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Abstract

Query rewriting is a crucial technique for pas-
sage retrieval in open-domain conversational
question answering (CQA). It decontexualizes
conversational queries into self-contained ques-
tions suitable for off-the-shelf retrievers. Exist-
ing methods attempt to incorporate retriever’s
preference during the training of rewriting mod-
els. However, these approaches typically rely
on extensive annotations such as in-domain
rewrites and/or relevant passage labels, lim-
iting the models’ generalization and adapta-
tion capabilities. In this paper, we introduce
AdaQR (Adaptive Query Rewriting), a frame-
work for training query rewriting models with
limited rewrite annotations from seed datasets
and completely no passage label. Our approach
begins by fine-tuning compact large language
models using only ~10% of rewrite annotations
from the seed dataset training split. The models
are then utilized to self-sample rewrite candi-
dates for each query instance, further eliminat-
ing the expense for human labeling or larger
language model prompting often adopted in
curating preference data. A novel approach
is then proposed to assess retriever’s prefer-
ence for these candidates with the probability
of answers conditioned on the conversational
query by marginalizing the Top-K passages.
This serves as the reward for optimizing the
rewriter further using Direct Preference Opti-
mization (DPO), a process free of rewrite and
retrieval annotations. Experimental results on
four open-domain CQA datasets demonstrate
that AdaQR not only enhances the in-domain
capabilities of the rewriter with limited annota-
tion requirement, but also adapts effectively to
out-of-domain datasets.

1 Introduction

Passage retrieval in open-domain conversational
question answering (CQA) have gained significant
prominence in recent years (Anantha et al., 2021).

* Equal contribution.

Unlike standard retrieval with single-turn queries
(Kwiatkowski et al., 2019), it poses unique chal-
lenges in resolving conversational dependencies
like omission, ambiguity, and coreference resolu-
tion (Qu et al., 2020; Adlakha et al., 2022). Many
existing methods (Yu et al., 2021; Lin et al., 2021b;
Li et al., 2022) address these challenges by train-
ing specialized retrievers. However, re-training re-
trievers for conversational search can be costly and
may not fully leverage the benefits of off-the-shelf
single-turn retrievers (Wu et al., 2022).

A prevalent approach for overcoming this chal-
lenge involves query rewriting (QR) (Elgohary
et al., 2019; Vakulenko et al., 2020; Yu et al., 2020).
In this method, conversational queries are decon-
textualized into self-contained, standalone queries,
which are then processed by off-the-shelf retrievers
to find relevant information. Earlier studies (Elgo-
hary et al., 2019; Anantha et al., 2021) focused on
fine-tuning language models to reformulate human
rewrites. However, Ye et al. (2023) noted that hu-
man annotations may only resolve ambiguity while
overlooking informative context within conversa-
tions. They suggested using language language
models (LLMs) for rewrite generation. Recent re-
search (Wu et al., 2022; Mo et al., 2024; Yoon
et al., 2024) underscores the significance of incor-
porating retrieval signals during rewriter training to
enhance downstream retrieval performance. Yoon
et al. (2024) aligned fine-tuned models with re-
triever’s feedback on the ranking of gold passages
using Direct Preference Optimization (DPO).

Nevertheless, these approaches often necessitate
substantial amounts of rewrite and/or passage la-
bels for supervision, yet resources are scarce and
expensive for collection (Yu et al., 2021). More-
over, they mainly optimize QR systems for in-
domain performance, i.e., training labels are from
the validated datasets, while the adaptation ability
and out-of-domain performance are under-explored.
Therefore, this paper centers on: (1) effectively and
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efficiently training QR models with limited annota-
tion requirements and, (2) examining their capac-
ity for adaptation with preference alignment under
weak supervision.

Following the paradigm for aligning LLMs
which takes supervised fine-tuning (SFT) and pref-
erence optimization sequentially (Ouyang et al.,
2022), optimization towards retrievers’ preferences
can be applied to the models that have undergone
supervised fine-tuning for query rewriting. Align-
ing with retrievers’ preferences can further tune the
rewriter to reformulate queries with better recall of
relevant passages (Yoon et al., 2024). Importantly,
we also find it to be capable of adapting rewriters
to out-of-domain CQA scenarios (§4). However, a
core issue is how the retrievers’ preferences should
be modeled. While Yoon et al. (2024) uses the rank-
ing of gold passage as the retrievers’ preferences,
we aim to explore the extent to which the use of
labeled data can be reduced. We argue that the cor-
responding answers within the conversation can be
employed to formulate the retriever’s preferences.
Moreover, conversation answers are more readily
accessible than the gold passages, as they naturally
happen when the CQA data is constructed.

We propose a novel preference optimization ap-
proach, AdaQR, for query rewriters, aiming to op-
timize rewriters to cater for retrievers, by utilizing
conversation answers to model retrievers’ prefer-
ences. Specifically, we first let the SFT rewriter
to self-sample several rewrites for each query in-
stance, bypassing the need for costly human la-
beling or large language models prompting. These
rewrites are then used as the queries to retrieve a set
of passages by a target retriever. Subsequently, we
calculate the conditional probability of the answer
for each retrieved passage and the conversation,
and obtain the marginal probability of the answer
by marginalizing the passages set. The marginal
probability of the answer serves as the reward quan-
tifying the retrievers’ preferences over rewrites. Fi-
nally, we pair these rewrites based on their reward
for optimizing the SFT rewriter with DPO.

We examine the in-domain performance of
AdaQR where the training data for SFT and pref-
erence optimization all comes from the validated
datasets. Empirical results show that AdaQR
greatly improves the quality of rewrites generated
by the rewriter, compared with the SFT-only coun-
terpart, leading to comparable or even better per-
formance over existing SOTA QR methods. More
importantly, the out-of-domain evaluation, where

the preference optimization is applied to a out-of-
domain SFT rewriter, also observes the same per-
formance gain, justifying the ability of AdaQR to
adapt the rewriter to the target domains.

The key contributions of this work are: (1)
We propose AdaQR, a preference optimization ap-
proach for enhancing query rewriter. (2) AdaQR
models retrievers’ preferences by leveraging the an-
swer within conversations, allowing training query
rewriters for various conversational question an-
swering tasks even without passage labels. (3)
Experiments show AdaQR can not only amplify
rewriters’ in-domain capability, but also adapt them
to out-of-domain conversational question answer-
ing tasks.

2 Methodology

2.1 Task Formulation

We focus on the query rewriting task for conver-
sational passage retrieval using off-the-shelf re-
trievers. Given the conversation history H<t =
{qi, ai}t−1

i=1, where t denotes the current turn num-
ber, a query rewriting modelMθ is trained to trans-
form the the current question qt into a standalone,
self-contained query r̂t. We omit the subscript t in
subsequent description for simplicity. The retriever
R, which remains unchanged, takes r̂ as input to
search for relevant passages from the corpus P . In
the complete training process of QR, we only need
limited rewrite labels {r} from two seed datasets,
with no passage annotations required.

2.2 Overview

We propose AdaQR to build query rewriters appli-
cable to various conversational question answering
scenarios, through preference optimization involv-
ing no in-domain rewrite or passage labels. AdaQR
uses the probability of answers as the reward quan-
tifying the retriever’s preferences over the rewrites,
to further optimize an already tuned rewriter on
out-of-domain data and adapt it to a target dataset.
As shown in Fig. 1, AdaQR, warm-started with a
SFT query rewriter fine-tuned with a limited num-
ber of (in- or out-of-domain) labeled data before-
hand (§2.3), operates in the pipeline: (1) Sample
rewrites from the SFT rewriter, which are then used
as search queries for retrieving passages; (2) Derive
the marginal probability of the answer as reward
based on the conversation and retrieved passages
(§2.4); (3) Construct preference pairs using the re-
ward and tune the rewriter with Direct Preference
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Figure 1: Illustration of AdaQR which applies preference optimization to the rewriterMθ.

Optimization (Rafailov et al., 2024) (§2.5).

2.3 Supervised Fine-Tuning
Limited Rewrite Labels To empower models with
basic query rewriting capability, we need a limited
number of rewrite labels for supervised fine-tuning.
We separately curate labels (~10% of the training
set) from two seed datasets, QReCC (Anantha et al.,
2021) and TopiOCQA (Adlakha et al., 2022) for
comprehensive adaptation performance analysis of
AdaQR. We derive QReCC-SFT with 3, 850 rewrite
labels generated by ChatGPT (gpt-3.5-turbo)
under few-shot learning setting1 from previous
work (Ye et al., 2023). We derive TopiOCQA-SFT
with 4, 278 training instances, with rewrite labels
generated by gpt-4. The same instruction and in-
context learning examples used in QReCC from Ye
et al. (2023) are followed. The complete prompt
is detailed in Appendix Table 6. Note that no pas-
sage label is required in this stage. The resulting
two fine-tuning modelsMSFT , are subsequently
adapted and tested on additional datasets.
Training Objective We use the curated labeled
data to fine-tune a language model, equipping it
with basic query rewriting ability. Given the con-
versation history H and the current query q, the
LMMθ is trained to predict the rewrite r by mini-
mizing the negative log-likelihood as

LSFT = − log pMθ
(r|H, q) (1)

It should be noted that the models trained in
the above way might have insufficient rewriting
abilities, especially for out-of-domain conversa-
tional query (will be shown in §4). Next, we apply
AdaQR to these SFT rewriters to enhance their ca-
pabilities for both in- and out-of-domain scenarios.

1Ye et al. (2023) provides rewrite labels in both few-shot
learning (FSL) setting and advanced editor setting. We use
the labels generated in the initial FSL setting.

2.4 Reward Collection
Rewrite Self-sampling To obtain training data
for preference optimization, we use the fine-tuned
models,MSFT , to sample three rewrite candidates
{r̂i}3i=1 for each conversational query q with the
temperature T = 1. This strategy of self-sampling
by the model produces reasonable rewrite candi-
dates for preference optimization, bypassing the
need of expensive human labeling or large language
model prompting often adopted in collecting pref-
erence data (Ouyang et al., 2022; Bai et al., 2022;
Yoon et al., 2024).
Reward Calculation We propose a novel reward
calculation method that relies solely on conversa-
tion turns, eliminating the need for passage labels.
Motivated by Lewis et al. (2021), we use weak
supervision with the marginal probability of an-
swers as the preference feedback, treating the re-
trieved passages as a latent variable. Concretely,
for each rewrite candidate r̂i, we retrieve top-K2

passages P i = {pik}Kk=1 with the retriever R. A
pre-trained large language modelA then calculates
the log probability Sk of generating the target an-
swer a conditioned on each retrieved passage pik
and the original question q concatenated after the
conversation history H:

Sk = log pA(a|H, q, pik) (2)

We select a pre-trained model due to the conjecture
that LLMs have inherent capabilities established
during pretraining, while later fine-tuning or align-
ment may affect the distribution of logits, resulting
in alignment tax or capability misalignment (Huang
et al., 2023; Lin et al., 2024; Gekhman et al., 2024).
To control for the influence of the rewrite in the
probability calculation, we use the original conver-
sation as input question rather than the rewritten

2K = 5 except in §5.2 where we evaluate the effect of K.
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queries. This ensures the grounding passage pik is
solely responsible for the contribution to the score
Sk. By marginalizing the top K passages, we cal-
culate the marginal probability of answer ei as the
retrievers’ preference for rewrite candidate r̂i:

ei = ΣK
k=1PR(pik|r̂i)Sk (3)

where PR(pik|r̂i) denotes the distribution over pas-
sages obtained by applying a softmax function to
their retrieval scores. Intuitively, a more effective
rewrite used as a search query improves the chances
of recalling potentially relevant passages. A pas-
sage with heightened relevance further enhances
the likelihood of generating the answer. Conse-
quently, this rewrite leads to a better reward with a
higher marginal probability.

2.5 Preference Optimization
Our goal is to align the SFT rewrite modelMθ to
generate rewrites preferred by the target retriever,
quantified by the marginal answer probabilities e
as in Eq. 3. To this end, we apply Direct Prefer-
ence Optimization (Rafailov et al., 2024) with e as
reward to tuneMθ.
Preference Pairs Construction For each conver-
sation example, we construct pairwise preference
data {(H, q, r̂w, r̂l)} by selecting pairs of rewrites
(r̂w, r̂l) from {r̂i}3i=1 such that ew− el > δ, where
δ > 0 is a hyperparameter. Due to the characteris-
tics of ei, this constraint ensures that the preferred
rewrite r̂w will lead to useful passages more likely
than the dispreferred one r̂l. Unlike conventional
ones, our preference data is developed without any
human annotations, by using the automatic mea-
surement of retriever preferences in §2.4.
Training Objective Using the pairwise preference
data, we tune the modelMθ with DPO. The train-
ing objective is to minimize

LDPO = − log σ(β log
Mθ (r̂

w | q,H)

MSFT (r̂w | q,H)

−β log
Mθ

(
r̂l | q,H

)

MSFT (r̂l | q,H)
)

(4)

whereMSFT is the reference model from which
Mθ is initialized, σ is the sigmoid function, and β
is a hyperparameter. With this objective, the model
is optimized to maximize the contrast between
preferred and dispreferred rewrites. It thus is en-
couraged to generate rewrites with higher marginal
probabilities of the answers, which are more likely
to lead to the useful passages. See the complete
algorithm of AdaQR in Appendix Algorithm 1.

3 Experiments

Datasets We evaluate AdaQR for conversational
retrieval task on four conversational question an-
swering (CQA) benchmarks: QReCC (Anantha
et al., 2021), TopiOCQA (Adlakha et al., 2022),
Doc2Dial (Feng et al., 2020) and MultiDoc2Dial
(Feng et al., 2021). The answers in QReCC ex-
hibit relatively large word-level overlap to support-
ing passages while TopiOCQA uses free-form re-
sponses as answers (See Analysis 5.1). TopiOCQA
and MultiDoc2Dial involve topic-shift with turns
in a conversation grounded on multiple documents.
Retrieval Systems We investigate the performance
of AdaQR using both sparse and dense retriev-
ers. BM25 serves as the sparse retriever for all
datasets. For dense retriever, we employ ANCE
(Xiong et al., 2020) trained on MS-MARCO (Bajaj
et al., 2018) passage retrieval tasks for all datasets
except Doc2Dial, to align with previous studies
(Jang et al., 2024; Yoon et al., 2024). We use E5-
unsupervised (Wang et al., 2024) for Doc2Dial fol-
lowing Liu et al. (2024). Notably, we refrain from
additional training of the retrievers for our specific
task. More details are listed in Appendix B.1.
Evaluation Metrics We assess retrieval perfor-
mance using several metrics: Mean Reciprocal
Rank (MRR) calculates the average rank of gold
passages. Normalized Discounted Cumulative@3
(NDCG) evaluates the top-3 retrieval results by
considering both relevance and rank. Recall@k
reflects whether the retriever successfully identifies
the gold passages within top-k results.
Implementation We fine-tuned two SFT mod-
els with two seed datasets: QReCC-SFT and
TopiOCQA-SFT. Each SFT model underwent fur-
ther training with DPO, using retriever feedback
collected in §2.4 across all four datasets respec-
tively. Our backbone model for all configurations
is Mistral-7B (Jiang et al., 2023). To ascertain
the generalization ability across different LMs,
we further assessed the performance of Gemma-
7B (Team et al., 2024) and Llama2-7B (Touvron
et al., 2023) for all benchmarks with sparse retrieval
in Appendix Table 12. We used the pretrained
Mistral-7B-v0.1 as the CQA model for reward
calculation. See training details in Appendix B.2.
Baselines (1) T5QR (Lin et al., 2020) fine-tunes
T5-base (Raffel et al., 2020) to mimic human
rewrites. (2) CONQRR (Wu et al., 2022) opti-
mizes query rewriters using reinforcement learn-
ing, with the ranking of passages having maximum
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QReCC (8209) TopiOCQA (2514)
Type Method MRR MAP NDCG R@1 R@5 R@10 R@50 MRR NDCG R@1 R@5 R@10 R@100

Original 6.7 6.4 5.7 3.8 8.6 11.3 18.3 2.1 1.8 1.2 2.9 4.0 9.1
Human Rewrite 40.6 39.1 37.1 25.5 51.5 63.8 89.4 - - - - - -
T5QR* 33.4 - 30.2 - - 53.8 - 11.3 9.8 - - 22.1 44.7
CONQRR* 38.3 - - - - 60.1 - - - - - - -
ConvGQR* 44.1 - 41.0 - - 64.4 - 12.4 10.7 - - 23.8 45.6
IterCQR* 46.7 - 44.1 - - 64.4 - 16.5 14.9 - - 29.3 54.1
LLM IQR* 49.4 47.9 46.8 36.4 58.9 67.0 83.1 - - - - - -
GPT4 Prompting* - - - - - - - 18.5 - - - 35.1 62.9
Llama2 Distill* - - - - - - - 19.0 - - - 35.5 64.6
RETPO* 50.0 - 47.3 - - 69.5 - 28.3 26.5 - - 48.3 73.1
QReCC-SFT 45.9 44.4 43.2 32.4 56.0 64.9 83.7 16.3 14.6 10.2 22.4 29.3 52.1
+ Gold-Label 51.9 50.3 49.4 38.8 61.6 69.8 86.8 20.6 18.5 12.8 28.7 37.2 65.1
+ Ours 52.3 50.8 49.9 39.8 61.3 69.1 85.0 20.5 18.9 13.4 27.8 34.8 61.3

TopiOCQA-SFT 40.8 39.3 37.6 26.6 51.6 62.4 83.4 17.7 15.5 9.9 25.7 34.4 62.0
+ Gold-Label 48.5 47.0 45.9 34.5 59.0 68.6 87.2 20.5 18.1 12.3 29.0 38.2 68.0

Sp
ar

se
R

et
ri

ev
al

+ Ours 50.6 49.0 48.0 37.0 60.7 69.6 86.7 20.3 18.0 12.3 28.2 37.1 66.2

Original 7.5 7.2 6.9 4.9 9.6 11.5 15.5 4.1 3.8 2.3 6.1 7.8 13.4
Human Rewrite 39.5 37.6 36.7 25.3 50.7 60.3 75.1 - - - - - -
T5QR* 34.5 - 31.8 - - 53.1 - 23.0 22.2 - - 37.6 54.4
CONQRR* 41.8 - - - - 65.1 - - - - - - -
ConvGQR* 42.0 - 39.1 - - 63.5 - 25.6 24.3 - - 41.8 58.8
IterCQR* 42.9 - 40.2 - - 65.5 - 26.3 25.1 - - 42.6 62.0
InstructLLM* 43.5 - 40.5 - - 66.7 - 25.3 23.7 - - 45.1 69.0
RETPO* 44.0 - 41.1 - - 66.7 - 30.0 28.9 - - 49.6 68.7
QReCC-SFT 41.2 39.4 38.5 27.1 52.7 61.9 76.4 25.6 24.2 16.4 37.0 43.8 63.5
+ Gold-Label 45.5 43.5 42.8 30.4 58.3 67.7 81.5 36.4 35.2 24.3 51.2 59.8 79.6
+ Ours 45.3 43.5 42.7 30.4 58.1 67.2 81.4 36.0 34.6 24.5 50.5 58.2 78.7

TopiOCQA-SFT 39.8 37.8 36.9 25.8 50.9 60.4 75.7 33.4 31.9 22.8 46.7 54.7 73.8
+ Gold-Label 43.2 41.2 40.4 28.0 55.8 65.8 80.9 37.5 36.1 25.8 51.8 60.7 79.8

D
en

se
R

et
ri

ev
al

+ Ours 43.4 41.5 40.8 28.3 55.8 65.6 80.4 38.1 36.6 26.3 53.0 61.3 79.9

Table 1: Evaluation results of sparse and dense retrieval on QReCC and TopiOCQA. Two SFT models (QReCC-SFT
and TopiOCQA-SFT) are evaluated to demonstrate the in-domain and out-of-domain performance. We include
baselines following Yoon et al. (2024) and Ye et al. (2023), denoted with *. Methods requiring in-domain passage
labels are marked with background color in this and subsequent tables. The best scores among our implementation
(SFT, Gold-Label and Ours) under each setting are in bold. See experimental details in Appendix B.3.

token overlap to answers as weak supervision. (3)
ConvGQR (Mo et al., 2024) trains query rewriting
and expansion models with Mean Squared Error
between embeddings of query and relevant pas-
sage as an auxiliary loss. (4) IterCQR (Jang et al.,
2024) iteratively trains the query rewriter with co-
sine similarity between gold passages and reformu-
lated queries by ChatGPT as IR signal. (5) LLM
IQR (Ye et al., 2023) introduces “rewrite-then-edit”
to prompt ChatGPT first generates rewrites and
then edits them according to pre-defined criteria.
(6) RETPO (Yoon et al., 2024) prompts gpt-4
to generate multiple rewrites and collect gold pas-
sage ranking as retrieval feedback upon all train-
ing data of QReCC and TopioCQA. RETPO fine-
tunes Llama2-7b (Touvron et al., 2023) to repli-
cate the rewrite with the best retrieval preference,
termed as (7) Llama2 Distill, and then aligned it
with retrieval preference using DPO. (8) GPT4
Prompting (Yoon et al., 2024) generates rewrites
for test questions with gpt-4. (9) We implement
Gold-Label under our setting, with the ranking

of the gold passages as the retrieval preference.
This serves as an upper-bound for the performance
of our weakly supervised AdaQR. (10) We imple-
ment two vanilla baselines under our setting, i.e.,
Original and Human Rewrite, where the original
questions and dataset provided human rewrites3 are
used as retrieval queries.

4 Main Results

Tables 1 and 2 show the main result of AdaQR
across 4 benchmarks and 2 retrievers, alongside the
comparisons with baseline approaches.
Preference optimization brings improvement
over SFT. AdaQR (Ours) shows consistent and
evident improvement over its SFT-only counterpart
across all the combinations of datasets and retriev-
ers, indicating the effectiveness of preference opti-
mization in further enhancing rewriters’ abilities.
AdaQR improves in- and out-of-domain perfor-
mance. For in-domain scenarios, on QReCC, our

3Among the four datasets we evaluated, only QReCC pro-
vides human-labeled rewrites.
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Doc2dial (640)
Type Method MRR NDCG R@1 R@5 R@10 R@20

Original 32.7 31.5 22.7 44.5 52.3 61.3
GPT4o 0-shot 51.8 51.1 37.8 69.8 77.0 83.6
GPT4o 1-shot 53.8 53.2 40.2 70.0 77.8 86.7
QReCC-SFT 56.0 55.7 42.3 72.0 81.7 89.5
+ Gold-Label 60.6 60.6 46.1 78.0 85.2 91.4
+ Ours 59.9 59.7 46.1 77.3 84.5 90.0
TopiOCQA-SFT 56.4 55.9 41.9 74.5 82.3 88.8
+ Gold-Label 62.1 62.1 47.5 81.1 87.2 92.8

Sp
ar

se

+ Ours 61.8 61.8 47.7 80.5 86.3 91.4

Original 23.7 21.8 16.1 30.9 40.0 46.1
GPT4o 0-shot 44.9 43.4 32.5 59.1 68.3 77.2
GPT4o 1-shot 45.6 43.9 33.0 60.3 68.9 78.9
QReCC-SFT 47.3 46.8 32.0 64.2 75.8 84.4
+ Gold-Label 54.4 53.8 38.6 73.0 84.8 91.9
+ Ours 53.6 52.9 38.4 71.3 81.9 91.1
TopiOCQA-SFT 46.5 45.1 32.3 62.7 73.8 81.4
+ Gold-Label 53.9 53.6 38.4 71.6 82.0 88.9

D
en

se

+ Ours 51.3 50.4 35.6 69.2 79.7 87.8

MultiDoc2dial (648)

Original 34.6 38.4 25.0 44.6 54.2 63.9
GPT4o 0-shot 47.8 46.7 34.7 63.0 72.5 80.6
GPT4o 1-shot 48.7 47.9 35.0 65.6 74.2 83.3
QReCC-SFT 51.4 50.9 38.6 65.7 75.3 82.7
+ Gold-Label 55.7 55.4 42.0 71.9 81.3 88.0
+ Ours 55.6 55.6 42.1 71.5 80.3 87.0
TopiOCQA-SFT 52.1 50.9 38.6 69.0 77.0 84.7
+ Gold-Label 55.3 54.1 42.4 70.5 80.3 87.7

Sp
ar

se

+ Ours 56.6 55.9 43.5 73.0 81.3 87.2

Original 23.8 21.8 15.4 33.5 39.5 45.2
GPT4o 0-shot 39.3 37.1 27.6 54.5 64.0 71.9
GPT4o 1-shot 39.8 37.8 27.5 54.0 65.9 73.6
QReCC-SFT 41.6 40.7 27.6 57.3 67.9 75.9
+ Gold-Label 45.7 44.8 31.5 62.5 72.1 83.5
+ Ours 44.3 42.9 30.3 60.5 71.3 81.3
TopiOCQA-SFT 39.9 37.8 27.8 53.1 64.0 74.4
+ Gold-Label 45.1 43.3 31.9 58.6 72.8 82.4

D
en

se

+ Ours 43.8 42.2 30.4 57.6 70.2 80.9

Table 2: Evaluation results of sparse and dense retrieval
on Doc2Dial and MultiDoc2Dial. Both two SFT mod-
els (QReCC-SFT and TopiOCQA-SFT) are out-of-domain
evaluation. We include zero-shot and one-shot (an ex-
ample from QReCC) learning performance of GPT4o
as comparison baselines. See prompt in Appendix A
and more analysis in Appendix D.

approach, QReCC-SFT+Ours, outperforms all base-
lines; while on TopiOCQA, TopiOCQA-SFT+Ours
surpasses baselines other than RETPO and its ablated
variant Llama2 Distill under BM25 retriever, in
terms of average performance. These baselines all
necessitate passage labels, especially RETPO and
Llama2 Distill which involve extensive use of
both passage labels and rewrite labels from the com-
bination of above two datasets. For out-of-domain
scenarios across four datasets, Ours that began with
a heterogeneous-seed SFT and then underwent pref-
erence optimization on target datasets (e.g., QReCC
SFT+Ours on TopiOCQA, TopiOCQA SFT+Ours on
QReCC), still exceeds most of baselines. In most
cases, the heterogeneous-seed SFT lags behinds the
baselines, but gets close to or surpasses them after
preference optimization (+Ours). Together, our ap-
proach can not only amplify rewriters’ in-domain

capabilities but also successfully adapt them to out-
of-domain tasks, even in the absence of passage
labels.
Conversation answer is as effective as passage
labels for preference optimization. Both our ap-
proach and its variant with Gold-Label, are im-
plemented in the same paradigm but with different
types of reward (marginal probability of answer
vs. ranking of gold passages). The two approaches
have comparable performances, and even some-
times Ours outperforms Gold-Label, demonstrat-
ing the effective role of the marginal probability-
based reward for modeling the retrievers’ prefer-
ence, while such reward is more accessible. These
makes AdaQR a quite cost-effective method for
adapting rewriters to various CQA tasks.
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Figure 2: Average performance of Pseudo-Label and
Ours over SFT as the F1-score (x-axis) between the an-
swers and gold passages declines. Scores > 1 denote im-
provement over SFT. The four vertical lines correspond
to the F1-scores of QReCC (0.704), Doc2Dial (0.525),
MultiDoc2Dial (0.522) and TopiOCQA (0.392).

AdaQR has applicability to both sparse and
dense retrievers. Positive effect of our approach
can be seen for both sparse (BM25) and dense (E5,
ANCE) retrievers, which verifies the general ap-
plicability of our approach to various retrievers.
On the other hand, note that the ANCE retriever
has better performance than the BM25 for Topi-
OCQA, as exemplified by SFT’s higher retrieval
metrics under ANCE over under BM25. We also
observe that for TopiOCQA, the improvement of
Ours over SFT under ANCE is greater than under
BM25. Therefore, it is reasonable to speculate
that the benefit brought by our approach would get
more pronounced with better retrievers.

Similar patterns also manifest in the cases of
using Gemma and Llama2 as the base models (see
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QReCC (8209) TopiOCQA (2514) Doc2Dial (640) MultiDoc2dial (648)
Type Method MRR R@5 R@50 AVG MRR R@5 R@100 AVG MRR R@5 R@20 AVG MRR R@5 R@20 AVG

Sp
ar

se

QReCC-SFT 45.9 56.0 83.7 61.8 16.3 22.4 52.1 30.3 56.0 72.0 89.5 72.5 51.4 65.7 82.7 66.6
+ Pseudo-Label 50.5 60.8 86.1 65.8 13.1 17.4 47.2 25.9 58.0 75.8 90.0 74.6 52.3 69.6 85.0 69.0
+ Ours 52.3 61.3 85.0 66.2 20.5 27.8 61.3 36.5 59.9 77.3 90.0 75.7 55.6 71.5 87.0 71.4
TopiOCQA-SFT 40.8 51.6 83.4 58.6 17.7 25.7 62.0 35.1 56.4 74.5 88.8 73.2 52.1 69.0 84.7 68.6
+ Pseudo-Label 47.8 59.1 87.2 64.7 16.8 23.0 56.3 32.0 61.1 78.3 90.6 76.7 54.6 71.6 86.0 70.7
+ Ours 50.6 60.7 86.7 66.0 20.3 28.2 66.2 38.2 61.8 80.5 91.4 77.9 56.6 73.0 87.2 72.3

D
en

se

QReCC-SFT 41.2 52.7 76.4 56.8 25.6 37.0 63.5 42.0 47.3 64.2 84.4 65.3 41.6 57.3 75.9 58.2
+ Pseudo-Label 45.5 58.1 82.1 61.9 21.9 31.3 61.0 38.0 52.3 70.8 89.5 70.9 43.1 59.1 80.7 61.0
+ Ours 45.3 58.1 81.4 61.6 36.0 50.5 78.7 55.1 53.6 71.3 91.1 72.0 44.3 60.5 81.3 62.1
TopiOCQA-SFT 39.8 50.9 75.7 55.5 33.4 46.7 73.8 51.3 46.5 62.7 81.4 63.5 39.9 53.1 74.4 55.8
+ Pseudo-Label 43.3 56.0 81.6 60.3 29.0 40.2 71.3 46.8 51.3 68.0 88.0 69.1 43.6 57.6 78.9 60.0
+ Ours 43.4 55.8 80.4 59.9 38.1 53.0 79.9 57.0 51.3 69.2 87.8 69.5 43.8 57.6 80.9 60.7

Table 3: Comparison between two weakly supervised approaches: Pseudo-Label and Ours. Evaluation results of
sparse and dense retrieval with two SFT versions, i.e., QReCC-SFT and TopiOCQA-SFT, are listed.

Table 12). This points to the general effectiveness
of AdaQR with different open-source LMs.
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Figure 3: Retrieval performance with varying top-K
values (k = 1, 3, 5, 7, 9) in reward calculation using
QReCC-SFT. See detailed results in Appendix Table 13.
We further analyze two passage organization types (con-
catenation and marginalization) in Appendix F.

5 Analysis

5.1 Comparison of Weakly Supervised
Approaches

We compare our reward calculation approach
(Ours) to a word-level based weak supervision
method (Pseudo-Label) under the same setting,
as shown in Table 3. Both approaches eliminate
the need for in-domain labels. Our method derives
retrieval feedback through assessing the probability
of the target answer by marginalizing the top-K
passages. On the contrary, Pseudo-Label uses the
ranking of pseudo-relevant passages that have the
maximum F1-score to the answer as the retriever’s
preferences, following Wu et al. (2022).

AdaQR surpasses Psuedo-Label on Topi-
OCQA, Doc2Dial and MultiDoc2Dial across
all settings in terms of average performance.
The relatively good performance of Pseudo-Label

on QReCC is attributed to the dataset’s charac-
teristics, where the answers exhibit a high level
of overlap with sentences in the supporting pas-
sages. Consequently, this straightforward word-
level based weak supervision can readily identify
relevant passage, with 82% of gold passages de-
tected. However, Pseudo-Label is notably sus-
ceptible to the influence of the word-level over-
lap requirement. We visualize the performance
over SFT across four datasets with decreasing F1-
scores in Figure 2. The retrieval performance of
Pseudo-Label drops significantly as the F1-score
decreases. Notably, when assessed on TopiOCQA,
which features free-form responses as answers, this
approach even negatively impacts the results, re-
sulting in performance inferior to the SFT-only
version, i.e., Pseudo-Label/SFT < 1. In con-
trast, AdaQR measures the retrievers’ preferences
from semantic-level, demonstrating greater ro-
bustness and stability, providing consistent per-
formance improvement across all settings.

Moreover, as analyzed in Appendix E and
Figure 5, AdaQR shows notable enhancement
in addressing challenging queries with topic-
shift over SFT, achieving performance ratio com-
parable to the Gold-Label counterpart. How-
ever, Pseudo-Label’s heavy reliance on word-
level overlap hampers its effectiveness.

5.2 Effect of K Values in Reward Calculation
Figure 3 depicts the retrieval performance across
varying numbers of top retrieved passages (K =
1, 3, 5, 7, 9) for reward calculation in §2.4. Detailed
performance metrics are presented in Table 13 of
Appendix. Direct preference optimization across
all candidate values of K significantly improves
the retrieval performance over the SFT verison, re-
flecting the efficacy of our proposed reward calcu-
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Figure 4: Average retrieval performance with varying
number of training data during preference optimization
under QReCC-SFT setting.

lation methodology. Relying solely on the top-1
retrieved passage may yield sub-optimal results.
For instance, only 36.4% of training instances rank
the gold passage first with BM25 on QReCC. For
Doc2Dial, increasing the value of K tends to en-
hance the overall performance. AdaQR demon-
strates robustness against potential irrelevant
information when more passages are involved
by enlarging K, and effectively reflects retrievers’
preferences without requiring in-domain passages
or rewrite labels. We opt for K = 5 across all
settings to strike a balance between effectiveness
and efficiency, avoiding manual bias towards the
best configuration.

5.3 Effect of Data Volume in Preference
Optimization

We randomly sample rewrite pairs from those used
in the main experiment at various proportions,
20%−80% with an interval of 20%, and then use
DPO to tune QReCC-SFT on these sets of preference
pairs individually. The average performance on
QReCC (in-domain) and Doc2dial (out-of-domain)
is plotted in Fig. 4(a). The performance generally
improves with larger data volume. Notably, even
with only 20% of pairs, our approach still achieves
satisfactory improvement over its SFT version.

AdaQR allows us to incorporate extra instances
in QReCC training set that lack gold passage la-
bels for preference optimization, while these ex-
amples cannot be used for training of Gold-Label
approach. To verify the benefit of these unlabeled
data enabled by our weak supervision, we collect
the pair from each example with the largest reward
gap for both Gold-Label and Ours4, and gradually

4Even with the same δ value, Gold-Label and Ours would
obtain different numbers of preference pairs for a given in-
stance, due to the difference in their reward calculation. Here
we only collect the pair with the largest reward gap for each
instance, instead of all pairs with reward gap greater than δ in
§2.5, avoiding the variation in the number of preference pairs.

Method MRR MAP NDCG R@1 R@5 R@10 R@50

GPT SFT 45.9 44.4 43.2 32.4 56.0 64.9 83.7
+ Ours 52.3 50.8 49.9 39.8 61.3 69.1 85.0

Human SFT 35.5 34.2 32.2 21.8 45.6 56.5 81.0
+ Ours 51.9 50.4 49.4 38.7 61.5 69.8 86.5

Table 4: Comparison of sparse retrieval results on
QReCC dataset between AdaQR trained with GPT and
human rewrite annotations during SFT stage.

reduce the size of data used for Ours. In Fig. 4(b),
Ours with 40% of pairs reaches the similar level
of performance as Gold-Label, at which point
Ours uses 22% less number of training pairs than
Gold-Label. Crucially, when trained on ≥ 50%
of pairs, Ours consistently exceeds Gold-Label
and peaks with full data, highlighting AdaQR’s
advantage of exploiting unlabeled data.

5.4 Effect of AdaQR with Different SFT
Annotation

AdaQR only requires a limited number of labeled
rewrite annotations from seed datasets for the super-
vised fine-tuning (SFT) stage. During preference
optimization, the marginal probability of answers
is proposed as the weak supervision for rewrite
candidates derived by self-sampling, a process free
of rewrite and retrieval annotations. To analyze
AdaQR’s effectiveness and robustness under differ-
ent SFT annotations, we also adopt human rewrites
provided by QReCC dataset as SFT supervision
and report the results in Table 4. The same 3, 850
training instances are used, differing only in target
rewrite source, i.e., human versus GPT. There is a
notable performance gap between human rewrites
and GPT rewrites after the SFT stage (e.g., 21.8 vs.
32.4 on R@1). As revealed in Ye et al. (2023), this
may because human rewrites tend to just resolve
ambiguity, whereas LLM-generated rewrites often
include more informative context. Nevertheless,
following the preference optimization in our ap-
proach, the two settings yield comparable retrieval
performance. AdaQR significantly enhances the
performance and reduces the gap by incorporat-
ing retrieval feedback into the training phase of
the rewriter. This demonstrates the robustness of
AdaQR, as it can be effectively applied to diverse
annotations in seed training datasets.

5.5 Case Study
For an intuitive understanding of AdaQR’s effect
on the rewriters, we provide two cases including
the conversations and the corresponding rewrites

13451



by our models both before and after preference
alignment. The rewrites generated after AdaQR
alignment generally contain more informative con-
text. More importantly, the rewriters after align-
ment have a better skill of understanding conversa-
tion history, which is reflected in their more accu-
rate clarification of the original questions.

[Conversation history]
Q: Who was lise meitner? A: She was an austrian-swedish physicist.
...
Q: Why did she have to flee from germany? A: Because she lost her austrian
citizenship.
[Current query]
Why?
[Topiocqa-SFT rewrite]
Why did Lise Meitner have to flee from Germany?
[AdaQR (Topiocqa-SFT+Sparse DPO) rewrite]
Why did Lise Meitner lose her Austrian citizenship and have to flee from
Germany?
[Conversation history]
Q: What can you tell me about Retirement Benefits. A: We want you to know
what Social Security can mean for you and your family s financial future.
...
Q: What Else Affects I Retirement Benefits? A: You can choose to keep working
beyond your full retirement age. If you do, you can increase your future Social
Security benefits . Each extra year you work adds another year of earnings to
your Social Security record. Do you work beyond your full retirement age?
[Current query]
Yes?
[Qrecc-SFT rewrite]
Do you work beyond your full retirement age?
[AdaQR (Qrecc-SFT+Sparse DPO) rewrite]
If I choose to keep working beyond my full retirement age, can I increase my
future Social Security benefits by adding another year of earnings to my Social
Security record for each extra year I work?

Table 5: Cases of rewrites by the models before and
after preference alignments. The conversations are from
TopiOCQA and Doc2dial respectively.

6 Related Works

Conversational Retrieval is a precursor task to
open-domain conversational question answering.
Many existing approaches (Yu et al., 2021; Li et al.,
2022; Lin et al., 2021b) fine-tune specialized dense
retrievers. However, to leverage the benefits of
off-the-shelf single-turn retrievers, conversational
query rewriting has been applied to transform each
conversational question into a standalone query
(Elgohary et al., 2019; Vakulenko et al., 2020;
Yu et al., 2020). Previous approaches typically
train query rewriting models with human (Elgohary
et al., 2019; Anantha et al., 2021) or LLM-based
(Ye et al., 2023; Jang et al., 2024) rewrite labels.
However, acquiring in-domain labels for training
on each specific dataset proves costly and the stan-
dard fine-tuning alone fails to incorporate retrieval
feedback, potentially resulting in sub-optimal per-
formance (Wu et al., 2022; Yoon et al., 2024). Al-
though recent studies (Wu et al., 2022; Mo et al.,
2024; Yoon et al., 2024) suggest integrating signals

from retrievers with preference alignment, they re-
quire large amounts of in-domain labels. To al-
leviate this data bottleneck, we propose to train
effective query rewriting models and assess the
adaptation performance with only limited rewrite
labels and completely no passage annotation.
Preference Optimization is a critical research area
focused on ensuring that large language models ad-
here to human values and intents (Bai et al., 2022;
Ouyang et al., 2022; Rafailov et al., 2024). Ouyang
et al. (2022) fine-tunes LLMs with human feedback
to align them with user intent, involving collect-
ing human-annotated demonstrations and rankings
of model outputs, followed by supervised learn-
ing and reinforcement learning. Kim et al. (2023)
uses synthetic feedback instead of human annota-
tions, by reward modeling with synthetic feedback
to simulate high-quality demonstrations. Besides
improving general abilities of LLMs, some work
also focuses on specific aspects. For example, Tian
et al. (2023) uses truthfulness measurements as a
proxy preference signal to encourage factuality in
the model. Yoon et al. (2024) utilizes the gold pas-
sage’s ranking as the retrievers’ preferences to op-
timize the model for rewriting search queries. Our
approach is similar to Yoon et al. (2024) in the tar-
get task, query rewriting. However, the preference
signals used for aligning our model are synthesized
without any retrieval-related labeled data.

7 Conclusion

We introduce AdaQR for enhancing query rewriters
with minimal to zero in-domain labels, through the
preference optimization towards retrievers’ prefer-
ences. A novel feature of AdaQR is in measuring
retrievers’ preferences with marginal probabilities
of answers based on conversations and retrieved
passages, enabling improvement or adaptation of
query rewriters without labeled data. Experiments
show that AdaQR brings significant improvement
to query rewriters’ in-domain performance and
adapts them well to out-of-domain conversational
question answering tasks. AdaQR shows promise
in establishing effective query rewriters for arbi-
trary conversational question answering tasks with
minimal effort.
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Limitations

Although AdaQR demonstrates notable generaliza-
tion and adaptation capabilities with limited rewrite
label requirements, there are still some limitations.
First, our evaluation in this study was conducted on
four datasets. We used QReCC and TopiOCQA as
two separate seed datasets, and adapted SFT rewrit-
ers to the other three datasets as out-of-domain
evaluations. This may not encompass all possible
scenarios. Secondly, although we explore the effect
of AdaQR with different SFT annotations (Human
and GPT) in § 5.4, we did not conduct an in-depth
analysis of how the quantity of annotations in the
supervised fine-tuning stage might affect the over-
all performance, due to computational constraints.
Our objective is to use a small number of labels to
achieve good retrieval performance. Further investi-
gation into the impact of label quality and quantity
remains an avenue for potential enhancement of
rewriting performance and to reduce demands on
annotation. Lastly, we propose AdaQR to derive
retrievers’ preference using the conditional prob-
ability of answers. While we briefly analyzed the
impact of different types of passage organization
(concatenation and marginalization) in Appendix F,
our primary focus in this paper lies in the thorough
analysis of a marginalization approach due to its
robustness and effectiveness. Nevertheless, we ac-
knowledge the potential benefit of delving deeper
into concatenation-based methods, which might of-
fer valuable insights for the research community in
tackling the query rewriting task.

Ethics Statement

Query rewriting is instrumental in clarifying users’
search intents during information-seeking conversa-
tions, improving the retrieval of relevant passages.
Our work can greatly enhance the performance of
query rewriters. Nevertheless, it is important to rec-
ognize that our approach cannot always guarantee
perfect rewrites and may retrieve irrelevant or even
nonfactual information. This is partly due to the
inherent shortcomings of large language models,
which serve as the foundation models in our ap-
proach. These models have a propensity to generate
hallucinations. Other potential reasons include im-
perfect retrievers and limited search scopes. Low-
quality retrieval result may confuse or even mis-
lead users. Therefore, to ensure the reliability of

retrieval results in practical scenarios, it is crucial
to implement effective filtering mechanisms, such
as rerankers, to identify and exclude passages con-
taining nonfactual information.
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A Prompts

Supervised Fine-Tuning Label Collection Table 6
presents the prompt used for rewrite generation on
TopiOCQA dataset (§2.3). 4278 training instances
are derived with Azure OpenAI gpt-4 (0314).
The in-context learning examples are from the
QReCC dataset. We do not use in-domain demon-
strations for TopiOCQA rewrite label generation
since our approach can train effective rewrite mod-
els with a limited number of rewrite instances with-
out requiring optimal labels. For QReCC, we use
3850 rewrite labels provided by Ye et al. (2023),
who offering annotations in both few-shot learn-
ing (FSL) setting and advanced editor setting. In
the editor setting, ChatGPT refines the rewrites
from FSL, functioning as a rewrite editor to pro-
vide more competitive results. We use the labels
generated in the initial FSL setting.
GPT4o Prompting Baselines Tables 7 and 8 list
the prompt for GPT4o prompting used as Doc2Dial
and MultiDoc2Dial baselines in Table 2.

B Experimental Details

B.1 Retrieval

For sparse retrieval BM25, we use Pyserini (Lin
et al., 2021a) for efficient search and set k1 = 0.82
and b = 0.68 in QReCC, and k1 = 0.9 and b = 0.4
in TopiOCQA, Doc2Dial and MultiDoc2Dial re-
spectively. k1 controls the non-linear term fre-
quency normalization and b is the scale of the in-
verse document frequency. For dense retrieval,
we use Faiss (Johnson et al., 2017) with Exact
Search for Inner Product (IndexFlatIP). We em-
ploy ANCE (Xiong et al., 2020) across all dataset
except Doc2Dial, with checkpoint trained on MS-
MARCO (Bajaj et al., 2018) passage retrieval
tasks5, aligning with previous studies (Jang et al.,
2024; Yoon et al., 2024). Our evaluation on dense
retrieval of Doc2Dial employs E5-unsupervised

5https://huggingface.co/sentence-transformers/
msmarco-roberta-base-ance-firstp

Given a question and its context, decontextualize the ques-
tion by addressing coreference and omission issues. The
resulting question should retain its original meaning and
be as informative as possible, and should not duplicate
any previously asked questions in the context.

Context: [Q: When was Born to Fly released? A: Sara
Evans’s third studio album, Born to Fly, was released on
October 10, 2000.]
Question: Was Born to Fly well received by critics?
Rewrite: Was Born to Fly well received by critics?

Context: [Q: When was Keith Carradine born? A: Keith
Ian Carradine was born August 8, 1949. Q: Is he married?
A: Keith Carradine married Sandra Will on February 6,
1982.]
Question: Do they have any children?
Rewrite: Do Keith Carradine and Sandra Will have any
children?

Context: [Q: Who proposed that atoms are the basic units
of matter? A: John Dalton proposed that each chemical
element is composed of atoms of a single, unique type,
and they can combine to form more complex structures
called chemical compounds.]
Question: How did the proposal come about?
Rewrite: How did John Dalton’s proposal that each chem-
ical element is composed of atoms of a single unique type,
and they can combine to form more complex structures
called chemical compounds come about?

Context: [Q: What is it called when two liquids separate?
A: Decantation is a process for the separation of mixtures
of immiscible liquids or of a liquid and a solid mixture
such as a suspension. Q: How does the separation occur?
A: The layer closer to the top of the container-the less
dense of the two liquids, or the liquid from which the
precipitate or sediment has settled out-is poured off.]
Question: Then what happens?
Rewrite: Then what happens after the layer closer to the
top of the container is poured off with decantation?

Context: {current_context}
Question: {current_question}
Rewrite:

Table 6: Prompt for rewrite generation. Ye et al.
(2023) used this prompt to generate rewrite labels for
QReCC under few-shot learning setting with ChatGPT
(gpt-3.5-turbo). We follow the same prompt to de-
rive rewrite labels for TopiOCQA.

Given a question and its context, decontextualize the ques-
tion by addressing coreference and omission issues. The
resulting question should retain its original meaning and
be as informative as possible, and should not duplicate
any previously asked questions in the context.

Context: {current_context}
Question: {current_question}
Rewrite:

Table 7: Prompt for GPT4o-0shot prompting on
Doc2Dial and MultiDoc2Dial benchmarks. We use the
same instruction as the rewrite generation in Table 6.
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Given a question and its context, decontextualize the ques-
tion by addressing coreference and omission issues. The
resulting question should retain its original meaning and
be as informative as possible, and should not duplicate
any previously asked questions in the context.

Context: Q: When was Keith Carradine born? A: Keith
Ian Carradine was born August 8, 1949.
Q: Is he married? A: Keith Carradine married Sandra Will
on February 6, 1982.
Question: Do they have any children?
Rewrite: Do Keith Carradine and Sandra Will have any
children?

Context: {current_context}
Question: {current_question}
Rewrite:

Table 8: Prompt for GPT4o-1shot prompting on
Doc2Dial and MultiDoc2Dial benchmarks. We use the
same instruction as the rewrite generation in Table 6.
The out-of-domain demonstration example is also used
in Table 6 by Ye et al. (2023).

(Wang et al., 2024) following Liu et al. (2024)6.
We set the maximum sequence length to 512 for
both ANCE and E5-unsupervised We employ the
pytrec_eval toolkit (Van Gysel and de Rijke,
2018) for retrieval metric values computation.

B.2 Training

We use AdamW (Loshchilov and Hutter, 2017)
optimizer with learning rates of 1e-4 and 1e-5 for
SFT, DPO stages respectively. The learning rates
of both stages undergo a warmup of 10% of overall
training steps, followed by a linear decrease until 0.
We set the hyperparameter δ = 0.1 for organizing
preference pairs and β=0.1 during DPO stage.

We resort to quantized LoRA (QLoRA) (Hu
et al., 2021; Dettmers et al., 2023) as the parameter-
efficient fine-tuning technique for training our mod-
els with an NVIDIA A6000 GPU. Specifically,
QLoRA is applied to query and value attention
matrices inside each decoder block with a fixed
rank of 8, a scaling factor of 16, and a dropout
probability of 0.05. The model weights are loaded
in 4-bit NormalFloat Quantization.

B.3 Evaluation

We train query rewriting models with instances
that are not first-turn queries, as these are typically
self-contained in application. To ensure fair com-
parisons with previous baselines during evaluation,

6https://huggingface.co/intfloat/
e5-base-unsupervised

we incorporate all first-turn query test instances
for both QReCC and TopiOCQA benchmarks. For
TopiOCQA, we use the original questions as search
inputs. Following previous works (Wu et al., 2022;
Ye et al., 2023; Anantha et al., 2021), we replace
all first user queries in QReCC conversations with
their corresponding human rewrites as retrieval
queries. This step is necessary due to the ambigu-
ity of some questions in this dataset, necessitating
additional topical information. Consequently, the
performance of first-turn instances remains con-
sistent across experiments within our setup, i.e.,
SFT, Gold-Label, Pseudo-Label and Ours. We
present results for benchmarks Doc2Dial and Mul-
tiDoc2Dial on non-first-turn test instances.

C Data Statistics

We list the data statistics of four benchmarks in
Table 11. As described in Appendix B.3, we train
query rewriting models with instances that are not
first-turn queries. During the preference optimiza-
tion, conversational answers are needed to calculate
the marginal probability as reward. The number
of evaluation instances for QReCC, TopiOCQA,
Doc2Dial and MultiDoc2Dial are 8209, 2514, 640,
and 648 respectively.

D More Results on Doc2Dial and
MultiDoc2Dial

We use Doc2Dial and MultiDoc2Dial primarily
for a comprehensive assessment on the domain
adaptation capabilities of AdaQR, a task that pre-
vious QR works have not explored. To demon-
strate AdaQR’s out-of-domain performance, we
implemented zero-shot and one-shot GPT-4o as
two baselines, considering the prominent perfor-
mance of LLMs. In Table 9, we provide additional
results on Doc2Dial and MultiDoc2Dial, contrast-
ing AdaQR with ChatQA (Liu et al., 2024). Since
ChatQA fine-tunes the Dragon retriever instead of
employing query rewriting, we compare ChatQA’s
performance with AdaQR + Dragon retriever with-
out any additional training. Notably, our approach
uses rewrites generated by AdaQR aligned with
other dense retrievers as reported in Table 2, rather
than with Dragon. Aligning AdaQR with Dragon
as the target retriever could potentially yield further
performance improvements.
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Method R@1 R@5 R@10 R@50 MRR NDCG@3

Doc2Dial

Dragon + Fine-tuned (ChatQA) 37.2 73.4 83.9 97.2 53.0 51.9
Dragon + AdaQA rewrite (Ours) 47.2 82.8 91.6 99.1 63.1 63.3

MultiDoc2Dial

Dragon + Fine-tuned (ChatQA) 25.5 54.3 65.7 88.3 39.3 37.9
Dragon + AdaQA rewrite (Ours) 37.7 72.2 84.3 96.3 53.6 53.1

Table 9: Comparison between ChatQA and AdaQR on Doc2Dial and MultiDoc2Dial datasets.
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Figure 5: Performance ratio of turns with topic-shift and
all instances on the test set of TopiOCQA with dense
and sparse retrievers.

E Analysis of Topic Shift

Figure 5 visualizes the results of topic-shift in-
stances in TopiOCQA, measured by the perfor-
mance ratio of topic-shift turns over the overall per-
formance. A test example is considered topic-shift
if the gold passage of the current question differs
from the latest history turn. The statistics for ini-
tial turns, topic-shift turns and topic-concentrated
turns are 205, 672 and 1637 respectively. AdaQR
demonstrates significant improvement in han-
dling challenging topic-shift instances compared
to SFT and Pseudo-Label. Pseudo-Label’s

heavy reliance on word-level overlap between an-
swers and passages not only decreases the overall
performance, but also impairs its capability to han-
dle examples involving topic changes. We achieve
a performance ratio comparable to the Gold-Label
counterpart and even surpasses it on certain metrics
with a dense retriever.

F Analysis of Passage Concatenation and
Marginalization

QReCC (8209)
MRR MAP NDCG R@1 R@5 R@50 avg

C5 51.9 50.3 49.5 38.9 61.4 85.7 56.3
M5 52.3 50.8 49.9 39.8 61.3 85.0 56.5
↑ (%) 0.8 0.9 0.9 2.1 -0.1 -0.8 0.4

C9 51.0 49.4 48.5 37.8 60.8 86.1 55.6
M9 52.0 50.5 49.6 39.5 61.0 84.7 56.2
↑ (%) 2.1 2.2 2.3 4.5 0.3 -1.6 1.1

Doc2Dial (640)
MRR NDCG R@1 R@5 R@10 R@20 avg

C5 59.1 58.6 45.5 75.9 83.1 91.4 68.9
M5 59.9 59.7 46.1 77.3 84.5 90.0 69.6
↑ (%) 1.3 1.8 1.4 1.8 1.7 -1.5 0.9

C9 59.7 59.2 46.1 76.1 82.8 91.7 69.3
M9 60.3 60.1 46.7 77.0 85.6 90.9 70.1
↑ (%) 1.1 1.6 1.4 1.2 3.4 -0.9 1.2

Table 10: Comparison between two passage organiza-
tion types in reward calculation with QReCC-SFT setting:
Concatenated (C) vs. Marginalized (M). We con-
sider two K values, top-5 passages (C5 and M5) and
top-9 passages (C9 and M9) since C1 and M1 are identical.
↑ (%) denotes the percentage improvement of M over C,
relative to C.

To fully assess the effect of using the conditional
probability of answers as retrieval preference, we
introduce and compare two types of passage orga-
nization designs: (1) M5 follows the description in
§2.4 that computes the probability by marginalizing
top-K passages. (2) C5 is proposed as a variation
to M5, which computes the probability of answers
conditioned on concatenated top-K passages as a
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single input. The retrieval performance with top-5
and top-9 passages are reported in Table 10. In gen-
eral, M5 surpasses C5 on the average performance
and metrics with relatively small @k values. On
QReCC, we observed that the improvement per-
centage increases when the inclusion of more pas-
sages during the reward calculation, i.e., 9 vs. 5.
This suggest that M5 may exhibit greater resilience
to noise in information. Nevertheless, C5 demon-
strates its own advantage by achieving relatively
strong performance with fewer input tokens during
reward calculation.
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Algorithm 1 AdaQR Algorithm

Input: LLMMθ, Pre-trained LLM A, retriever R, seed dataset DS = {H, q, r}, target dataset DT =
{H, q, a} with corpus P , threshold δ

Output: Aligned query rewriting LLMMθ

1: // Supervised Fine-Tuning
2: initializeMSFT =Mθ and fine-tuneMSFT on DS using LSFT = − log pMθ

(r|H, q)
3: for (H<t, qt, at) ∈ DT do
4: r̂1, r̂2, r̂3 ∼MSFT (·|H, q) ▷ sample 3 rewrite candidates fromMSFT
5: // Reward Collection
6: for i ∈ {1, 2, 3} do
7: ei,X ← 0, ∅
8: P i = {pi1, ..., pik}Kk=1 ∼ R(r̂i, P ) ▷ retrieve top-K passages for each rewrite with retrieverR
9: for k ∈ {1, ...,K} do

10: Sk = log pA(a|H, q, pik) ▷ compute the log probability of answer conditioned on the retrieved
passage and conversational query

11: ei += PR(pik|r̂i)Sk
12: end for
13: end for
14: // Preference Pairs Construction
15: for w ∈ {1, 2, 3} do
16: for l ∈ {1, 2, 3} and l > w do
17: if ew − el > δ then
18: X ← X ∪ (H, q, rw, rl)
19: end if
20: end for
21: end for
22: end for
23: // Preference Optimization
24: initializeMθ =MSFT and fine-tuneMθ on X using
LDPO = − log σ(β log Mθ(rw|qt,H<t)

MSFT (rw|qt,H<t)
− β log Mθ(rl|qt,H<t)

MSFT (rl|qt,H<t)
)

25: return Mθ

Dataset Train (all/w-ans/w-ans+non-turn1) Evaluation (all/w-psg/w-psg+non-turn1) Corpus Size

QReCC 51928/47463/39677 16451/8209/6852 ∼50M
TopiOCQA 45450/41798/38862 2514/2514/2309 ∼50M
Doc2Dial 21998/21998/10011 640/640/640 1557
MultiDoc2Dial 24603/24603/11101 648/648/648 1559

Table 11: Data statistics of QReCC, TopiOCQA, Doc2Dial and MultiDoc2Dial. For training split, we report the
total number of instances (all), the number of instances with answers (w-ans), and the number of instances with
answers that are not first turns (w-ans+non-turn1). For evaluation, we report the total number of instances (all),
the number of instances with passage labels (w-psg), and the number of instances with passage labels that are not
first turns (w-psg+non-turn1) since reference labels are needed for metric scores calculation.
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Gemma-7B Llama-7B

Method MRR MAP NDCG R@1 R@5 R@50 MRR MAP NDCG R@1 R@5 R@50
QReCC-SFT 45.7 44.2 42.9 32.3 55.5 83.6 45.4 43.9 42.4 32.1 55.3 83.4
+ Pseudo-Label 50.7 49.1 48.0 37.5 60.3 86.3 50.9 49.3 48.3 37.8 60.7 85.2
+ Gold-Label 51.2 49.7 48.7 37.8 61.3 86.7 51.3 49.7 48.7 38.2 60.9 85.7

QReCC

+ Ours 52.5 50.8 50.1 39.4 61.7 84.8 52.0 50.4 49.6 39.5 60.9 83.8

Method MRR NDCG R@1 R@5 R@50 R@100 MRR NDCG R@1 R@5 R@50 R@100
QReCC-SFT 16.4 14.7 10.5 22.6 45.4 52.7 15.3 13.6 9.2 21.3 45.0 51.4
+ Pseudo-Label 13.4 11.8 8.6 18.0 38.4 45.7 12.87 11.4 8.4 16.9 37.4 45.1
+ Gold-Label 20.5 18.3 12.5 28.6 57.8 65.8 19.4 17.2 11.9 27.0 56.2 64.5

TopiOCQA

+ Ours 20.4 18.5 13.1 28.2 54.8 62.7 18.86 17.2 12.3 25.5 50.8 58.8

Method MRR NDCG R@1 R@5 R@10 R@20 MRR NDCG R@1 R@5 R@10 R@20
QReCC-SFT 57.9 57.2 44.7 75.0 82.5 90.8 56.2 55.8 42.3 74.1 80.9 88.3
+ Pseudo-Label 58.8 58.5 44.7 76.3 84.2 91.6 58.9 59.1 44.5 75.8 84.1 90.5
+ Gold-Label 60.3 60.2 46.1 78.3 85.6 93.0 60.3 60.2 46.6 75.9 85.3 91.6

Doc2Dial

+ Ours 60.9 60.8 46.9 78.8 86.1 93.1 59.3 59.5 45.6 74.7 84.5 91.7

Method MRR NDCG R@1 R@5 R@10 R@20 MRR NDCG R@1 R@5 R@10 R@20
QReCC-SFT 52.0 50.4 40.1 65.4 74.7 84.3 51.2 50.8 37.8 67.0 75.5 83.2
+ Pseudo-Label 53.3 52.0 41.1 67.4 76.1 86.1 54.7 54.3 41.7 69.9 78.1 86.0
+ Gold-Label 54.7 53.7 42.0 68.4 79.0 88.1 55.2 55.0 41.5 71.0 78.4 87.2

MultiDoc2Dial

+ Ours 55.1 53.9 42.1 70.2 80.1 88.1 56.5 55.8 43.4 73.3 80.4 87.8

Table 12: Evaluation results of sparse retrieval (BM25) on QReCC, TopiOCQA, Doc2Dial and MultiDoc2Dial with
Gemma-7b and Llama-7b. Due to computational constraints, we experiment AdaQR with QReCC as seed dataset
only.

QReCC (8209) Doc2Dial (640)
R@1 R@5 R@10 R@50 MRR MAP NDCG R@1 R@5 R@10 R@20 MRR NDCG

QReCC SFT 32.4 56.0 64.9 83.7 45.9 44.4 43.2 42.3 72.0 81.7 89.5 56.0 55.7

+ Top-1 39.4 61.0 68.6 84.4 52.0 50.4 49.6 45.3 76.1 82.7 90.0 59.2 59.2
+ Top-3 39.6 61.1 68.7 84.7 52.1 50.6 49.7 45.0 77.0 84.5 91.1 59.3 59.2
+ Top-5 39.8 61.3 69.1 85.0 52.3 50.8 49.9 46.1 77.3 84.5 90.0 59.9 59.7
+ Top-7 39.7 61.3 69.0 84.9 52.4 50.7 49.9 46.4 77.7 85.0 90.2 60.2 60.2
+ Top-9 39.5 61.0 68.9 84.7 52.0 50.5 49.6 46.7 77.0 85.6 90.9 60.3 60.1

Table 13: Evaluation results of sparse retrieval (BM25) on QReCC and Doc2Dial with varying top-K values
(K = 1, 3, 5, 7, 9) during reward calculation with QReCC-SFT setting.

QReCC (8209) Doc2Dial (640)
MRR MAP NDCG R@1 R@5 R@10 R20 R@50 AVG MRR NDCG R@1 R@5 R@10 R@20 AVG

QReCC SFT 45.9 44.4 43.2 32.4 56.0 64.9 73.6 83.7 55.5 56.0 55.7 42.3 72.0 81.7 89.5 66.2
+ 20% Data 51.2 49.6 48.7 38.5 60.5 68.8 76.2 84.0 59.7 59.4 59.2 45.6 75.9 83.3 91.6 69.2
+ 40% Data 51.7 50.1 49.2 39.1 60.8 68.4 76.0 84.1 59.9 59.6 59.4 45.9 76.7 83.4 90.9 69.3
+ 60% Data 51.7 50.1 49.2 39.1 60.6 68.4 76.0 84.2 59.9 59.4 59.4 45.6 76.3 83.6 90.6 69.1
+ 80% Data 52.0 50.4 49.5 39.6 60.8 68.5 76.2 84.5 60.2 59.5 59.7 45.3 77.3 84.5 90.6 69.5

+ 100% Data 52.3 50.8 49.9 39.8 61.3 69.1 76.7 85.0 60.6 59.9 59.7 46.1 77.3 84.5 90.0 69.6

Table 14: Evaluation results of sparse retrieval (BM25) on QReCC and Doc2Dial with varying number of training
data (20%, 40%, 60%, 80% and 100%) during preference alignment with QReCC-SFT setting.
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