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Abstract

Current visual question answering (VQA) mod-
els tend to be trained and evaluated on image-
question pairs in isolation. However, the ques-
tions people ask are dependent on their in-
formational needs and prior knowledge about
the image content. To evaluate how situating
images within naturalistic contexts shapes vi-
sual questions, we introduce CommVQA, a
VQA dataset consisting of images, image de-
scriptions, real-world communicative scenarios
where the image might appear (e.g., a travel
website), and follow-up questions and answers
conditioned on the scenario and description.
CommVQA, which contains 1000 images and
8,949 question–answer pairs, poses a challenge
for current models. Error analyses and a human-
subjects study suggest that generated answers
still contain high rates of hallucinations, fail to
fittingly address unanswerable questions, and
don’t suitably reflect contextual information.
Overall, we show that access to contextual in-
formation is essential for solving CommVQA,
leading to the highest performing VQA model
and highlighting the relevance of situating sys-
tems within communicative scenarios.

1 Introduction

Visual question answering (VQA), the task of pro-
viding an answer to a question given an image,
measures a model’s ability to synthesize visual and
textual modalities, and has many promising real-
world applications. For example, when images on-
line can’t be seen and accessed, it severely affects
people’s abilities to educate themselves, socially
engage, and stay informed (Morris et al., 2016;
MacLeod et al., 2017; Voykinska et al., 2016; Glea-
son et al., 2019), and VQA models are an opportu-
nity for providing interactive accessibility to such
visual content at scale (Gurari et al., 2018; Baker
et al., 2021). While most prior VQA datasets focus
on investigating image-text alignment as a decon-
textualized task (Antol et al., 2015; Goyal et al.,

2017; Hudson and Manning, 2019; Marino et al.,
2019), we aim to reframe it as a human-centric
communicative problem, moving it closer to a real-
world interactive setting.

According to a pragmatic Bayesian view of com-
municative actions, people tend to ask questions
that maximize the contextually relevant informa-
tion gain based on their existing prior beliefs about
the world (Frank and Goodman, 2012), following
fundamental pragmatic principles (Grice, 1975).
Based on these linguistic insights, we argue that
prior VQA datasets largely do not consider two
central communicative drives that limit their utility.
The information people aim to obtain (and conse-
quently the types of questions they ask) varies with
(1) the person’s information needs based on their
goals when encountering the image, and (2) the per-
son’s prior knowledge of the image content. Thus
we introduce CommVQA, a benchmark that treats
VQA as an inherently communicative task.1

To investigate people’s information needs, Com-
mVQA consists not only of images, questions, and
answers, but also of image descriptions and plausi-
ble communicative scenarios for each image. Prior
image accessibility research with blind and low-
vision (BLV) participants shows that the informa-
tion people want from an image is dependent upon
the scenario in which the image appears (Stangl
et al., 2021, 2020; Kreiss et al., 2022a; Muehlbradt
and Kane, 2022). For example, if a person encoun-
ters an image when they are shopping online, they
are likely to ask questions about the brands within
the image, while if they’re browsing the news, the
perceived purpose of the image shifts, and they are
likely to ask questions about the event occurring
within the image (Stangl et al., 2021, 2020). We
therefore define a scenario as the type of website
(e.g., a shopping website) combined with a goal for
viewing it (e.g., to buy a gift) and expect it to shape

1All data and code are available at: https://github.
com/nnaik39/commvqa.
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Question Elicitation

GPT-4V: Draft Elicitation

Describe this image in 
less than 150 characters 
to someone who can't 
see it.

Image Description Draft

GPT-4V

Human: Editing

Description Elicitation

Please edit this 
image description to 
correct any errors and 
make the description 
more useful to 
someone who can't 
see the image.

Image Description Draft

Image Description

Imagine you are browsing a 
Context website when you 
encounter the following image 
description:

Image Description

What are two questions 
you'd want to have answered 
by someone who can see the 
image?

Question 1:

Question 2:

Questions

... GPT-4V

Rank the following 
online scenarios in which 
you might encounter this 
image: A website for 
1) shopping,  
2) health,  
...

Plausible Contexts

Context Matching Answer Elicitation

Imagine you are browsing a Context website 
when you encounter the following image:

Answer

Another user can't see the image but has 
access to the following image description: 

Image Description

They asked a follow-up question. Please 
answer based on the image.
Question
Answer:

...

Figure 1: Overview of the CommVQA Dataset Construction. Images were sourced from Wikipedia and paired
with relevant scenarios. The description were first generated by GPT-4V, then edited by humans. Other participants
then provided questions and answers based on the scenario and description, resulting in at least three answers for
each of the 2,983 unique visual questions. Simplified instructions are shown here; full details are in Appendix A.

people’s information needs in a VQA task.

In addition, the relevant questions a person might
ask are predicted to be guided by their prior knowl-
edge about the image. For most images we en-
counter online, we can rely on rich cues that al-
low sophisticated inferences about what an image
contains. An image on a shopping website, for in-
stance, would likely be accompanied by an article
label, such as “Colorful Summer Skirt”, or it could
have an informative alt text description. In the
standard VQA task, annotators are asked to write
questions in isolation to “fool a smart robot”, an
adversarial task where the goal of the questioner is
to trick an AI model (Goyal et al., 2017). However,
in the naturalistic setting, these visual questions
are better conceptualized as follow-up questions,
since they are conditioned on already available in-
formation. In CommVQA, we situate the task by
providing people with quality-controlled image de-
scriptions instead of the image itself when collect-
ing visual questions. Together with the contextual
grounding of the images, this pipeline, presented
in Figure 1, generates a challenging dataset with
context-sensitive, highly diverse questions, as well
as longer answers compared to prior VQA datasets.

We benchmark four state-of-the-art VQA models
on CommVQA, and show that the situated nature
of CommVQA poses a significant challenge for
current state-of-the-art vision-language models and
allows for insights into model generation behavior
due to a highly controlled data generation pipeline.
We find that the most successful model needs to
integrate contextual information, suggesting that

context shapes VQA in communicative settings.
In summary, our main contributions are: (a) we

introduce CommVQA, a benchmark consisting of
images, contexts, descriptions, questions, and an-
swers, where models must infer the details most
relevant to the questioner’s goals, (b) we bench-
mark this dataset on current VQA approaches and
explore whether models can be instructed to inte-
grate context, and (c) we show via error analyses
and a human-subjects experiment that even the best
models generate false information at high rates.

2 Related Work

With CommVQA, we aim to situate the abstract
VQA task within communicative settings. This
builds on prior VQA dataset work (Section 2.1),
and communicative insights from linguistics and
human-computer interaction (Section 2.2)

2.1 VQA Datasets

Most VQA datasets focus on image-question-
answer triplets, which are constructed in isolation
from the real-world contexts in which the images
might appear (Antol et al., 2015; Goyal et al., 2017;
Hudson and Manning, 2019; Marino et al., 2019).
The VizWiz dataset (Gurari et al., 2018) stands out
among VQA datasets as it focuses on real-world
accessibility. The images in VizWiz are elicited
from BLV users, who uploaded a picture to a phone
app with a question about their real-world environ-
ment. The goals behind the questions and images
is specific to BLV users exploring their physical
environment. CommVQA is complementary to
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VizWiz, since it investigates how contextually sit-
uating images online affects a model’s VQA task
performance.

Some VQA datasets have explored integrating
supplementary information. Visual Dialog (Das
et al., 2017) aims to create visual chatbots, which
can answer a question based on an image and the
prior dialogic context. Similarly to CommVQA,
these questions can be conceptualized as follow-up
questions based on an image description. How-
ever, the images, questions, and answers are still
decontextualized from a specific information goal
beyond the questioner wanting to understand the
image. CommVQA instead extends the focus on
varying the questioner’s broader goals.

ScienceQA (Lu et al., 2022) consists of multi-
modal science understanding questions, where each
multiple choice question and answer is associated
with a lecture and explanation, functioning as the
context. VQAOnline (Chen et al., 2023) consists
of images, questions, and context sourced from
StackExchange, where the context is the body of
the post. The notion of context in these datasets is
limited to texts that provide supplementary infor-
mation, whereas we specifically focus on the effect
of changing scenarios on the VQA task.

PromptCap (Hu et al., 2022) similarly considers
the notion of “context” for models generating an-
swers in the VQA task. First, the model generates
a visual description relevant to the question and
then generates an answer solely relying on the de-
scription, conceptualized as “context.” In contrast
to PromptCap, the contextual condition in Com-
mVQA is strictly complementary to the image (see
Section 3.3), therefore fundamentally changing the
task and modeling demands.

2.2 VQA as Communication

Within pragmatics, there is a general consensus
that questions are grounded in contexts and sensi-
tive to the goals of the interlocutors (Groenendijk
and Stokhof, 1984; Ginzburg, 1996; Roberts, 1996;
van Rooy, 2003). In line with this prediction, prior
human-subject studies with BLV participants show
that context influences the information that people
want about an image (Stangl et al., 2021, 2020;
Muehlbradt and Kane, 2022; Kreiss et al., 2022a).
Stangl et al. (2021) find that on social media, they
wanted to know more about the people and the ac-
tivity of the person who posted the image, while
if people were on a shopping website to purchase

a gift for a friend, they expressed a desire to learn
more about the objects within the image. Inspired
by Stangl et al. (2021), we utilize a similar type of
scenario. With CommVQA, we constitute a large-
scale dataset where context-sensitivity emerges
with sighted participants in question and answer
behavior and can be studied at scale.

3 The CommVQA Dataset

The CommVQA dataset was constructed in five
main steps, as visualized in Figure 1. First, we
sourced images from Wikipedia, and elicited both
plausible scenarios and descriptions for the images
from GPT-4V (OpenAI et al., 2024). To ensure
description quality, we conducted a human-subject
study to edit the descriptions. We then elicited
questions and answers for the dataset from US-
based crowdworkers on Prolific. All human-subject
studies were conducted with IRB approval.

3.1 Image-Scenario Matching

We extracted 1000 images from Wikipedia pages
of topics related to at least one of the scenario
conditions. We placed each image in two scenarios,
which allows us to investigate how the scenario can
induce variations in questions and answers across
the same visual stimuli. Each image-scenario pair
is annotated with on average 1.54 questions and
each question with three answers, which results in
8,949 unique question-answer pairs. We prioritized
high coverage of individual datapoints over breadth
since the focus of this work is on uncovering the
diverse contextual effects on the VQA task.

We chose six potential scenarios: Shopping,
Travel, Science Magazines, News, Health, and So-
cial Media. These scenarios were informed by prior
work that showed people’s information needs var-
ied across these scenarios (Stangl et al., 2021), and
allowed for an overlap between the images that ap-
pear in each scenario–for instance, images in travel
blogs (e.g., a picture of a waterfall) could plausibly
appear in an online science magazine.

To assign plausible scenarios to the image, we
instructed GPT-4V (OpenAI et al., 2024) to rank
them in order of descending plausibility, guided by
the task in Stangl et al. (2021). We validated the as-
signment on a subset of data with a human-subject
study before using GPT-4V to scale (see Appendix
A.2 for the prompt). From the top-three scenar-
ios for each image, two scenarios were selected in
order to balance out the co-occurrence of contexts.
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3.2 Image Description Elicitation

We elicited descriptions for all images in our
dataset. They form the basis for the follow-up
questions participants asked, simulating the effect
of someone encountering an alt text associated with
the image online. Importantly, descriptions were
generated out-of-context so we could analyze con-
text effects on the questions and answers without
the description being a confounding factor.
Automatic Description Draft Elicitation We
elicited initial description drafts by prompting GPT-
4V with the phrase: Describe this image in
less than 150 characters to someone who
cannot see it. The length constraint follows a
commonly-issued guide on best-practices for ac-
cessibility alt text writing (OSU, 2024). We chose
Wikipedia for sourcing images due to the copyright
permissions and image variety. All selected images
were in the public domain.
Description Editing To ensure description quality,
we conducted a human-subject study where partici-
pants edited the descriptions generated by GPT-4V
(OpenAI et al., 2024). These edits were intended
to help balance for potential inaccuracies, possible
misalignments with human description preferences,
and the current design choices of GPT-4V. For in-
stance, as of May 2024, the model refrains from
explicitly identifying the people within an image
(OpenAI, 2023), even though proper names can be
an important detail for a useful image description
(Bennett et al., 2021; MacLeod et al., 2017).

Each participant was shown six randomized tri-
als with an image and description. They were in-
structed to edit the image description to correct any
errors and make it more useful to someone who
cannot see it. Importantly, participants were not
shown the context that each image was placed in
to control for question variation across contexts.
Participants could also choose to skip if no edits
were needed. We recruited 369 participants and
compensated them at the rate of $13.50/hr.

We collected three description edits for each im-
age description draft, and selected a random edited
description for the final description.

3.3 Question Elicitation

To elicit visual questions, we recruited 619 partic-
ipants, who were paid $13.50/hr with an average
completion time of seven minutes. In each trial,
participants were given two pieces of information:
an image description (e.g., “A group of people of

various ages walking along a grassy path, with trees
on one side.”), and a scenario for the image (e.g.,
Imagine you are browsing a Health website, with
the goal of learning how to live a healthier lifestyle).
Crucially, participants didn’t see the image to avoid
priming for specific questions and simulate the vi-
sual inaccessibility of the image in the real-world
scenario. They also rated how likely the image
would appear within the provided scenario, and
were prompted to ask two questions they would
like answered by someone who can see the image.

In total, we elicited 2,983 questions, with 1.54
questions on average for each image-scenario pair.
Based on a separate human-subject study (Sec-
tion 5.2), we find that 80% of the questions require
the image to answer, emphasizing the difficulty and
inherent multimodal nature of CommVQA.

3.4 Answer Elicitation

We elicited answers from 870 participants, who
were paid $13.50/hr, with an average completion
time of seven and a half minutes. Participants were
shown the image, question, context, and descrip-
tion. They were told that another user asked the
question based on this image description, and asked
to write an answer that would help the other person
visualize the image. Each question was answered
by at least three separate participants.

We also included a checkbox for participants
to indicate if a question was unanswerable. If a
question was voted unanswerable by two or more
annotators, we labeled the question as “unanswer-
able” within the dataset. In total, we collected 283
questions that were labeled unanswerable (9.5%).
Within the naturalistic setting, where people will
ask questions about an image they cannot see, it’s
expected that people will ask unanswerable ques-
tions, and that models should have the capability
to decline answering. The unanswerable portion
of CommVQAcan help assess whether a model
can abstain from answering instead of providing
incorrect information (MacLeod et al., 2017).

4 Dataset Analysis

The final CommVQA dataset consists of 8,949
unique question-answer pairs, spanning across
2000 unique image-scenario pairs. To better un-
derstand the challenges posed by this dataset, we
now provide an analysis of CommVQA. Examples
from the dataset, sampled to cover all scenarios,
are given in Appendix Figure 5. We additionally
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Figure 2: Heatmap of BERT Classification Accuracy
Across Scenario Pairs. When fine-tuned on different
scenario pairs, BERT exhibits varying performance in
its ability to distinguish between these scenarios. For
instance, BERT achieved 94% accuracy when distin-
guishing between science magazines and shopping, but
only 83% accuracy for travel and social media.

conducted an analysis of a subset of the data and
found similar patterns in model responses on this
smaller dataset, suggesting our data is sufficiently
large to obtain generalizable patterns. For more
details, see Appendix C.

4.1 Analysis of Descriptions

In CommVQA, the descriptions are the basis for
the VQA task and were collected in a two-stage
process: first, automatic description generation by
GPT-4V and then a human editing phase. The au-
tomatically generated descriptions had an average
length of 63.663 characters and in 42% of trials,
people didn’t make any edits to the descriptions.
When editing, participants added extra information,
increasing the average length to 97.29 characters.

4.2 Analysis of Questions

The main goal of CommVQA is to situate the VQA
task in a communicative context, assuming that the
context shapes what becomes relevant and there-
fore has implications for downstream model perfor-
mance. In this section, we investigate the context-
sensitivity of the questions in CommVQA.

If questions are context-sensitive, then a trained
classifier should be able to predict the correct sce-
nario from the question and achieve a performance
reliably higher than random. To investigate whether
this is true for CommVQA, we fine-tuned BERT
(Devlin et al., 2019) on the task of predicting
whether each question appears within a certain con-
text or not. We expect this task to be difficult even
for a human, given that questions such as “What
time of day is it?” might appear in any scenario.
We split all questions in the dataset into an 80-10-

10 train/test/val split, and fine-tuned for 200 epochs
with LoRA (Hu et al., 2021). Fine-tuned BERT
achieved an accuracy of 56% on this task, a sig-
nificant improvement over random choice (16%),
showing that questions elicited within different con-
texts are inherently distinct.

While we find overall evidence that questions
vary between all scenarios, a classifier analysis
further allows us to investigate which individual
scenarios have the least and most overlap in the
questions asked. Figure 2 shows the BERT classi-
fier’s performance when fine-tuned on distinguish-
ing pairs of scenarios (e.g., shopping from science
magazines), and indicates which scenarios are more
easily distinguishable. Intuitively, certain scenarios
are more related than others–for instance, shopping
and social media content is more likely to con-
tain images of famous models, while shopping and
science magazines are less likely to have overlap.
Our analysis confirms this intuition and highlights
where models may fail to translate across scenarios.

We further inspect the question interrogatives
for a potential source of between-scenario varia-
tion. The results of a Welch’s t-test demonstrated
that, for example, compared to all other scenarios,
“Who” questions are significantly more likely to ap-
pear in the social media scenario (t(589.6) = 3.85,
p < 0.001), and “Where” questions are signifi-
cantly more likely to appear in the travel scenario
(t(627.3) = 3.58, p < 0.0001) compared to any
other scenario. These results indicate that different
question types are more likely to be asked in certain
scenarios, which carries implications that model
evaluation should be contextual. A model that has
poor performance on “Who” questions might seem
competent in non-social media scenarios, but fail to
generalize to social media due to the distinct nature
of the user’s information needs. However, question
type and scenario are still distinct conceptually.

Taken together, we find converging evidence that
the questions in CommVQA fundamentally vary
based on the scenario the images were presented in,
highlighting the diverse requirements for building
robust communicatively situated VQA models.

4.3 Analysis of Answers

We now turn to a general analysis of the answers
in CommVQA and investigate the extent to which
they are contextually situated.

Firstly, with an average length of 10.98 words,
the answers in CommVQA are surprisingly long
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compared to prior datasets that used a similar on-
line answer elicitation setup (e.g., 1.1 words for
VQA-v2 (Goyal et al., 2017) and 2.1 words for
Visual Dialog (Das et al., 2017)). Contrasting prior
work, the instructions of CommVQA are framed
as a communicative task, where answerers were
asked to help someone else who cannot see the
image. It’s plausible that the longer responses are
partially due to the participant’s wish to faithfully
communicate with the questioner (Grice, 1975).

While we focus our analysis on the effects con-
text directly has on the questions being asked (see
Section 4.2), we also find that access to context
becomes strictly necessary to answer those contex-
tualized questions. Most strikingly, questions of
the form “What else is in the image?” directly re-
quire the answerer to know what information users
already have (see Figure 3 and Figure 6 for exam-
ples).

5 Model Benchmarking

In this section, we investigate the performance
of four state-of-the-art vision-language models on
CommVQA and to what extent providing context
to the models improves their performance.

We selected four models to benchmark on this
dataset: LLaVA (Liu et al., 2024), BLIP-2 (Li
et al., 2023), mPLUG-OWL (Ye et al., 2023), and
IDEFICS (Laurençon et al., 2023). To maximally
enable the reproducibility of this work and sup-
port the public development of models, we fo-
cus on open-source models. LLaVA is trained
on a multimodal instruction-following dataset, and
exhibits strong performance across several VQA
datasets (Goyal et al., 2017; Hudson and Man-
ning, 2019). mPLUG-Owl (Ye et al., 2023) is
also instruction-tuned, and displays competitive
performance on various VQA benchmarks, includ-
ing VQA-v2 (Goyal et al., 2017). IDEFICS (Lau-
rençon et al., 2023) is an open-access reproduction
of Flamingo (Alayrac et al., 2022), and was trained
on a naturalistic web-scale dataset of interleaved
image-text documents, including 141 million web
pages. We selected LLaVA, mPLUG-Owl, and
IDEFICS since their instruction-tuned nature al-
lows us to straightforwardly integrate context. We
also included a non-instruction-tuned model, BLIP-
2, a general-purpose vision-language model that is
additionally fine-tuned on the VQA task.

Evaluation Metrics We used three types of evalu-
ation methods for complementary insights on the

IDEFICS-Generated Answer (Contextual): 
The image shows a walrus with large tusks on a large 

block of ice. There are no trees or other animals 
visible in the picture. The background consists of the 

vast expanse of the Arctic Ocean.


IDEFICS-Generated Answer (Baseline): 
I’m sorry, but I cannot provide a response as there is 

no specific information about the pic in question. 
Please provide more details or context about the 

image you are referring to.Scenario: Science Magazines

Description: Walrus with 
large tusks on ice.

Question: What else is in the 
pic such as trees, other 

animals, background, etc?

Human-Elicited Answer: 
Gray sky in the background and lots of snow and ice

Figure 3: Example of Context Dependency in Answer
Generation. In this example, the question explicitly
asks for content that is not in the description. While the
human-elicited answers do not repeat information in the
description, IDEFICS (contextual) provides an answer,
but does repeat content that is in the description.

quality of the model-generated answers. To ob-
tain insights on the overall string similarity of
the model-generated and the human-written an-
swers, we use the well-established reference-based
NLG metrics BLEU (Papineni et al., 2002), CIDEr
(Vedantam et al., 2015), METEOR (Banerjee and
Lavie, 2005), and ROUGE (Lin, 2004). However,
these metrics do not adequately capture object hal-
lucinations (Rohrbach et al., 2018), which is why
we supplement this analysis with a human-subject
study specifically aimed at capturing hallucinated
content. Finally, to measure how closely an an-
swer’s visual details matches with the image and
associated visual description, we also include an
analysis using CLIPScore (Hessel et al., 2021).

Experimental Setup For all models, we con-
ducted two main experiments. The contextual con-
dition simulated the situation human participants
were in, where the models had complete access
to the image, description and situational scenario
while answering the question.

We include our prompt for the contextual con-
dition in Appendix A.2. In addition, we tested a
baseline condition where the models only had ac-
cess to the image and question, in order to assess
the model capabilities for incorporating contextual
information. All evaluations were conducted with
the greedy decoding method to ensure reproducibil-
ity.

Overall Results In Table 1, we show the perfor-
mance of all models when provided with the im-
age and question (baseline) and the full context
that was available to human answerers (contextual).
The IDEFICS model with the contextual condition
has the highest performance for all models across
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Model BLEU-1 BLEU-4 METEOR ROUGE CIDEr

IDEFICS 0.273 0.084 0.179 0.378 0.758
IDEFICS (Contextual) 0.285 0.092 0.195 0.392 0.839

LLaVA 0.195 0.052 0.172 0.317 0.453
LLaVA (Contextual) 0.152 0.037 0.161 0.253 0.219

mPLUG-Owl 0.199 0.048 0.169 0.320 0.462
mPLUG-Owl (Contextual) 0.187 0.046 0.172 0.295 0.355

BLIP-2 0.267 0.059 0.098 0.282 0.434
BLIP-2 (Contextual) 0.015 0.001 0.028 0.043 0.014

Table 1: Comparison of Baseline and Contextual Conditions Across Models. This table presents results for both
baseline and contextual conditions across all models. IDEFICS (contextual) achieved the highest scores across all
metrics. Results are averaged over three random data splits and model-generated answers.

all metrics. Evidently, integrating contextual infor-
mation made the content itself more aligned with
the ground-truth answer references, as evaluated
by the reference-based metrics. While IDEFICS
significantly improves when prompted with the
contextual condition, this pattern is reversed for
all other models. We hypothesize that less well-
performing models closely reiterate the visual in-
formation they receive from the image description
rather than adding new information to answer the
question, which we turn to next.

5.1 Repetition of Visual Information Within
Generated Answers

In order to investigate how much visual informa-
tion models re-iterate within their generated an-
swers, we conducted a similarity analysis of the
model-generated answers to the image based on
CLIPScore (Hessel et al., 2021) and a similarity
analysis of the generated answers to the human-
written image descriptions using Sentence-BERT
embeddings (Reimers and Gurevych, 2019). The
analyses show convergent results.

While the reference-based metrics tend to de-
crease in the contextual condition, CLIPScore rat-
ings (i.e., the similarity of the generated answer
to the image) largely increase, as seen in Table 2.
The only exception is BLIP-2, which significantly
deteriorates in performance across metrics when
contextual information is provided, largely render-
ing it uninterpretable.

Similarly, Figure 4 shows that the similarity be-
tween the description and the generated answers
significantly increases with the contextual condi-
tion across models, according to a two-sample t-
test analysis. However, the increase in description

similarity between the baseline and contextual con-
dition is the lowest for IDEFICS. We conclude that
in their answers, the contextual versions of LLaVA,
mPLUG-Owl, and BLIP-2 mimic the description
more than IDEFICS does, which explains the CLIP-
Score increase across the baseline and contextual
conditions for these three models. These findings
suggest that those models might overly emphasize
the descriptive details when available, leading to
less alignment with the ground-truth answers.

5.2 Quantifying Hallucinations
While IDEFICS (contextual) best approximates the
human answers, it’s still far from achieving human-
like performance. When a model is intended to
make information available that can’t be verified
by a user, it is especially important that this model
only generates truthful content (MacLeod et al.,
2017). While this is straightforward to evaluate for
accuracy-based VQA datasets, this isn’t easily cap-
tured by the similarity-based metrics that are used
for long-form evaluation, as measured by BLEU
and CIDEr. In this section, we aim to give a brief
intuition about the rate of hallucinated or incorrect
pieces of information contained in the answers of
the best-performing model, IDEFICS (contextual).

To estimate how many answers contain wrong,
hallucinated or unverifiable content generated by
the model, we conducted a human-subject study
where participants were asked to rate model-
generated answers. We randomly selected 100 an-
swers from IDEFICS (contextual) to provide an
assessment of the best-performing model. 70 par-
ticipants were recruited, and compensated at a rate
of $13.80/hr. For each image, participants were
asked to rate whether each answer contained infor-
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Model CLIPScore CLIPScore (C.)

IDEFICS 0.679 0.691
LLaVA 0.731 0.786
mPLUG-Owl 0.720 0.758
BLIP-2 0.613 0.586

Table 2: CLIPScore Improvement Across Baseline
and Contextual Conditions. When each model is
prompted with the contextual condition, CLIPScore in-
creases, indicating that the model is repeating visual
details. “C.” represents the contextual condition.

mation that was clearly not within the image, and to
evaluate whether the image was strictly necessary
for providing an answer to the question.

Overall, participants indicated that 23% of the
model-generated answers contained clearly er-
roneous information (with a Fleiss kappa inter-
annotator agreement of 0.47) and for another 22%,
the truthfulness of the answers couldn’t be clearly
established. These results indicate that even the
best-performing model (IDEFICS (contextual))
generates a high degree of erroneous information,
making it unreliable for downstream use.

5.3 Evaluating Unanswerability

Since the questions in CommVQA are asked by
people who cannot see the image, these questions
are not always answerable. When a person asks an
unanswerable question, ideally, models should ab-
stain from answering rather than provide incorrect,
hallucinated information (Whitehead et al., 2022).

We evaluated all models on the 238 unanswer-
able questions in CommVQA. For each question,
we assessed whether the model was able to suc-
cessfully abstain from answering or if the model
provided a hallucinated answer. To classify re-
sponses as “Abstention” or “Non-Abstention,” we
conducted a direct string matching analysis to
search for language that models commonly use
to abstain (e.g., “I cannot answer.”) A full list of
strings in this analysis is provided in Appendix B.

Overall, IDEFICS (contextual) had the highest
rate of successful abstentions at 21%, and BLIP-
2 had the lowest rate, at 0% (in both contextual
and baseline conditions). Without access to contex-
tual information, IDEFICS’s abstention rate drops
to 14%, suggesting that context is helpful for ac-
curately identifying unanswerable questions. Ap-
pending the string “If you don’t know, say ‘unan-
swerable”’ to the model prompt improved the rate

Figure 4: SBert Cosine Similarity Analysis in Human
and Model Responses. Significance levels are marked
with asterisks based on a two-sample t-test analysis.

of IDEFICS’ (contextual) abstention performances
on the unanswerable questions to 87%, suggesting
that implicit instructions could help models abstain
when necessary.

Questions most human participants judged as an-
swerable tended to be answered by the models as
well. Without the contextual condition, LLaVA and
IDEFICS declined to answer for answerable ques-
tions at a rate of 8.3% and 8.6%, respectively. For
both models, the rate of false positives decreased in
the contextual condition (LLaVa: 7.6%; IDEFICS:
7.1%).

Taken together, these results highlight that Com-
mVQA poses a challenging problem for state-of-
the-art models. Our analyses suggest that models
might not be able to leverage contextual informa-
tion effectively and the high degree of hallucina-
tions makes them unreliable, highlighting two im-
portant areas for future research.

6 Conclusion

Visual question answering models are a promis-
ing tool for making visual content accessible to
all. With CommVQA, we move the contextually
isolated VQA task into a communicative setting
that starts reflecting the diversity of downstream
use, while keeping close control over the nature of
the dataset to ease interpretability. We find strong
evidence from dataset analysis that the types of
relevant questions and answers change with the
contextual domains where images appear. We also
find evidence that integrating contextually relevant
information improves model performance. Our re-
sults suggest that the path towards building viable
VQA systems requires a focus on the wider com-
municative context where images appear.

13369



Limitations

In this work, we show that the scenarios images are
presented in fundamentally affect the VQA task.
To investigate this, we varied the broad type of
website where we embedded the image (Social Me-
dia, Shopping, etc). However, context effects are
likely much more diverse than the effects studied
in this work. For example, recent work suggests
that even topic changes within a website domain (a
Wikipedia article on Mountains vs. Body of Water)
change the information needs that sighted and BLV
users have for image descriptions (Kreiss et al.,
2022b). This result likely translates to the VQA
task and needs further investigation.

To allow for easy manipulations of the context
domains and a highly controlled recruitment, par-
ticipants were put in simulated scenarios where
they were told about the website domain where
the image appears. While even in these induced
contextual setups, we find significant contextual
variations, future work needs to explore the way
this extends to real-world user experience outside
of simulated scenarios.

In CommVQA, we elicited questions and an-
swers from sighted participants. Evidence from
prior work (Stangl et al., 2021) indicates that these
results would likely transfer more directly to the
accessibility scenario, but future work needs to an-
alyze how the sighted user behavior translates to
the BLV population more directly.

During the image description generation phase,
initial descriptions are generated by GPT-4 and
then edited by humans. This raises the potential
issue that humans may be biased towards the GPT-
4 responses, including keeping in details that may
not be factually accurate. There is in fact evidence
that starting out from an alt text shapes what type
of descriptions people write and the quality of them
(Mack et al., 2021). Work on alt text captioning has
primarily focused on old systems, which were far
less competent, and more research is now needed to
investigate how that interacts with newer systems.
In our dataset, the descriptions themselves are not
proposed as potentially ideal descriptions for ac-
cessibility. They simply provide the contextual
framing for the questions after.
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A Appendix

A.1 Statistical Comparisons with Other VQA
Datasets

In Table 3, we provide a statistical comparison of
CommVQA with other VQA datasets.

A.2 Dataset Collection Overview
In this section, we provide a full list of the tasks
and prompts provided in each step of the dataset
collection process.

For the scenario matching stage, we prompted
GPT-4V with this prompt:
Imagine you are a person browsing the
Internet. Please rank the following
scenarios in which you might encounter
this image:
1) You are browsing a shopping website,
with the goal of purchasing an item or
experience.
2) You are browsing science magazines
(such as National Geographic), with the
goal of learning more about recent science
developments.
3) You are browsing news websites (such as
New York Times), with the goal of learning
more about recent news developments.
4) You are browsing a health website,
with the goal of learning how to live
a healthier lifestyle.
5) You are browsing social media, with
the goal of learning more about your
connections.
6) You are browsing a travel website, with
the goal of traveling to a new location.

For the description elicitation, we asked partici-
pants to: “Please edit this description of the image
to correct any errors and make the description more
useful to someone who cannot see it.” This phrase
was intended to incentivize people to both fix errors
and include any communicative details that they
felt was missing.

For the question elicitation study, we asked par-
ticipants: “Imagine you are browsing a {scenario}
website when you encounter the following image:
{description}. If you encounter this image on a
{scenario} website, what are two questions you’d
want to have answered by someone who can see
the image?”

For the answer elicitation study, we asked partic-
ipants to: “Imagine you are browsing a {scenario}
website when you encounter the following image.
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Dataset Who Asked? Q A C #
Imgs

# Sce-
narios

# QA
Pairs

VQA-v2 Crowdworkers 6.1 1.2 ✗ 204,700 1 658,111
VizWiz-
VQA

Blind people 6.7 1.7 ✗ 20,500 1 31,000

OK-VQA Crowdworkers 8.1 1.3 ✗ 14,031 1 14,055
DocVQA Remote workers 9.5 2.4 ✗ 1

Visual
Dialog∗

Crowdworkers 5.1 2.9 ✗ 120,000 1 1.2M

VQAOnline Stack Overflow
users

9.3 173.2 127 64,700 1 64,700

ScienceQA Elementary and
high school cur-
ricula

12.1 4.4 41 6,500 1 21,208

CommVQA
(ours)

Crowdworkers
who can only
see the descrip-
tion

7.3 10.98 17.2 1000 6 8949

Table 3: Statistical Comparison: CommVQA and Other VQA Datasets. This table compares CommVQA with
seven other VQA datasets. The first four rows cover image-question-answer inputs, while the bottom three rows
cover image-question-answer-context inputs. Q, A, and C denote the average answer, question, and context lengths
(as measured by the number of words), respectively. *Since Visual Dialog contains multi-turn conversations, we
only included the average question length for the first round in the conversation.

{image} Another user cannot see the image directly
but has access to the following image description:
{description}. Based on the description, they asked
a follow-up question. Please answer based on the
image. {question}.”

We recruited annotators through Prolific [3], an
online annotation platform similar to Amazon’s
Mechanical Turk. We recruited only US-based
participants, and the only prescreener we used was
to exclude participants who had taken a previous
stage of the description generation process. For
instance, participants who edited descriptions were
excluded from providing questions or answers.

A.3 Context Integration Prompts for Models
We integrated context by prompting models with
the format:
Assume someone is browsing a {scenario}

website when they encounter this image.
They cannot see the image directly, but
they can access this image description:
{description}. Based on this description,
they asked this follow-up question.
Please answer based on the image. In your
answer, prioritize details relevant to
this person. Question: {question}

A.4 Additional Dataset Composition Analysis
A.5 Models Chosen
We evaluated the following model versions, which
are freely available on HuggingFace:
LLaVA llava-v1.5-14b-3GB
IDEFICS idefics-9b-instruct
mPLUG-Owl mPLUG-owl-llama-7b
BLIP-2 blip2-opt-2.7b

B Unanswerability Analysis

In this section, we include a list of the strings used
to evaluate whether a model abstained from answer-
ing.

• I cannot answer
• I cannot determine
• I cannot provide
• unanswerable
• I don’t have enough information
• AI language model
• I don’t have the context
• I don’t have enough context
• I’m sorry
• I don’t have the capability
• I don’t have enough information
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Figure 5: CommVQA Dataset Examples. Four example entries from the CommVQA dataset, each paired with a
randomly selected answer.

Figure 6: Examples of Model-Generated Answers. This figure shows examples of dataset entries and model
responses from IDEFICS, the leading model. Sample responses from IDEFICS, the leading model, indicate that
context aids in producing answers that better match human ground-truths, despite some limitations in context
integration.
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C Effects of Dataset Size

We conducted an analysis on a subset of our dataset
and uncovered similar effects of model behavior.
In Table 4, we present model benchmarking results
on a subset of 150 images and 1,215 unique visual
questions within our dataset. Largely, we surface
similar patterns as found within the full dataset.
Namely, IDEFICS (contextual) exhibits the highest
performance, and LLaVA and mPLUG-Owl both
decrease their performance with their contextual
condition, but this is explained by an increase in
CLIPScore, as shown in Table 5.

D Potential Use Cases of the CommVQA
Dataset

One potential use case for the CommVQA dataset
is to assess whether a model performs better within
a certain scenario than others. For instance, given
a general-purpose VQA model, the CommVQA
dataset provides a way to analyze whether this
model excels at questions asked within the Shop-
ping scenario, but struggles on questions asked
within the Science Magazines scenario. These in-
sights could prove useful for assessing when to
deploy general-purpose VQA models versus spe-
cialized, domain-specific models.

Another use case is to evaluate a model’s ability
to integrate contextual information along with the
image. Prior work shows that people value visual
explanations that incorporate contextual informa-
tion (Stangl et al., 2021, 2020; Muehlbradt and
Kane, 2022). But how well do models integrate
this contextual information in practice? In Figure
4, we find that LlaVA and mPLUG-Owl both tend
to repeat information from the description, while
IDEFICS is more successful at integrating the con-
textual condition. CommVQA can help assess the
ability of VQA models to integrate this contextual
information, which as prior work has shown, is
crucial for ensuring that model-generated outputs
align with human preferences.

E Clarifying Context

This section serves to clarify the role of context
and how it is distinct from prior work. In our case,
“context” means not only the scenario (i.e., the
website where the image was encountered), but the
scenario and the description. Prior work suggests
that for blind and low vision users, this broader
context should shape people’s informational needs

about an image (Stangl et al., 2021, 2020). Al-
though other types of context have been shown to
result in an improvement in the VQA and image
captioning literature, this pragmatic framing of con-
text is unique to our dataset. Our work bridges the
gap between the studies showing that this version
of context matters, and puts this observation into
practice in generating a VQA dataset with a more
realistic distribution of questions and answers.
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Model BLEU-1 BLEU-4 METEOR ROUGE CIDEr

IDEFICS 0.326 0.106 0.189 0.401 0.825
IDEFICS (Contextual) 0.356 0.122 0.198 0.413 0.904

mPLUG-Owl 0.191 0.045 0.166 0.311 0.414
mPLUG-Owl (Contextual) 0.178 0.043 0.169 0.284 0.335

LLaVA 0.192 0.050 0.171 0.311 0.431
LLaVA (Contextual) 0.149 0.037 0.161 0.247 0.200

BLIP-2 0.289 0.067 0.100 0.286 0.435
BLIP-2 (Contextual) 0.059 0.010 0.078 0.224 0.343

Table 4: Model Benchmarking Results on a Subset of 150 Images from CommVQA. Reflecting similar results
from the full dataset benchmark, the highest-scoring model is IDEFICS (contextual), and LLaVA and mPLUG-Owl
both exhibit decreased performance within the contextual condition.

Model CLIPScore CLIPScore (C.)

IDEFICS 0.667 0.666

LLaVA 0.729 0.784

mPLUG-Owl 0.720 0.756

BLIP-2 0.604 0.662

Table 5: CLIPScore Improvement Across Baseline
and Contextual Conditions for Subset of 150 images.
This table displays the increase in CLIPScore for each
model when comparing baseline and contextual con-
ditions for the subset of 150 images, finding a similar
trend as when this result is run on the full dataset. In
particular, LLaVA (C.) has the highest CLIPScore con-
dition, and the CLIPScore stays stable across IDEFICS
and IDEFICS (contextual).
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