% Loss% ∆W-L% Win% Loss% ∆W-L%

EN-1 50K 37.5 46.5 -9.0 44.2 40.3 4.0
ML-5 50K 50.5 40.0 10.5 51.4 38.8 12.6
ML-23 50K 51.0 39.5 11.5 50.4 41.3 9.1

RLOO VS DPO

ML-23 230K 50.0 35.0 15.0 47.4 41.1 6.2

Table 7: Direct win-rate comparisons for RLOO and DPO models on Dolly. RLOO models consistently outperform
their DPO counterparts across all dataset splits.

Average 15 Languages
Win% Loss% ∆W-L%

EN-1 52.5 41.6 10.9
ML-5 50.5 43.4 7.1
ML-23 53.0 40.9 12.1DPO

ML-23* 56.7 37.5 19.2

EN-1 58.0 35.8 22.2
ML-5 65.1 30.2 34.9
ML-23 70.7 25.3 45.4RLOO

ML-23* 68.9 26.7 42.2

Table 8: 15 language XLSum win-rate results for
DPO/RLOO preference optimized Aya 23 8B on multi-
ple training data mixtures: EN-1 (English Only), ML-5
(5 Languages), ML-23 (23 Langauges). All runs are
done with 50K total training examples with the excep-
tion of ML-23*, which is done with 230K total training
examples. We report results for the best checkpoint
across 2 epochs.

B.2 RLOO vs DPO

To provide a head-to-head comparison between
DPO and RLOO, Table 7 shows the win-rate evalu-
ation between models trained with RLOO method
with the models trained with DPO.

B.3 XLSum Summarization

Table 8 shows the win-rate scores of preference-
trained models on 15 languages that are covered
by our 23 language list. Win-rates are measured
against the original Aya-23-8B model (Aryabumi
et al., 2024). The average generation length for
the base model, the best DPO, and the best RLOO
models are 138, 234, and 171 tokens respectively.
Length bias is a known property of DPO (Park
et al., 2024) and can bias GPT-4 as an evaluator
(Saito et al., 2023) accordingly. Because the base
model and the RLOO model generation are similar
in length, it is unlikely that the large gains in win-
rate for the RLOO model against the base model
are caused by GPT-4 as a judge preferring longer
responses.

Held out tasks (Accuracy %)

Model XCOPA XSC XWG Avg

Base Aya 23 8B 59.8 62.3 80.7 67.6
DPO Aya 23 8B 59.9 62.6 80.7 67.7
RLOO Aya 23 8B 59.4 62.8 81.1 67.8

Table 9: Results for discriminative unseen (held-out)
task evaluation. Results are reported as the zero-shot
performance averaged across all languages of XCOPA,
XStoryCloze, and XWinoGrad. DPO and RLOO check-
points are for ML-23 230K runs

C Discriminative Benchmark Results

D Judge Prompt

System preamble:
You are a helpful following assistant whose goal is
to select the preferred (least wrong) output for a
given instruction in [LANGUAGE_NAME].

Prompt Template:
Which of the following answers is the best one
for given instruction in [LANGUAGE_NAME]. A
good answer should follow these rules:
1) It should be in [LANGUAGE_NAME]
2) It should answer the request in the instruction
3) It should be factually and semantically compre-
hensible
4) It should be grammatically correct and fluent.

Instruction: [INSTRUCTION]
Answer (A): [COMPLETION A]
Answer (B): [COMPLETION A]

FIRST provide a one-sentence comparison of the
two answers, explaining which you prefer and why.
SECOND, on a new line, state only ‘Answer (A)’
or ‘Answer (B)’ to indicate your choice. If the both
answers are equally good or bad, state ‘TIE’. Your
response should use the format:

Comparison: <one-sentence comparison and
explanation>

Preferred: <‘Answer (A)’ or ‘Answer (B)’ or
‘TIE’>
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en ar de es fr hi id it nl pt ro ru uk vi zh Avg

Base Aya 23 8B 54.6 45.1 50 50.9 51 39.7 48.8 50.7 49.7 50.8 49.9 47.8 46.8 46.5 47.1 48.2
DPO Aya 23 8B 54.9 45.7 50.0 51.1 51.3 40.0 49.0 51.2 49.8 51.1 49.9 48.0 47.0 46.8 47.6 48.5
RLOO Aya 23 8B 54.0 45.2 50.0 50.5 50.4 39.8 48.6 50.3 49.1 50.47 49.48 47.79 46.64 46.49 47.1 48.0

Table 10: Multilingual MMLU (5-shot) results for base, DPO, and RLOO Aya 23 models.

de en es fr ja ru zh Avg

Base Aya 23 8B 40.4 48.0 45.2 38.8 12.8 38.0 32.8 36.6
DPO Aya 23 8B 39.6 45.6 44.4 41.2 8.4 37.6 35.2 36.1
RLOO Aya 23 8B 39.6 46.4 38.4 39.6 14.0 34.8 33.2 35.1

Table 11: Multilingual Grade School Math benchmark (MGSM) results for . We use questions with answers
followed by CoT prompt (5-shot) in the same language (native_cot) as the dataset and strict-match score as
the evaluation metric.

Win (%) Tie (%) Loss (%) ∆W-L (%)
en 57.5 11.5 31.0 26.5
vi 54.5 10.5 35.0 19.5
tr 47.5 13.0 39.5 8.0
pt 51.0 7.0 42.0 9.0
de 50.0 10.0 40.0 10.0
ar 50.0 12.0 38.0 12.0
cs 45.0 11.5 43.5 1.5
el 48.0 6.5 45.5 2.5
es 39.5 10.5 50.0 -10.5
fa 51.5 10.5 38.0 13.5
fr 47.0 10.0 43.0 4.0
he 48.5 10.5 41.0 7.5
hi 57.5 10.5 32.0 25.5
id 52.5 13.0 34.5 18.0
it 50.5 11.0 38.5 12.0
ja 53.0 15.5 31.5 21.5
ko 51.0 12.5 36.5 14.5
nl 49.0 14.5 36.5 12.5
pl 50.5 10.0 39.5 11.0
ro 58.0 8.5 33.5 24.5
ru 46.5 8.0 45.5 1.0
uk 52.0 8.0 40.0 12.0
zh 45.0 13.0 42.0 3.0

Table 12: All language results for DPO ML-23-230K

E Full Language Set Win-Rates

We provide full win-rate results broken down for
all 23 languages for the ML-23-230K DPO run in
Table 12 and the the ML-23-230K RLOO run in
Table 13

F Language List

We provide a list and description of all languages
supported by Aya 23 8B which we use to perform
multilingual evaluations in Table 14.

Win (%) Tie (%) Loss (%) ∆W-L (%)
en 53.0 12.0 35.0 18.0
vi 58.5 6.5 35.0 23.5
tr 54.5 10.0 35.5 19.0
pt 54.5 11.0 34.5 20.0
de 54.0 10.5 35.5 18.5
ar 49.5 12.5 38.0 11.5
cs 57.5 8.0 34.5 23.0
el 50.5 7.0 42.5 8.0
es 55.5 8.0 36.5 19.0
fa 56.0 12.0 32.0 24.0
fr 49.5 8.0 42.5 7.0
he 56.0 8.0 36.0 20.0
hi 62.0 12.0 26.0 36.0
id 49.5 9.5 41.0 8.5
it 51.0 10.0 39.0 12.0
ja 58.5 10.5 31.0 27.5
ko 50.5 9.5 40.0 10.5
nl 49.0 10.0 41.0 8.0
pl 52.5 5.5 42.0 10.5
ro 54.0 11.0 35.0 19.0
ru 51.5 6.0 42.5 9.0
uk 50.0 14.0 36.0 14.0
zh 50.5 10.0 39.5 11.0

Table 13: All language results for RLOO ML-23 230K
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Code Language Script Family Subgrouping

ar Arabic Arabic Afro-Asiatic Semitic
cs Czech Latin Indo-European Balto-Slavic
de German Latin Indo-European Germanic
el Greek Greek Indo-European Graeco-Phrygian
en English Latin Indo-European Germanic
es Spanish Latin Indo-European Italic
fa Persian Arabic Indo-European Iranian
fr French Latin Indo-European Italic
he Hebrew Hebrew Afro-Asiatic Semitic
hi Hindi Devanagari Indo-European Indo-Aryan
id Indonesian Latin Austronesian Malayo-Polynesian
it Italian Latin Indo-European Italic
jp Japanese Japanese Japonic Japanesic
ko Korean Hangul Koreanic Korean
nl Dutch Latin Indo-European Germanic
pl Polish Latin Indo-European Balto-Slavic
pt Portuguese Latin Indo-European Italic
ro Romanian Latin Indo-European Italic
ru Russian Cyrillic Indo-European Balto-Slavic
tr Turkish Latin Turkic Common Turkic
uk Ukrainian Cyrillic Indo-European Balto-Slavic
vi Vietnamese Latin Austroasiatic Vietic
zh Chinese Han & Hant Sino-Tibetan Sinitic

Table 14: 23 languages supported in Aya 23 model (Aryabumi et al., 2024) with each language’s script, family, and
subgrouping

13156


