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Abstract

Audio separation in real-world scenarios,
where mixtures contain a variable number of
sources, presents significant challenges due to
limitations of existing models, such as over-
separation, under-separation, and dependence
on predefined training sources. We propose
OpenSep, a novel framework that leverages
large language models (LLMs) for automated
audio separation, eliminating the need for man-
ual intervention and overcoming source limita-
tions. OpenSep uses textual inversion to gen-
erate captions from audio mixtures with off-
the-shelf audio captioning models, effectively
parsing the sound sources present. It then em-
ploys few-shot LLM prompting to extract de-
tailed audio properties of each parsed source,
facilitating separation in unseen mixtures. Ad-
ditionally, we introduce a multi-level exten-
sion of the mix-and-separate training frame-
work to enhance modality alignment by sepa-
rating single source sounds and mixtures simul-
taneously. Extensive experiments demonstrate
OpenSep’s superiority in precisely separating
new, unseen, and variable sources in challeng-
ing mixtures, outperforming SOTA baseline
methods. Code will be released at https://
github.com/tanvir-utexas/OpenSep.git.

1 Introduction

Audio and music mostly appear in real-world mix-
tures containing various audio sources and back-
ground noise (Kim et al., 2019). Separating clean
sources from noisy mixtures have numerous appli-
cations in audio processing (Liu and Wang, 2018;
Stöter et al., 2019). Precise separation of clean
sound sources require their complete semantic un-
derstanding, as well as extensive training on natural
mixtures. However, in open world scenarios, audio
mixtures may contain a variable number of sources,
as well as new, unseen, and possibly noisy sources.
Hence, gathering clean sounds from a variety of
sources, and modeling exhaustive mixture combi-

Figure 1: Unconditional audio separators suffer from
both over-separation and under-separation in noisy mix-
tures, and cannot parse audio entities without additional
classifiers. Furthermore, conditional separators rely on
manual text prompts for source separation, limiting their
use in practice. In contrast, OpenSep fully automates
the source parsing and separation flow, even with vary-
ing number of unseen and noisy sources in open world.

nations for training are often impractical, which
limits the use of audio separators in practice.

Prior work on audio separation mostly focused
on two approaches: unconditional and conditional
source separation. Unconditional separators (Yu
et al., 2017; Wisdom et al., 2020) mostly attempt
to disentangle the mixture into a fixed set of output
predictions, and later rely on post-processing to
select/process the separated sources. However, this
approach is largely limited to training sources and
mixture combinations, which, in practice, results
in over-/under-separation (Karamatlı and Kırbız,
2022). In addition, unconditional separators cannot
provide the corresponding class entities of sepa-
rated sources. Pishdadian et al. (2020) introduced
source classifiers with audio separators, but their
method is limited by training sources only.

Conditional source separation simplifies the
problem by relying on conditional prompts from
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other modalities/signals, such as text, vision, and
sometimes, clean audio representing the target
sound (Zhao et al., 2018; Mahmud et al., 2024).
However, these methods are limited by the avail-
ability of target prompts for separation, which are
often difficult to gather in practice. Moreover, the
conditioning signal usually contains simple class
instances as prompts which cannot explicitly de-
scribe the target audio source. Hence, these condi-
tional audio separators are mostly limited to seen
sources, often under-performing on unseen, noisy
source mixtures in open world.

To overcome these limitations, we introduce
OpenSep, a novel framework to automatically sep-
arate and parse unseen audio from noisy mixtures
with a variable number of sources in open world
(Fig 1). In particular, we propose textual inversion
by using an off-the-shelf audio captioning model to
extract text representations of noisy mixtures. We
also leverage the world knowledge of audio sources
in large language models (LLMs) to automatically
parse, disentangle, and extract enriched represen-
tations of audio properties of each source present
in the mixture. Finally, we train a text-conditioned
audio separator to extract audio sources from noisy
mixtures. For enhancing the modality alignment be-
tween conditional prompts and separated sources,
we propose a multi-order separation objective by
extending the baseline mix-and-separate frame-
work. Extensive experiments demonstrates sig-
nificant performance improvements of OpenSep
over prior work, e.g., OpenSep achieves +64%
and +180% SDR improvements on unseen sources
in MUSIC and VGGSound datasets, respectively,
over baseline state-of-the-art models.

Our contributions are summarized as follows:

1. Our work is the first to introduce knowledge
parsing from large language models for open-
world audio separation.

2. OpenSep fully automates the source separa-
tion and recognition pipeline from noisy, un-
seen mixtures without manual intervention.

3. We propose a multi-level extension of mix-
and-separate training framework to enhance
audio and text modality alignment.

4. Extensive experiments on three benchmark
datasets show the superiority of OpenSep over
existing state-of-the-art methods.

2 Related Work

Unconditional Sound Separation Prior work on
unconditional audio separation in speech and music
mostly relies on post-processing methods to pick
the target sound (Stöter et al., 2019; Sawata et al.,
2021; Takahashi and Mitsufuji, 2021; Wang and
Chen, 2018; Yu et al., 2017; Zhang et al., 2021;
Luo and Mesgarani, 2018). Later, permutation in-
variant training (PIT) (Yu et al., 2017; Kavalerov
et al., 2019), followed by its variant mixture invari-
ant training (MixIT) (Karamatlı and Kırbız, 2022;
Wisdom et al., 2020, 2021) relies on permutation
alignment on source prediction for performance
enhancement. However, these methods suffer from
both over- and under-separation, due to training
distribution misalignment in open world scenarios.
Later, weakly supervised training with classifiers
has been explored (Pishdadian et al., 2020; Tzinis
et al., 2020), however, such methods are limited in
their use on a fixed number of training sources. In
contrast, OpenSep attempts to separate a variable
number of sources in open world, without being
limited to certain training sources.

Conditional Sound Separation Prior work on
conditional sound separation used visual guid-
ance (Gao and Grauman, 2019; Zhao et al., 2018;
Tian et al., 2021; Chatterjee et al., 2021; Lu et al.,
2018), text guidance (Dong et al., 2022; Liu et al.,
2022; Kilgour et al., 2022; Tan et al., 2023; Liu
et al., 2023a; Mahmud et al., 2024), and clean audio
source guidance (Chen et al., 2022; Gfeller et al.,
2021) for conditioning on noisy mixtures. Most of
these methods mostly rely on a mix-and-separate
framework (Zhao et al., 2018). However, the re-
quirement for users to explicitly specify which
sources to separate is often impractical in dynamic
or complex audio scenes. Moreover, in general,
these methods struggle with unseen, new sources
for learning the conditional guidance with specific
class prompts. In contrast, OpenSep attempts to
fully automate the separation of all sources present
in noisy, unseen source mixtures in open world,
without using hand crafted prompts.

3 Methodology

OpenSep addresses two critical challenges of audio
separation: handling a variable number of sources
without manual intervention and enhancing per-
formance on unseen sources during inference. As
illustrated in Fig 2, the OpenSep architecture com-
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Figure 2: Proposed OpenSep pipeline: We initially apply textual inversion on noisy audio mixtures with an off-the-
self audio captioning model to extract text descriptions. Afterwards, a pre-trained instruction-tuned LLM is used to
parse audio sources from the caption, followed by the extraction of detailed audio properties of each source. Finally,
a text-conditional audio-separator is used for separating each audio source from the noisy mixture using the enriched
text prompts. Here, the audio separator is trained for leveraging detailed audio properties in textual representation.

prises of three key components. First, to overcome
the training and test distribution misalignment of
the unconditional separator in real-world mixtures,
while also eliminating the need for manual prompts
in conditional source separators, OpenSep lever-
ages textual inversion to convert the audio mix-
ture into a text representation. This step addresses
the challenge of detecting a variable number of
sources, while eliminating the human intervention
to apply text conditions. Following that, we intro-
duce knowledge parsing for each sounding source
from large language models. We propose few-shot
prompting with instruction-tuned LLM for parsing
various sound sources from the caption, followed
by the extraction of detailed audio properties of
each sound source in text representation. This step
is important for performing complex audio mixture
separation in open-world scenarios on new, unseen
sources. Finally, OpenSep uses a text-conditional
audio-separator to extract the target sources based
on the LLM-parsed text description. Unlike prior
methods, OpenSep relies on detailed LLM-parsed
knowledge to gather the context of each sound
source for generalization, without being overfit-
ted to training sources, which makes it suitable for
real-world applications.

The following sections detail each component
of the OpenSep framework to achieve robust and
scalable audio separation.

3.1 Source Parsing with Textual Inversion

The audio source separation task can be split into
two key phases: (1) detecting the sound sources
present in the mixture, and (2) separating each
source correctly. Prior work on unconditional sep-
arators attempts to perform both tasks simultane-
ously. This approach is challenging since it at-
tempts to align the data distribution on varying
number of sources, often resulting in over/under
separation. Conditional separators achieve supe-
rior performance by eliminating the source recog-
nition phase, but they rely heavily on manual
prompts, which limits their applicability to auto-
matically parsing the sources present in the mix-
ture. OpenSep solves this complex mixture disen-
tanglement challenge in open world by using tex-
tual inversion and leveraging the world knowledge
in large language models.

Textual Inversion: To simplify the source pars-
ing in complex mixtures, we propose converting the
audio mixture to a text representation by using an
off-the-shelf audio captioning model. This model
processes the audio input and generates a textual de-
scription or caption, which encapsulates the salient
features and sources present in the mixture. For
example, a caption might describe an audio mix-
ture as "a person speaking with background music
and occasional dog barks." This textual representa-
tion enables the subsequent use of LLMs to further
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Figure 3: Proposed training pipeline: We extend the baseline mix-and-separate framework with multi-order
separation objective for enhanced modality-alignment. Initially, we sample four independent single source sounds,
and prepare synthetic mixtures of two and four sources. We parse enriched text prompts for mixtures and single-
source sounds with a knowledge parser LLM. The audio separator is trained to separate both single-source and
lower-order mixtures based on enriched text guidance using an L1 loss objective.

analyze and extract detailed information about the
individual sound sources present in the audio.

Source parser LLM: Parsing audio sources re-
quires semantic understanding of each source,
which is difficult to train for the dynamic use cases
in audio modality, limiting the practical use of au-
dio separators. To parse each source, we propose to
use a source parser LLM on the inverted text cap-
tions of the raw audio. By leveraging the semantic
world knowledge of LLMs and few-shot prompt-
ing, OpenSep can precisely extract sound sources
from mixtures. We use an instruction-tuned LLM,
with the instruction for parsing individual sound
sources present in the mixture. For example, with
the input caption, "Children yelling while a dog is
barking in the background and a car horn honks
afterwards", LLM splits each sources as "Children
yelling. Dog barking. Car horn honking."

3.2 Knowledge Parsing for Each Source

To precisely separate each parsed source from com-
plex mixtures, it is necessary to have more detailed
knowledge of audio properties of the target source.
Traditional conditional separators only rely on the
class representation of each source. Despite their
promising performance on seen classes used for
training, these models underperform on unseen
classes. To overcome this limitation, we propose
the use of an instruction-tuned LLM as a knowl-
edge parser to incorporate detailed audio proper-

ties of each source prior to the separation. This
approach enables denser text alignment via sepa-
ration of unseen sources in open-world scenarios.
To facilitate the knowledge parsing from the LLM,
we use specific instruction prompts to utilize the
LLM as an audio expert providing the detailed au-
dio properties of each source mentioned. Further-
more, we focus on several key properties of each
sounding source for enriched representation, such
as frequency range (pitch), amplitude (loudness),
timbre (tone quality), usual duration, attack and
decay, dynamic envelope characteristics, spectral
content detailing the presence of harmonics, over-
tones, and the overall shape of the sound spectrum.
Several hand-crafted high quality prompts are de-
signed for several sources, and these are used for
few-shot prompting with instruction guidance to
leverage the pre-trained LLMs as an audio expert.

Rather than using a single class name for each
sounding instance, we integrate richer details of
each sounding source by leveraging knowledge
parser LLMs, which in general, enhances audio
separation performance by focusing on detailed au-
dio feature guidance. Such denser audio-language
alignment plays a pivotal role in separating un-
known and noisy sources in real world.

3.3 Text-Conditioned Audio Separator
OpenSep uses a text-conditioned audio separator
as a core building block given its superior perfor-
mance over unconditional separators. The key dif-
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ference of OpenSep over prior conditional sepa-
rators is the automatic extraction of enriched au-
dio features via modality inversion. Therefore, a
longer context window is used for encoding the
text prompts in the audio separator, to align the
separator with enhanced text prompts. For the au-
dio separator, we use the U-Net architecture as in
prior work. For denser alignment between sepa-
rated audio features and given text prompts, we
use self-attention followed by cross-attention lay-
ers after each building block in the U-Net. The
model initially converts the audio mixture into a
magnitude spectrogram using short-term Fourier
transform (STFT), and predicts the mask of the tar-
get sound given the text prompt using simple 2D
convolutional kernels followed by self-attention
and cross-attention. To reconstruct the sound, we
use the filtered spectrogram with the phase residu-
als extracted from the original mixture, following
prior work (Dong et al., 2022).

3.4 Proposed Training Pipeline
Most prior work relies on a mix-and-separate
framework for conditional separator, which learns
to separate single sources from synthetic audio mix-
tures given a conditional prompt. OpenSep primar-
ily focuses on separating the target source by using
richer text conditioning rather than a simple class
prompt. The overall performance improvement on
unseen and noisy sources mostly comes from the
deeper audio and textual feature grounding on di-
verse audio properties. To achieve this, we propose
a two-level separation training objective, extending
the baseline mix-and-separate framework, such as
mixture, and single-source separation.

As illustrated in Fig 3, we initially sample four
single source audios (x1, x2, x3, x4) and prepare
two synthetic mixtures (y1, y2) by mixing each
pair of sources, given by y1 = Mix(x1, x2), and
y2 = Mix(x3, x4). For mixing, we use ampli-
tude re-scaling of each source, followed by sim-
ple addition on raw audio waveforms. After-
wards, we generate a higher order mixture z of
four sources using z = Mix(y1, y2). By lever-
aging the instruction tuned LLM on class enti-
ties of each source, we extract single source text
prompts (S1, S2, S3, S4), and two-source mixture
prompts (M1,M2). The model generates a se-
ries of predictions P of separated audios given the
text prompt T and higher-order mixture z, where
T ∈ {S1, S2, S3, S4,M1,M2}. Finally, the L1

loss between predicted magnitude spectrogram and

source spectrogram is used as training objective.
The proposed multi-level extension of mix-and-

separate training method facilitates the separation
of lower-order audio mixtures as well as single
source sounds from higher-order mixtures, follow-
ing the detailed text feature guidance from the
LLM. Hence, this method enhances the modality
alignment between separated sounds and enriched
LLM-generated text prompts, facilitating the sepa-
ration on unseen and noisy sources.

4 Results

4.1 Evaluation Setup

Dataset: For the experiments on synthetic mix-
tures, we primarily use MUSIC (Zhao et al., 2018)
and VGGSound (Chen et al., 2020) datasets. MU-
SIC dataset contains 21 musical instruments, sep-
arately played and recorded for 1 ∼ 5 minutes
duration. VGGSound contains 162, 433 audio sam-
ples, mostly containing noisy single source sounds
of 10s duration. For analyzing the performance on
natural mixtures, we use AudioCaps (Kim et al.,
2019) dataset containing 44, 309 audio mixtures
having around 1 ∼ 6 sources with audio captions.

Implementation Details: We use LLaMA-3-
8b (Touvron et al., 2023) language model for
source and knowledge parsing. We use RoBERTa-
Base (Liu et al., 2019) text encoder with a context
window of 512 for encoding parsed LLM knowl-
edge. For audio captioning, we use the CLAP-
based captioning model (Elizalde et al., 2023),
which combines an audio encoder with a GPT-2
text decoder. We use a U-Net based audio separator
with self and cross-attention conditioning.

Training: All models are trained for 80 epochs
with initial learning rate of 0.001. The learning
rate is decreased by a factor of 0.1 every 20 epochs.
An Adam optimizer is used with β1 = 0.9, β2 =
0.999 and ϵ = 10−8. The training was carried out
with 8 RTX-A6000 GPUs with 48GB memory. For
training, we randomly sample different sources,
then, mix and separate using our training method.
Also, the class label of each source is used for
knowledge parsing during training.

Evaluation: We use signal-to-distortion ratio
(SDR) and signal-to-interference ration (SIR) (Vin-
cent et al., 2006) for evaluating different models. In
general, SDR estimates overall separation quality
of the target sound, which is widely used in prior
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Table 1: Performance comparison on seen classes. All classes are used for training in each dataset. Baseline
results are reproduced under the same setup for a fair comparison. Our method outperforms both conditional and
unconditional baselines, without accessing the source prompts during evaluation.

Methods
MUSIC VGGSound

SDR ↑ SIR ↑ SDR ↑ SIR ↑
PIT (Yu et al., 2017) 7.98 ± 0.27 10.81 ± 0.29 2.01 ± 0.32 4.13 ± 0.27

MixIT (Wisdom et al., 2020) 5.46 ± 0.42 7.39 ± 0.22 1.46 ± 0.19 3.56 ± 0.25

MixPIT (Karamatlı and Kırbız, 2022) 8.07 ± 0.25 11.01 ± 0.28 1.87 ± 0.26 3.95 ± 0.31

MixIT + PIT 8.13 ± 0.28 11.17 ± 0.23 2.14 ± 0.24 4.98 ± 0.41

CLIPSep (Dong et al., 2022) 8.33 ± 0.29 11.65 ± 0.26 2.24 ± 0.21 5.41 ± 0.23

WeakSup (Pishdadian et al., 2020) 6.49 ± 0.35 8.87 ± 0.31 1.73 ± 0.34 4.67 ± 0.29

LASSNet (Liu et al., 2022) 8.35 ± 0.32 11.83 ± 0.29 2.32 ± 0.29 5.95 ± 0.34

AudioSep (Liu et al., 2023b) 8.64 ± 0.31 12.18 ± 0.27 2.45 ± 0.23 6.14 ± 0.31

OpenSep (Ours) 9.56 ± 0.28 13.42 ± 0.26 3.71 ± 0.18 8.31 ± 0.19

Table 2: Performance comparison on unseen classes. All models are trained with 50% class samples, and the
evaluation is carried out on remaining 50% class mixtures. OpenSep demonstrates significantly better performance
on new, unseen classes compared to existing baselines.

Methods
MUSIC VGGSound

SDR ↑ SIR ↑ SDR ↑ SIR ↑
PIT (Yu et al., 2017) 3.56 ± 0.29 4.97 ± 0.33 0.45 ± 0.29 1.54 ± 0.33

MixIT (Wisdom et al., 2020) 2.28 ± 0.35 3.45 ± 0.29 0.16 ± 0.33 0.97 ± 0.21

MixPIT (Karamatlı and Kırbız, 2022) 2.87 ± 0.26 4.11 ± 0.35 0.28 ± 0.31 1.13 ± 0.35

MixIT + PIT 3.98 ± 0.26 5.25 ± 0.24 0.66 ± 0.24 2.15 ± 0.34

CLIPSep (Dong et al., 2022) 4.97 ± 0.27 7.13 ± 0.24 1.08 ± 0.27 4.12 ± 0.29

WeakSup (Pishdadian et al., 2020) -3.56 ± 0.47 -4.36 ± 0.37 -4.54 ± 0.52 -5.86 ± 0.89

LASSNet (Liu et al., 2022) 5.01 ± 0.23 7.38 ± 0.29 0.95 ± 0.26 3.89 ± 0.35

AudioSep (Liu et al., 2023b) 5.14 ± 0.24 7.56 ± 0.29 1.12 ± 0.42 4.45 ± 0.27

OpenSep (Ours) 8.45 ± 0.32 11.72 ± 0.35 3.14 ± 0.31 7.23 ± 0.39

work (Dong et al., 2022; Mahmud et al., 2024). SIR
estimates the amount of interference in separation
from other sources present in the mixture.

4.2 Main Comparisons

Baseline Models: We used single-source permu-
tation invariant training, PIT (Yu et al., 2017) and
multi-source MixIT (Wisdom et al., 2020, 2021) for
unconditional baselines. Note that we use synthetic
mixtures for MixIT training. We also combine
MixIT and PIT to train on both mixtures and single
source sounds. For conditional baselines, we use
LASSNet (Liu et al., 2022), AudioSep (Liu et al.,
2023b), and CLIPSep (Dong et al., 2022) models
with text conditions, which are built using the mix-
and-separate (Zhao et al., 2018) framework. For a
fair comparison, all baseline results are reproduced
with similar architecture and data split. For the
conditional models, we explicitly provide the class
labels as conditions. For the OpenSep and uncon-

ditional baselines, no external text conditions are
used, and the best match between prediction and
ground truth source is used for evaluation.

Comparison on Seen Classes: In Table 1, we
provide a comparison on seen classes. For this anal-
ysis, we generate a synthetic test set of two-source
mixtures with 10% samples from each class. All
training was done separately on each dataset on all
classes. We note that unconditional models suffer
from over- and under-separation causing lower per-
formance. In general, conditional models achieve
superior performance over unconditional models
by leveraging the user-defined class prompts. In
VGGSound dataset, OpenSep improves by +99%
SDR over MixPIT (Karamatlı and Kırbız, 2022)
and +52% SDR over AudioSp models, without
accessing text prompts. Moreover, we particularly
observe large increase in SIR demonstrating sig-
nificantly less interference in OpenSep, due to the
better disentanglement of corresponding sources.
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Figure 4: Qualitative results on natural mixtures from AudioCaps. (Left) All baselines show large spectral overlap of
woman talking sound in other two source predictions. OpenSep precisely disentangles all three sources minimizing
the spectral overlap across sources, while preserving spectral details. (Right) For the dominant noisy sound of
children yelling, all baselines can hardly separate the woman talking sound. OpenSep significantly reduces noise in
woman talking, while preserving spectral details of noisy children yelling sound.

Table 3: User preference study on natural mixture
separation. OpenSep demonstrates superior separation
quality without accessing conditional prompts.

Model
OpenSep wins
(mean ± std)

Draws
(mean ± std)

OpenSep loses
(mean ± std)

vs. PIT 81.2 ±4.3 17.3 ±6.5 1.5 ±3.8

vs. MixIT 95.6 ±3.2 3.2 ±4.9 1.2 ±4.4

vs. CLIPSep 75.8 ±8.5 20.4 ±7.8 3.8 ±5.6

vs. AudioSep 65.8 ±7.3 30.9 ±8.5 3.3 ±6.6

vs. LASSNet 69.7 ±8.1 27.4 ±6.8 2.9 ±4.8

Generalization to Unseen Classes: For this anal-
ysis in Table 2, only 50% classes from each datasets
are used for training, while the test set is formed
with the remaining 50% classes in each set. Uncon-
ditional separators largely struggle in separating
unseen sounds. Conditional separators compara-
tively achieve superior performance, however, we
observe significant performance drop from seen
classes. For example, CLIPSep experiences 40%
and 54% SDR drops in MUSIC and VGGSound,
respectively, while OpenSep achieves significantly
higher performance over all baselines, with mini-
mal performance SDR drops of 8% and 15%.

Comparison on higher order natural mixtures:
We use natural mixtures from AudioCaps dataset

containing 2 ∼ 3 sources. We train all models on
VGGSound dataset and evaluate their performance
on AudioCaps to mimic real-world use. For condi-
tional models, we manually extract the condition
prompts of all sources using the ground truth cap-
tion. Since we don’t have access to ground truth
sources for evaluation on natural mixtures, we per-
form human evaluations on the separated sounds
given in Tab. 3. OpenSep wins over conditional
models in separating all sources, even without us-
ing any conditions (71% vs. 3.8% excluding draws).
When compared with unconditional models such
as MixIT, OpenSep wins over 95% (vs. 1.2% ex-
cluding draws) cases denoting its robustness. We
also provide some qualitative results in Fig. 4 (see
more in appendix). Of note, OpenSep precisely
detects, disentangles, and preserves the details in
source separation from complex mixtures.

4.3 Ablation Study

We use VGGSound dataset in both seen and unseen
cases for the ablation study.

Effect of knowledge parsing: We study the per-
formance of OpenSep with and without knowledge
parsing (Tab. 4). We observe that, by injecting
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Table 4: Ablation study of proposed building blocks. The combination of LLM-knowledge parsing with few-shot
prompting, and multi-level extension of mix-and-separate contribute to the best performance in OpenSep.

Knowledge
Parsing

Few-shot
Prompting

Multi-level
Training

Seen Classes Unseen Classes

SDR ↑ SIR ↑ SDR ↑ SIR ↑
✗ ✗ ✗ 2.19 ± 0.27 5.25 ± 0.29 1.01 ± 0.31 4.13 ± 0.24

✗ ✗ ✓ 2.78 ± 0.23 6.45 ± 0.23 1.95 ± 0.34 5.59 ± 0.32

✓ ✗ ✗ 2.92 ± 0.31 6.84 ± 0.27 2.06 ± 0.29 6.01 ± 0.29

✓ ✓ ✗ 3.26 ± 0.29 7.38 ± 0.22 2.56 ± 0.27 6.69 ± 0.33

✓ ✓ ✓ 3.71 ± 0.22 8.31 ± 0.19 3.14 ± 0.31 7.23 ± 0.39

Table 5: Ablation of few-shot prompts in instruction-
guided knowledge parsing from LLM.

Sample
Shots

Seen Classes Unseen Classes

SDR ↑ SIR ↑ SDR ↑ SIR ↑
1 3.31 ± 0.29 7.63 ± 0.27 2.67 ± 0.32 6.52 ± 0.26

2 3.52 ± 0.31 7.94 ± 0.31 2.93 ± 0.34 6.85 ± 0.29

3 3.63 ± 0.26 8.15 ± 0.28 3.06 ± 0.33 7.11 ± 0.31

5 3.71 ± 0.22 8.31 ± 0.25 3.14 ± 0.31 7.23 ± 0.39

Table 6: Ablation of different large language models in
knowledge parsing for audio sources.

LLM
Arch.

Seen Classes Unseen Classes

SDR ↑ SIR ↑ SDR ↑ SIR ↑
LLaMA-3-8b 3.71 ± 0.22 8.31 ± 0.19 3.14 ± 0.31 7.23 ± 0.39

LLaMA-2-7b 3.58 ± 0.24 8.12 ± 0.24 3.06 ± 0.33 7.11 ± 0.25

Mistral-7b 3.63 ± 0.23 8.17 ± 0.21 3.09 ± 0.25 7.15 ± 0.29

Phi-3-medium 3.55 ± 0.29 8.01 ± 0.24 3.05 ± 0.29 7.12 ± 0.28

Gemma-7b 3.45 ± 0.31 7.83 ± 0.29 2.85 ± 0.29 6.93 ± 0.24

details of audio properties through knowledge pars-
ing, we achieve SDR improvements of +33% and
+98%, on seen and unseen classes, respectively,
highlighting the effectiveness of our approach.

Effect of proposed training method: We ab-
late the proposed multi-level extension of mix-and-
separate framework (Tab. 4). We observe large
improvements of 12% and 22% on seen and un-
seen classes, respectively, by using the proposed
extension of mix-and-separate training. This shows
its effectiveness in enhancing audio-language align-
ment for better performance.

Effect of few shot prompting: To guide LLM
model parsing the salient audio properties, some
high quality manually designed prompts are used.
We ablate the effect of few shot prompting (see
Tab. 4, 5). We observe notable performance gain
with few shot prompting by guiding the LLM to
extract required details.

Ablation of LLMs: We ablate the context from
various open-source LLMs, such as LLaMA-2-

Table 7: Analyzing source parsing accuracy with differ-
ent audio captioning models in complex mixtures.

Caption Model 2-Source 3-Source 4-Source

ms-CLAP 96.89 91.57 87.93
Whisper-Large 93.47 88.09 84.68

ACT-Large 90.58 83.67 78.43
AudioLLM 97.59 93.43 90.34

Table 8: Effect of different audio captioning models in
OpenSep performance on VGGSound dataset.

Combination Seen Classes Unseen Classes

SDR SIR SDR SIR

ms-CLAP 3.71 8.31 3.14 7.23
AudioLLM 3.94 8.68 3.56 7.95

7b, LLaMA-3-8b (Touvron et al., 2023), Mistral-
7b (Jiang et al., 2023), Phi-3-medium (Abdin et al.,
2024), and Gemma-7b (Team et al., 2024), while
keeping the context length of 512 (See Tab. 6).
Though we found competitive results across LLMs,
LLaMA-3-8b generates best results.

Accuracy of LLM Parser and captioning: To
estimate the accuracy of the LLM parser with sev-
eral captioning models, such as ms-CLAP (Elizalde
et al., 2023), fine-tuned Whisper-Large (Kadlčík
et al., 2023), ACT-Large (Mei et al., 2021), and
AudioLLM (Gong et al., 2023). We use synthetic
mixtures from VGGSound dataset for this analysis.
Since each sample contains significant background
noise which is not present in class labels, we only
consider the top predictions with highest similarity
with source labels in mixtures. We use a CLAP-text
encoder to estimate the similarity between parsed
source texts and ground truth labels. We observe
considerably higher accuracy with AudioLLM cap-
tioning model compared to other models during
source parsing for its large-scale pre-training.

Ablation with SOTA audio captioning model:
The OpenSep framework is designed to be flexi-
ble and can incorporate any off-the-shelf model
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for generating captions or parsing sound sources.
AudioLLM (Gong et al., 2023), for example, can
be used as a superior alternative to enhance caption
generation over ms-CLAP (Elizalde et al., 2023).
This model can be easily integrated into the cur-
rent OpenSep framework. In Table 8, we present
the comparative results using AudioLLM and ms-
CLAP for audio captioning within the OpenSep
framework in the VGGSound dataset. By introduc-
ing the AudioLLM in OpenSep, we observe signif-
icant performance improvements on both seen and
unseen classes.

5 Conclusion

In this paper, we introduced OpenSep, a novel
framework for audio source separation in open-
world scenarios. In particular, OpenSep leverages
an off-the-shelf audio captioning model and the
world knowledge embedded in large language mod-
els (LLMs) to automatically parse and disentangle
audio sources from noisy mixtures. By employing
a text-conditioned audio separator and a multi-level
mixture separation training objective, our method
effectively enhances the alignment between condi-
tional prompts and separated sources. Extensive
experiments on three benchmark datasets demon-
strate the superior performance of OpenSep, which
achieves significant SDR improvements over state-
of-the-art methods. Our work paves the way for
practical, automated audio separation, addressing
key limitations of existing methods and enabling
future research in open-world audio processing.

6 Limitations

OpenSep performance is limited by the precise
detection of sound sources in noisy mixtures,
which mostly stems from the challenge in having
a suitable audio captioning model. Nevertheless,
OpenSep framework can potentially integrate any
superior audio captioning approach to scale-up on
real world cases. Finally, given its use of multiple
building blocks, OpenSep is computationally ex-
pensive in general. However, by further optimizing
the architecture, such as using mobile LLMs (e.g.,
Phi-3-mini, Gemma-2b), OpenSep computational
cost can be largely reduced, which we leave for
future study.
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A Appendix

A.1 Implementation Details

We use audio segments of 10s duration with a
sampling rate of 16000 Hz for all experiments.
Each audio sample is processed with short-term
Fourier transform (STFT) using the frame window
of 1022, and the hop length of 256. Following
prior work (Dong et al., 2022; Zhao et al., 2018),
the supervision is provided on the mask prediction
for each source, instead of final reconstruction. We
use the similar conditional U-Net based encoder
decoder architecture following prior work (Mah-
mud et al., 2024). The U-Net model contains a
total of seven successive encoding and decoding
stages with convolutional kernels having 43.2M
parameters. We apply self-attention followed by
cross-attention in the skip connection of four bot-
tom feature levels. A multi-head attention (Vaswani
et al., 2017) is used with 8 heads for each atten-
tion operation. We use LLaMA-3-8b (Touvron
et al., 2023) language model for parsing both sound
sources and their corresponding details of audio
properties, with 5-shot prompting for both parsing
phases. These examples are manually curated and
refined for guiding LLMs in diverse scenarios. We
use RoBERTa-base language encoder to encode
the extracted knowledge from LLM. A single sen-
tence knowledge of audio properties is extracted for
each parsed source targeting the maximum context
length of 512. For the evaluation, we use torch-mir-
eval (Montesinos, 2021) package for estimating
both SDR and SIR in source separation from mix-
tures.

A.2 Sample of Source Parsing with LLM

We present several samples of textual inversion
with audio captioning and source parsing from
real-world audio mixtures collected from Audio-
Caps (Kim et al., 2019) in Table 9. We use ms-
CLAP (Elizalde et al., 2023) model for audio cap-
tioning, followed by instruction-tuned LLaMA-3-
8b model for source parsing. In most cases, the
generated captions contain all sound sources pre-
sented in the audio mixtures. In general, the gen-
erated captions simplify the source descriptions
compared to the ground truth captions. Neverthe-
less, by leveraging the detailed knowledge parsing
from the LLM, we enrich details of each source. In
a few cases of higher order mixtures, we observe
the captioning model cannot detect muffled, short
duration sounds. Nonetheless, we observe accurate

source parsing with the LLM from the generated
captions. Though source parsing is a simple ob-
jective, however, it can be complicated in some
scenarios with complex captions. For example, the
"cat meowing" sound is detected twice with the
generated captions for repeated sounds, though it
represents a single source. However, LLM based
source parsing effectively solves such challenges.

A.3 Sample of Knowledge Parsing with LLM
We provide samples of knowledge parsing from
LLM in Table 10 for various sound sources. We use
instruction-tuned LLaMA-3-8b for such parsing.
Several key properties of audios, such as frequency
range, amplitude, dynamic envelope characteristics,
usual duration, and spectral contents are focused
by guiding the LLM with manually curated 5-shot
prompts. Such details of audio properties largely
help the audio separator model to ground diverse
audio features with text description for enhanced
separation, particularly in noisy, unseen mixtures.

A.4 Additional Qualitative Results
We provide additional qualitative comparisons for
natural audio mixture separation in Fig. 5 and
Fig. 6. In general, OpenSep largely reduces the
spectral overlap across multiple sources while pre-
serving details of each source in separation from
challenging mixtures, compared to state-of-the-art
baseline methods, without accessing manual source
prompts. We also provide audio samples from dif-
ferent models in the supplementary for better un-
derstanding of the separation performance.

A.5 Details of User Study
We conduct a user study to analyze the audio
separation performance from real-world mixtures,
where we don’t have access to any ground truth
sources. Each user is provided with 20 mixture
samples, and their corresponding separated audios
with competitive models. For each sample, user
rates the superior separation quality between two
choices. We collect the data of wins, loses, and ties
across different models using the user study. The
results of this study are reported in Table 3. We
attach the screenshot of the human evaluation form
with detailed guidelines in Fig. 7.
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Table 9: Sample of source parsing and generated captions from real-world audio mixtures of AudioCaps dataset. We
use ms-CLAP model for audio captioning followed by the source parsing from LLaMA-3-8b with five shot prompts.

Ground Truth Captions Generated Captions Parsed Sources

People talk while an audience laughs
and water runs from a faucet

A man and woman are talking and laughing
while water runs in the background.

A man talks. A woman talks.
People laugh. Water runs.

A child screams, an adult male is
talking and vehicles are revving.

A man speaks while a vehicle engine revs.
A man speaks.
A vehicle engine revs.

A child cries and yells
and an adult speaks in response

A child cries and a woman speaks
A child cries.
A woman speaks.

A whistle and another man speaks
and the whistling stops.

A man speaks followed by whistling.
A man speaks.
A whistling sound.

A crowd is cheering and shouting,
thumping occurs, an adult female speaks.

A crowd is cheering and a woman
is speaking.

A crowd is cheering.
A woman is speaking.

A large engine roars and someone
is shouts a loud short rout.

A motor is running while people are
shouting.

A motor is running.
People are shouting.

A cat is meowing over and over A cat meows and a cat meows. A cat meows.

People are talking and bees are
quietly buzzing in the background.

A bee buzzes and a man speaks.
A bee buzzes.
A man speaks.

International music plays as water pours
into a pot and finally some splashes

A stream of water is running while
music plays in the background.

A stream of water is running.
Music plays in the background.

Several small shuffles of hard objects
knocking, followed by loud explosions
interspersed by a grown man chuckling.

A loud bang followed by laughter.
A loud bang.
Someone laughs.

Birds are flapping their wings
and some bird call

Birds chirping and flapping
their wings.

Birds chirping.
Birds flapping their wings.

A toilet flushes and then
woman speak in the background

A toilet flushes followed by a
woman speaking.

A toilet flushes.
A woman is speaking.
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Table 10: Samples of knowledge parsing for various audio sources from the LLM. We use instruction-tune LLaMA-
3-8b model for extracting the detailed audio properties of individual sources. We use manually curated 5-shot
prompts to guide the LLM for focusing on specific audio properties for assisting the source spearation.

Source Parsed Knowledge

Alarm clock
ringing

The sound of an alarm clock ringing is represented by a sharp, piercing, and repetitive tone, typically in the
frequency range of 1-4 kHz, with a characteristic "square-wave" or "sawtooth" shape, featuring a sudden
onset, a steady amplitude, often accompanied by a slight decay and a gentle reverberation tail, and a relatively
high overall energy level due to the sudden and attention-grabbing nature of the sound.

Baby laughter

The sound of baby laughter is represented by a series of short, high-pitched, and joyful vocalizations, typically
in the frequency range of 200-400 Hz, characterized by a rapid sequence of rising and falling frequencies, with
a relatively constant amplitude, often accompanied by subtle variations in pitch and timbre, featuring a "giggly"
or "chirpy" quality, and a relatively short duration of around 0.5-1.5 seconds, with a gentle, warm, and intimate
quality, and a moderate overall energy level.

Cat hissing

The sound of a cat hissing is represented by a high-pitched, sharp, and intense vocalization, typically in the
frequency range of 2-4 kHz, with a distinctive "s" or "sh" shape in the spectrogram, featuring a rapid series
of short, staccato bursts of energy, often accompanied by a subtle tremolo effect, and a relatively short
duration of around 0.1-0.3 seconds, with a moderate to high overall energy level, and a characteristic
"attack"and "decay"pattern, with a sudden onset and a gradual release.

Duck quacking

The sound of a duck quacking is represented by a series of loud, sharp, and explosive vocalizations, typically
in the frequency range of 200-400 Hz, with a characteristic "honking" quality, featuring a sudden onset and
decay, and a relatively constant amplitude, often accompanied by subtle variations in pitch and timbre, and
a moderate to high overall energy level, with a distinctive spectral shape and a duration of around 0.5-1.5
seconds, and a possible presence of echoes or reverberations in the environment.

Fox barking

The sound of a fox barking is represented by a series of short, sharp, and high-pitched vocalizations, typically
in the frequency range of 1-5 kHz, with a characteristic "yipping" or "yelping" quality, featuring a rapid
sequence of rising and falling frequencies, and a relatively constant amplitude, often accompanied by subtle
variations in pitch and timbre, and a relatively short duration of around 0.2-0.5 seconds, with a moderate overall
energy level, and a distinctive spectral shape featuring a prominent peak in the 2-3 kHz range.

Playing accordion

The sound of playing an accordion is represented by a rich, dynamic, and complex mixture of sounds,
characterized by a wide frequency range of 50-2000 Hz, featuring a prominent low-frequency foundation
(around 50-100 Hz) provided by the instrument’s bellows and the diatonic reeds, overlaid with a series of
bright, piercing, and harmonically-rich tones produced by the instrument’s buttons and keys, with a distinctive
"oom-pah" or "chord-like" quality, and often accompanied by subtle vibrato and tremolo effects, as well as
occasional percussive attacks and releases, all blending to create a lively, folk-inspired, and emotive sound.

Train whistling

The sound of a train whistling is represented by a distinctive, high-pitched, and piercing tone, typically in
the frequency range of 2,000-4,000 Hz, with a sharp attack and decay, and a characteristic "siren-like" shape,
often accompanied by a subtle tremolo effect, and a relatively long duration of around 1-3 seconds, with a
moderate to high overall energy level, and a sense of spatiality and distance, as if the sound is coming
from a specific location.

Vacuum cleaner
cleaning floors

The sound of a vacuum cleaner cleaning floors is represented by a dominant low-frequency hum, typically
in the range of 50-200 Hz, with a strong amplitude modulation caused by the motor’s rotation and the
movement of the vacuum head, often accompanied by a series of high-frequency clicks and rattles from
the brushes and wheels, and a gentle whooshing sound from the airflow, with a moderate overall energy level
and a relatively consistent spectral shape, punctuated by brief, high-amplitude transients when the vacuum
head encounters obstacles or changes direction.

Waterfall burbling

The sound of a waterfall burbling is represented by a continuous, gentle, and soothing audio signal, featuring
a prominent low-frequency energy peak in the range of 20-50 Hz, accompanied by a series of soft, repetitive,
and varying pitched tones, typically in the frequency range of 100-500 Hz, with a gradual spectral roll-off
towards higher frequencies, and a characteristic "chirping" or "bubbling" quality, often punctuated by
occasional, brief, and low-amplitude bursts of energy, and a relatively long duration of several seconds
to minutes, with a moderate to high overall energy level.

Writing on blackboard
with chalk

The sound of writing on a blackboard with chalk is represented by a series of sharp, scratchy, and percussive
sounds, typically in the frequency range of 100-500 Hz, with a characteristic "scratch-and-scrabble" texture,
featuring a mix of high-amplitude, short-duration events (corresponding to the chalk striking the board) and
lower-amplitude, longer-duration events (corresponding to the chalk gliding across the board), often
accompanied by subtle variations in tone and timbre depending on the chalk’s velocity and angle of incidence,
and a relatively low overall energy level due to the soft and dry nature of the writing surface.
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Figure 5: Qualitative results on natural mixtures from AudioCaps. (Left) We can observe the dominant "woman
talks" spectral content in "frying foods" for most baselines. However, in CLIPSep, such overlap is largely reduced,
but horizontal spectral contents from "music plays" is visible. In contrast, OpenSep largely reduces such spectral
overlap in all three components while preserving all details. (Right) In this mixture, the "beep sound" is only present
at the beginning, with large noisy sound of "wind blows" over the spectrogram. Most baseline methods contain noisy
spectral contents in the "beep sound", while losing spectral contents in the "wind blows" prediction. In contrast,
OpenSep disentangles this noisy mixture with significant reduction of spectral overlaps.
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Figure 6: Qualitative results on natural mixtures from AudioCaps. (Left) In the initial phase, the "whistle blows"
and "guitar plays" sounds are present, while the "man talks" sound appears at the end. In all baselines, we can
see significant spectral overlaps of the "whistle blows" and "guitar plays" sounds. In contrast, OpenSep precisely
separates both of these challenging components, while also reducing background contents in the "man talks"
prediction. (Right) The "phone rings" sound mostly appears at the beginning followed by the "woman talks"
sound at the end. Compared to all baselines, OpenSep more sharply disentangles both of these sources from this
challenging mixture highlighting its effectiveness in practice.
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Figure 7: Screenshot of human evaluation form used for the user study. We assess the performance of audio
separation from natural mixtures by human evaluation, without having access to any ground truth audios of
individual sources. Each user compares the separation quality of two competitive models for several mixtures.
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