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Abstract
Writing comprehensive commit messages is te-
dious yet important, because these messages
describe changes of code, such as fixing bugs
or adding new features. However, most exist-
ing methods focus on either only the changed
lines or nearest context lines, without con-
sidering the effectiveness of selecting useful
contexts. On the other hand, it is possible
that introducing excessive contexts can lead
to noise. To this end, we propose a code model
COMMIT (Context-aware prOMpting based
comMIt-message generaTion) in conjunction
with a code dataset CODEC (COntext and
metaData Enhanced Code dataset). Leverag-
ing program slicing, CODEC consolidates code
changes along with related contexts via prop-
erty graph analysis. Further, utilizing CodeT5+
as the backbone model, we train COMMIT
via context-aware prompt on CODEC. Experi-
ments show that COMMIT can surpass all com-
pared models including pre-trained language
models for code (code-PLMs) such as Com-
mitBART and large language models for code
(code-LLMs) such as Code-LlaMa. Besides,
we investigate several research questions (RQs),
further verifying the effectiveness of our ap-
proach. We release the data and code at: https:
//github.com/Jnunlplab/COMMIT.git.

1 Introduction

Commit messages (Liu et al., 2022b) are communi-
cation channels of programmers and part of version
control system, which tracks and manages every
modification to software code during development.
While version control systems help software teams
work better by comparing earlier versions of code
and turning back the clock to fix mistakes, natural
language commit messages summarize what hap-
pened in the code change and/or explain why the
code change was made (Guo et al., 2022). How-
ever, developers, whose time is precious, are often
reluctant to write commit messages.

∗Corresponding author: Dongning Rao.

Figure 1: Motivation example of this paper.

Five kinds of automatic commit message gen-
eration approaches have been proposed. First, in-
formation retrieval based models (Liu et al., 2018)
find the most similar messages for a new commit.
Second, end-to-end generative models (Liu et al.,
2019) are trained directly on task corpus. Third,
hybrid models (Wang et al., 2021a) incorporate
both retrieved and generated messages. Fourth,
pre-trained language models (PLMs) are adapted
into code tasks (Liu et al., 2022b). Fifth, large lan-
guage models (LLMs) are called via APIs or fine-
tuned (OpenAI, 2023). However, existing methods
normally have some shortcomings, e.g., focusing
on only the changed lines is not enough or includ-
ing unrelated lines around changes will bring in
noise (Dong et al., 2022a; Liu et al., 2022b). As ex-
emplified in Fig. 1, the added and deleted codes are
literally the same, leading to the code changes ill-
defined. Also, the association between the changed
lines and the unchanged parts of the program is un-
clear due to lacking program dependency analysis.

Motivated by the fact that many static analy-
sis tools1 have been proposed based on the the-
ory of code property graphs (CPGs) (Yamaguchi
et al., 2014), we propose a code model COM-
MIT (Context-aware prOMpting based comMIt-
message generaTion) in conjunction with a code
dataset CODEC (COntext and metaData Enhanced

1https://github.com/wimkeir/graft
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Code dataset). We construct CODEC for consol-
idating the code changes along with their seman-
tically related contexts via using CPGs. Further,
designing context-enhanced prompt, we implement
COMMIT using CodeT5+ (Wang et al., 2023) as
the backbone model that is trained on CODEC.

The technique novelty is two-fold. First, we pro-
pose new graph representations including Deleted
Context Graphs (DCGs), Added Context Graph
(ACGs), and Added-Deleted Context Graph (AD-
CGs). Both DCGs and ACGs can be efficiently
derived from CPGs and we can further construct
ADCGs via combining ACGs and DCGs (e.g., iden-
tifying the same program statements and collecting
the dependency edges). ADCGs contain richer in-
formation than both DCGs and ACGs. Based on
them, we can efficiently extract useful contexts (in-
dicated by ADCG nodes) from code differences
(i.e., Diffs) via program slicing. Second, we se-
lect possibly crucial contexts which have a CPG-
contained program dependency with the changed
codes, and enhance a prompt-based code model
(e.g., CodeT5+) for better message generation.

Our contributions can be summarized as follows:

• We construct a context-enhanced code dataset
CODEC for commit message generation.

• We propose a context-aware code model
COMMIT. Specifically, we introduce the new
graph representations ADCGs based on CPGs,
propose a dependency extraction algorithm,
design the context-aware prompt, and imple-
ment the proposed COMMIT using CodeT5+
as backbone that is trained on CODEC.

• Experimental results show that our model
COMMIT can outperform 16 compared mod-
els including code-PLMs/LLMs, and reach
the highest scores regarding multi reference-
based metrics, e.g., 13.13 on BLEU-4, 12.48
on METEOR and 24.05 on ROUGE-L.

The rest of this paper is organized as follows.
First, after introducing CPGs in Sec. 2, the collec-
tion process of CODEC, along with a comparison
with seven commonly used datasets, are placed at
Sec. 3. Then, COMMIT is presented in Sec. 4.
The experiments in Sec. 5 include comparisons
between various models and discusses on RQs as
well as case studies. We conclude this paper with
future works in (Sec. 6). More details including
the experimental settings and the prompt design are
posted in Appx. A∼D because of the space limit.

2 Code Property Graph

CPGs play a vital role in extracting associated con-
text of the code change in our method. Following
definitions from previous studies (Yamaguchi et al.,
2014), CPGs can be formally defined as follows.

Definition 1 Property Graph (PG). The prop-
erty graph G = (V,E, λ, µ) is a labeled directed
pseudograph with attached properties. V is the set
of all vertices, E ⊆ (V × V ) is the edge set, and
λ : E → Σ is the edge label function which assigns
a label from the Alphabet Σ to an edge. Given all
keys of properties K and all values of properties
S, µ : (V ∪ E) × K → S is the property assign
function which assigns properties to either a vertex
or an edge. E.g., key-value pairs can be (k, x).

Definition 2 Abstract Syntax Tree (AST). The
property graph of AST is GA = (VA, EA, λA, µA),
where VA is the tree nodes set and EA is the
tree edges set. While keys of GA are in KA =
{code, order}, and the value x ∈ N.

Definition 3 Control Flow Graph (CFG). The
property graph of CFG is GC = (VC , EC , λC , µC).
VC is the set of all lines of code whose type in AST
is a statement or expression. While λC is the edge
label function and ΣC = {true, false, ϵ}.

Definition 4 Program Dependence Graph
(PDG). The property graph of PDG is GP =
(VP , EP , λP , µP ), where λP : EP → ΣP and
ΣP = {C,D} and C and D stand for control flow
data flow respectively. Additional property sym-
bols can be added to dependencies as a predicate-
state-indicator (i.e., true/false).

Combining the above three graphs, we have CPG
defined as G = (V,E, λ, µ), where V = VA, E =
EA ∪ EC ∪ EP , λ = λA ∪ λC ∪ λP , and µ =
µA ∪ µC ∪ µP .

3 The CODEC Dataset

Since existing datasets lack supervision signals on
context of the code change, we construct our own
dataset for the studied task in this paper. We elab-
orate on main steps of dataset construction and
provide a comprehensive comparison with others.

3.1 Dataset Construction
Collection. With PyDriller2, we collect Java reposi-
tories with at least 1000 stars on GitHub. Alongside
source code changes, the context of the changes is
also recorded. E.g., related files, the status of the
code before and after the change.

2https://pydriller.readthedocs.io
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CmtGen NNGen CoDiSum PtrGNCMsg MultiLang ATOM MCMD CODEC

# Train Set 1 26,208 22,112 75,000 23,623 122,756 160,354 1,800,000 10,301
# Valid Set 3,000 2,511 8,000 5,051 15,344 19,796 225,000 3,433
# Test Set 3,000 2,521 7,661 3,989 15,344 17,818 225,000 3,435

# Repositories 1,000 1,000 1,000 2,000 12 56 500 160
Reproducible × × × × ✓ × ✓ ✓
Deduplicated × ✓ × × ✓ ✓ ✓ ✓

Filtering ✓ ✓ × × × ✓ ✓ ✓
Context2 × × × × × × × ✓

Content

Diff Diff Diff Diff Diff Diff Diff Diff
Message Message Message Message Message Message Message Message

Repo RepoName RepoFullName Repo
SHA SHA SHA
Timestamp Timestamp Context

1 # : number of items.
2 Additional information of context and metadata includes Owner, ChangeLines, AddLines, DeleteLines, NegativeChanges, PositiveChanges,
FileName, BeforeCode and AfterCode.

Table 1: Dataset Comparisons.

Filtering. Four filtering techniques are applied
in CODEC. (1) Uncontrollable changes. When
the number of changed lines is big, most auto-
matically generated comments are unreliable. I.e.,
changes over 20 lines are ignored. (2) Length lim-
itation. Commit message should have upper and
lower length bound. E.g., a message less than five
words is uninformative, while a message greater
than 150 words might be confusing. (3) Only Java
file changes. (4) Removing unrelated information.
E.g., issueID, commitID, and URL.

Optimization. Following previous studies (Gu
et al., 2016; Jiang et al., 2017), only the first sen-
tence of commit message is considered. We also
build a Bi-LSTM (Cornegruta et al., 2016) model to
keep only information that focuses on Why/What,
as recent studies suggested (Tian et al., 2022).

Statistics of CODEC is presented in Tab. 11,
Appx. A. We also provide an example of commit
message and its data items collected by PyDriller
in Fig. 5 and Fig. 6, Appx. A, respectively.

3.2 Dataset Comparisons
Tab. 1 compares CODEC with other seven datasets.

CmtGen (Jiang et al., 2017). It is a small dataset
based on the top 1000 Java repositories. CmtGen
introduces Verb-Direct Object based filtering, but
it still contains robot-generated information and
duplicate data.

NNGen (Liu et al., 2018). NNGen is the cleaned-
up version of CmtGen. It removes trivial and robot-
generated commit messages.

CoDiSum (Xu et al., 2019). With a file-level pro-
gramming language filter, CoDiSum is also based
on the top 1000 Java repositories.

PtrGNCMsg (See et al., 2017). PtrGNCMsg
uses the same pre-processing as CmtGen, but con-
tains the top 2000 Java repositories instead of 1000.

MultiLang (Loyola et al., 2017). While it con-
tains three programming languages from 12 hand-
selected repositories, it is not open-source.

ATOM (Liu et al., 2020). Gathering data from
the 56 Java projects with the most stars, ATOM fil-
ters out commits with noisy information and com-
mits that do not contain source code changes. This
dataset provides not only the original commits but
also the affected functions in each commit.

MCMD (Tao et al., 2021). With no filtering
techniques, this large dataset contains programs
in five programming languages from the top 500
repositories on GitHub.

From the comparisons, we find that even though
CODEC is relatively small-scale, it provides
context-enhanced training corpus for our approach.

4 The COMMIT Model

Implementing COMMIT has four steps: (1) CPGs
are built by analyzing source codes before and af-
ter changes. (2) Dependencies in CPG are first
extracted and then merged to ADCG. (3) Context-
aware representation is constructed on ADCG via
programming slicing. (4) Commit-message is gen-
erated by context-aware prompting on CodeT5+.

4.1 Overview of Our Model
Fig. 2 provides the overview of COMMIT. Af-
ter data collection (from GitHub and with pre-
processes, see the top part of Fig. 2), we build
CPGs and ADCG to acquire context enhanced rep-
resentation. Then COMMIT learns a continuous
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Figure 2: Overview of COMMIT.

prompt (starting from manually designed templates
and enhancing with extracted context, see the bot-
tom part of Fig. 2). At last, CodeT5+ is responsible
for the generation of commit messages.

4.2 Building Added-Deleted Context Graph
We use a static code analysis tool, Joern3, to build
two CPGs for the code before and after changes.
Particularly, these two CPGs are called CPGdelete

for deleted lines and CPGadd for added lines,
respectively. In CPGdelete, we annotate nodes,
which are corresponding to deleted lines, with a "-"
symbol (red vertices in Fig. 3). In CPGadd, we
annotate nodes, which are corresponding to added
lines, with a "+" symbol (green vertices in Fig. 3).

Inspired by code differences (Diffs for short)
which are generated via combining the codes be-
fore and after the changes, we propose ADCGs
which are generated via combining ACGs and
DCGs, facilitating the extraction of relevant con-
texts from Diffs. We identify the statement lines
with the same content and collect all dependency
edges from DCGs and ACGs. Thus, ADCGs con-
tain richer information. There are five kinds of
nodes (see Fig. 3): 1) deleted lines (e.g., line 8 in
red); 2) added lines (e.g., line 8 in green); 3) con-
text lines relevant with deletion (e.g., line 2 in dark
gray); 4) context lines relevant with addition (e.g.,
line 3 in light gray); 5) context lines relevant with
both (e.g., line 11, half dark and half light). Using
ADCGs, we can extract useful context statements
indicated by ADCG nodes from Diffs via program
slicing. We elaborate on the two stages below.

Identifying Dependency. Considering both
3https://docs.joern.io/code-property-graph

data dependency and control dependency, COM-
MIT extracts these two kinds of dependencies from
CPGadd and CPGdelete according to Alg. 1. On
contrast, data dependency is a relationship in which
a program instruction refers to the data of a pre-
ceding statement, while control dependence affects
the flow of control in a program from instruction to
instruction through the existence of branches. The
extraction results are stored in new graphs: deleted
context graph (DCG) and added context graph
(ACG), only dependency-related nodes kept.

Merging vertices and edges. After first merging
the identical vertices in ACG and DCG, COM-
MIT then integrates all dependency edges within
specified depth. Then, we have the ADCG (the
right part of Fig. 3).

4.3 Dependency Extraction Algorithm
Considering the negative effects of over-smoothing
and balancing between model’s complexity and effi-
ciency, we limit the scope of dependencies to a cer-
tain depth. I.e., Alg. 1 identifies context statements
with either data dependency or control dependency,
which are reachable to the changed statement from
ADCG within a specific depth.

After initialization in lines 1∼4, changed lines
are in nodesd, related statements along with the
connections between these nodes are in edgesd,
and program slicing are made. Then lines 5∼8
build the source and target mappings. The slicing
is then iteratively visited to accomplish the merge,
between lines 9∼23. While all related line numbers
should be added into result, the changed lines
need be removed from result (lines 24∼28).
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Figure 3: An example of extracting context from ADCG via Alg. 1, where a solid line indicates data dependency
and a dotted line indicates control dependency. With program slicing, the selected context statements (e.g., lines 2,
3 and 7) as well as the changed statements (e.g., lines +8 and -8) from source code are kept as input in our method.

Algorithm 1 Dependency Extraction Algorithm
Require: Changed lines change_nodes, ADCG vertices

nodes, ADCG edges edges, Depth of dependency
dependence_depth

Ensure: Line numbers of dependencies result
1: mapsrc,maptgt, result← ∅
2: nodesd ← change_lines
3: edgesd ← statements of data or control dependency
4: ∀src, tgt ∈ nodesd, make slicing(src, tgt, edges, 0)
5: for all e(v, u) ∈ edges do
6: mapsrc ← mapsrc ∪ e′(v, u′), u′ ∈ nodes
7: maptgt ← maptgt ∪ e′(v′, u), v′ ∈ nodes
8: end for
9: while slicing ̸= ∅ do

10: ele← the first element of slicing
11: if element.depth ≤ dependence_depth then
12: continue
13: end if
14: if ele.src( or ele.tgt) ̸= ∅ then
15: for all e(v′, u′) ∈ mapsrc(maptgt) do
16: if v′ or u′ ̸∈ nodesd then
17: nodesd ← nodesd ∪ v′ or u′

18: i← i+ 1
19: add slicing(v′, u′, edgesd, i)
20: end if
21: end for
22: end if
23: end while
24: for all v ∈ nodesd do
25: result← the line number of v
26: end for
27: result← result− change_lines
28: return result

4.4 Prompt Design
Prompts for commit message generation in previ-
ous studies (Liu et al., 2022b; Wang et al., 2023)
are simple, e.g., “Diff: [D], Commit message: [Z]”.
We extend the common prompts into four specific
templates T1 ∼ T4, as shown in Tab. 2. Each tem-
plate is composed of task prompt, code differences
and ground-truth commit message. All information
is concatenated in a textual prompt template.

No Template

T1 Task: Generate commit message based on diff. Diff:
[D]. Commit message: [Z].

T2 Commit message generation: Given diff, generate
its commit message. Diff: [D]. Commit message:
[Z].

T3 Generate commit message for diff: [D]. Commit
message: [Z].

T4 Given diff: [D]. Generate its commit message: [Z].

Table 2: Prompt Design for CodeT5+.

For input x, let the prompt word of features ai ∈
A of x be di and the prompt function is in Eq. 1.

fprompt(ai) = di : [ai] 1 ≤ i ≤ |A| (1)
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For the code change (i.e., diff) and commit mes-
sage, the prompts are in Eq. 2 and Eq. 3.

fprompt(ad) = dd : [ad] = Diff: [D] (2)

fprompt(acm) = dcm : [acm]

= Commit message: [Z]
(3)

Let ffill(at) be the task prompt, where at
is a task description, the full prompt for x is
fprompt(x) = ffill(at).fprompt(ad).fprompt(acm).
Then, our optimization target is defined as Eq. 4,
where S is the generated message.

P (S|X, fprompt) =

∑

x∈X,z∈[Z]


max

|z|∏

j=1

Pθ(zj |x, fprompt, z<j)


 (4)

5 Experiments

5.1 Basic Settings
Experiment settings can be located in Tab. 12,
Appx. B. We ran all experiments on two Nvidia
GeForce RTX™ 3090 GPUs. We set the hyperpa-
rameter “depth” to 3 be default after some probing
tests (see Tab. 5 for more details).

5.2 Compared Models
COMMIT is compared with 16 models in this paper.
These models can be recognized as five types.

(1) Information retrieval based models:
NNGen (Liu et al., 2018). NNGen combines the

nearest neighbor algorithm and the “bag of words”
model to retrieve instances that are most similar to
the target code (e.g.,facilitating cosine similarity).

Lucene4. It is a popular search engine.
(2) End-to-end generative models:
PtrGNCMsg (Liu et al., 2019). PtrGNCMsg

leverages graph neural networks.
CoreGen (Nie et al., 2021). CoreGen is a two-

stage context-aware method. It first learns contextu-
alized code representations from commit sequences
and then fine-tunes with downstream tasks. Both
stages are implemented based on Transformer.

FIRA (Dong et al., 2022b). FIRA represents the
code changes via leveraging fine-grained program
graph structures. It includes a GNN-based encoder
and a transformer-based decoder.

(3) Hybrid models:
CoRec (Wang et al., 2021a).Considering that

generative models tend to generate high-frequency
4https://lucene.apache.org/

words and ignore low-frequency words, as well as
the exposure bias problem, CoRec aggregates both
generative models and retrieval models.

RACE (Ahmad et al., 2021). RACE generates
commit messages based on retrieval enhancement.
It retrieves similar messages as examples to guide
the model and learns the intention of changes.

ATOM (Liu et al., 2022a). ATOM incorporates
AST for representing diffs and integrates both re-
trieved and generated messages via hybrid ranking.
It encodes AST paths from diffs with BiLSTM and
implements the ranking module via CNN.

(4) Code-PLMs:
CodeBERT (Feng et al., 2020). CodeBERT is a

variant of BERT adapted for code tasks.
CommitBERT (Jung, 2021). Based on Code-

BERT, CommitBERT is fine-tuned for the task of
commit message generation.

CommitBART (Liu et al., 2022b). Using de-
noising, cross modal generation and contrastive
learning, CommitBART is based on PLBART (Ah-
mad et al., 2021) and designed for GitHub.

CodeT5 (Wang et al., 2021b). CodeT5 is a vari-
ant of T5 (Raffel et al., 2020), which focuses on
the bi-directional relations between code and text.

UnixCoder (Guo et al., 2022). This is a cross-
modal PLM that maps abstract syntactic trees and
comments to sequential representations.

CodeT5+ (Wang et al., 2023). CodeT5+ is the
cross-modal and enhanced version of CodeT5.

(5) LLMs or code-LLMs:
GPT-3.5-Turbo (OpenAI, 2023). A powerful

LLM with parameter size of 175B.
Code-LlaMa (Rozière et al., 2023). Code-

LlaMa is adapted from LlaMa-7B (Touvron et al.,
2023) particularly for code tasks.

We design three prompts for LLMs (more infor-
mation can be found in Tab. 13, Appx. C). Prompt-
1 is a comprehensive and instructive prompt,
Prompt-2 is a prompt that aims to generate concise
and well-formatted commit messages. Prompt-3
adds a role in setting, requiring LLMs to focus on
creating clear, informative, and concise commit
messages. The prompts for zero-shot, one-shot,
and few-shot scenarios are placed at Tab. 14, Appx.
C. It should be noted that we randomly selected
few-shot examples from the training set. For GPT-
3.5 and Code-LlaMa, we report their best results in
our experiments for primary comparisons. A full
report of LLMs results can be found in Tab. 8∼9.
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5.3 Metrics
Common evaluation metrics used for gener-
ation tasks include BLEU (Papineni et al.,
2002), METEOR (Banerjee and Lavie, 2005) and
ROUGE (Lin, 2004). Following previous works,
we use BLEU-4 (B-4), METEOR (M) and ROUGE-
L (R-L). BLEU-4 scores by matching quadruple
pairs, taking the coherence and fluency at the
phrase level into consideration. It is more suitable
for evaluating the quality of summaries. ROUGE
calculates the overlap between two texts, includ-
ing characters, words and sentences. By using the
Longest Common Subsequence, ROUGE-L can
better capture long-distance dependencies. ME-
TEOR improves BLEU by better aligning with hu-
man judgments.

5.4 Results and Analysis
In this section, we investigate seven RQs to validate
the effectiveness and superiority of our approach.

RQ1: Comparisons with other methods

Model BLEU-4 METEOR ROUGE-L

NNGen 10.63 8.3 16.42
Lucene 9.81 7.99 15.36

PtrGNCMsg 10.39 6.79 20.00
CoreGen 10.58 8.72 18.70
FIRA 11.71 10.24 19.86

CoRec 10.85 8.26 16.86
RACE 11.43 8.74 20.41
ATOM 10.95 8.90 18.08

CommitBERT 10.03 7.02 16.94
CommitBART 11.55 8.58 18.32
CodeBERT 10.20 7.15 17.44
CodeT5 12.33 10.58 22.58
UnixCoder 11.13 8.15 18.23
CodeT5+ 12.92 11.56 23.35

GPT-3.5-Turbo 11.25 10.28 21.22
Code-LlaMa-7B 2.38 7.5 9.42

COMMIT (ours) 13.13 12.48 24.05

Table 3: Model Comparison.

Our model achieves the best performance regard-
ing three evaluation metrics, as shown in Tab. 3.
It reaches 13.13 on BLEU-4, 12.48 on METEOR,
and 24.05 on ROUGE-L. In comparison, the per-
formance of other methods is relatively low. Infor-
mation retrieval based models are fast but lack a
deep understanding of code changes, so they have
low scores on BLEU-4 and METEOR. End-to-end
models are insufficient in capturing long-distance
dependencies and complex language structures, so
they have a lower METEOR. Hybrid models com-

bine the advantages, but their ROUGE-L scores
still need improvements. PLMs/LLMs based mod-
els surpasses the others except for ours.

RQ2: Effectiveness of CPG
To explore the effectiveness of various depen-

dency representation techniques, we conduct exper-
iments using control flow graph (CFG), program
dependency graph (PDG) and code property graph
(CPG). Results are presented in Tab. 4.

BLEU-4 METEOR ROUGE-L

CFG 12.40 11.77 23.17
PDG 12.45 11.79 23.03
CPG 13.13 12.48 24.05

Table 4: Effectiveness of Code Property Graphs.

As can be seen from the experimental results,
the CPG score on the BLEU-4 indicator is 13.13,
higher than the other two. This result shows that
the CPG representation has significant improve-
ments on word order and the grammatical accuracy.
METEOR, as an indicator of semantic accuracy,
also has obvious advantages through our approach
with CPG. The ROUGE-L score focuses on the
long sequence similarity between the generated
text and the reference text. The CPG representa-
tion consistently achieves a highest score 24.05 on
this indicator.

RQ3: Effectiveness of Depth Setting
To analyze the impact of dependency depth on

context-aware enhanced representation, we test de-
pendency depths in a scale of {1,2,3,4,5}. See Tab.
5. The experimental results reveal a nonlinear per-
formance trend. When the model’s understanding
of dependency relationship is gradually enhanced,
the performance of the model improves, which is
reflected in the accuracy, clarity and relevance of
the commit message to the code changes.

Depth BLEU-4 METEOR ROUGE-L

1 12.37 12.02 23.22
2 12.68 12.32 23.34
3 13.13 12.48 24.05
4 12.71 12.30 23.39
5 12.57 12.32 23.16

Table 5: Hyperparameter Test.

This improvement peaks when the dependency
depth reaches 3. However, further increase in de-
pendency depth does not continue to promote per-
formance improvement, since a significant perfor-
mance drop is observed. After the dependency
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depth exceeds 3, continuous increase leads to nega-
tive impact on the generation of commit informa-
tion. The reason may be that with the increase of
dependency depth, the computational complexity
increases synchronously. When dealing with deep
dependencies, information may gradually lose fo-
cus, especially when dealing with structured data
such as natural language or code, those distant rela-
tionships are often not closely related to the current
context, and the model is difficult to identify and
extract signals that are beneficial to the current task.
Finally, when the model tries to grasp the broader
context, it may introduce some irrelevant or even
misplaced information, which will interfere with
the model’s performance.

RQ4: Effectiveness of Prompt Learning
To validate the design of prompts, we conduct

experiments using prompts T1∼T4 (Sec. 4.4) re-
spectively. Results in Tab. 6 show that T1 is best-
performing. However, we observe that the influ-
ence of minor variations in prompt templates was
marginal. We believe that these results indicate an
inherent robustness of the model to prompt varia-
tions.

Template BLEU-4 METEOR ROUGE-L

T1 13.13 12.48 24.05
T2 12.80 12.32 23.76
T3 12.83 12.32 23.74
T4 12.91 12.27 23.72

Table 6: Effectiveness of Prompt Learning.

RQ5: Effectiveness of Changed Lines
The number of changed lines indicates the com-

plexity of problems. To test this, we divide CODEC
into four subsets regarding the quantity range of
changed lines. We run COMMIT on each sub-
set and results are presented in Tab. 7. With the
amount growth of changed lines, the model’s per-
formance continuously degrades.

# Changed Lines BLEU-4 METEOR ROUGE-L

From 1 to 5 13.73 13.67 25.28
From 6 to 10 12.77 12.44 24.62
From 11 to 15 12.61 12.08 23.80
From 16 to 20 11.99 11.30 21.76

Table 7: Effect of the Number Of Changed Lines.

RQ6: Effectiveness of LLMs
The design of prompts for LLMs is shown in

Tab. 13. We also present the design of prompts for
in-context learning (i.e., zero-shot, one-shot, and

few-shot cases) in Tab. 14. All results of two LLMs
GPT-3.5-Turbo and LlaMa-7B in our experiments
are given in Tab. 8 and 9 respectively.

Prompts B-4 M R-L

Zero-shot Prompt-1 10.59 9.44 20.71
Zero-shot Prompt-2 9.24 10.28 20.00
Zero-shot Prompt-3 10.47 10.18 21.14
One-shot Prompt-1 11.25 9.53 21.22
One-shot Prompt-2 11.11 9.92 21.22
One-shot Prompt-3 11.20 9.69 21.16
Few-shot Prompt-1 10.44 9.81 20.52
Few-shot Prompt-2 10.19 10.10 20.42
Few-shot Prompt-3 10.47 9.85 20.6

Table 8: Results of GPT-3.5-turbo.

Prompts B-4 M R-L

Zero-shot Prompt-1 2.38 7.5 9.42
Zero-shot Prompt-2 1.14 6.55 7.0
Zero-shot Prompt-3 1.31 6.76 6.36
One-shot Prompt-1 1.65 5.77 7.21
One-shot Prompt-2 1.37 5.22 6.76
One-shot Prompt-3 1.14 4.39 5.67
Few-shot Prompt-1 2.29 6.2 8.61
Few-shot Prompt-2 1.71 5.6 5.6
Few-shot Prompt-3 2.12 6.57 8.26

Table 9: Results of Code Llama-7B.

To conclude, GPT-3.5 in all paradigms has
demonstrated the ability of generating accurate
commit messages. Although different learning
paradigms have varied instructions, they can un-
derstand the context to a certain extent and identify
the key points of code changes. However, the com-
mit messages generated by Code-Llama are too
detailed. It not only captures the core content of
code changes but also detailedly describes the code
and components directly related to these changes,
followed by a brief description of the purpose of
code changes. Although these excessive details
increase the information richness, it leads to unsat-
isfactory performance regarding three evaluation
indicators used in this paper.

RQ7: Effectiveness of Context-rich Data
To validate the effectiveness of context-enhanced

data solely, we propose three cases: ChangeLine,
where we only use the changed lines as input; Diff,
where we utilize the changed lines along with the
Diff blocks around as input; Context, where we
adopt the context-enhanced changed lines via Alg.
1 as input. We conduct this part of experiments
using four diverse PLMs including CodeBERT,
CodeT5, UnixCoder and CodeT5+, without fine-
tuning. We can observe that, all tested models

13529



obtain the maximal improvement in the Context
case regarding all metrics.

Model Represent B-4 M R-L

CodeBERT
ChangeLine 9.63 6.94 16.53
Diff 10.20 7.15 17.44
Context 10.47 7.52 17.96

CodeT5
ChangeLine 11.47 10.08 21.7
Diff 12.33 10.58 22.58
Context 12.47 10.69 22.89

UnixCoder
ChangeLine 10.21 7.46 18.07
Diff 11.13 8.15 18.23
Context 11.17 8.37 19.52

CodeT5+
ChangeLine 11.63 10.68 21.84
Diff 12.92 11.56 23.35
Context 13.11 11.73 23.65

Table 10: Effectiveness of Context Representation.

5.5 Human Evaluations
Considering the practical application of commit
messages, we add human evaluations such as
user studies to complement the aforementioned
automatic quantitative metrics. Following recent
works (Zhang et al., 2024), we first randomly select
300 samples from the test set. Then, we ask two
coders to independently review each Diff and se-
lect only one commit message, which fits the code
difference best, out of the 7 candidates (i.e., a repre-
sentative model per category in Table 2). We adopt
zero-shot prompting for two LLMs. Last, we count
the number of times (i.e., the average value of two
participants) selected as the best commit message
and show the distribution of participants’ prefer-
ences. As shown in Tab. 4, we find that in 33.2%
(i.e., the highest ratio) of all the 300 samples, the
commit messages generated by our model COM-
MIT are considered the best, further validating the
advantages of our approach.

Figure 4: Human evaluations on generated messages.

5.6 Case Study on Generated Messages
We compare the commit messages generated by
all compared models in this paper, given the same
input instance. Results are shown in Fig. 7∼11,
Appx. D, due to the writing space limit. We ob-
serve that: (1) The commit message generated by
COMMIT can be completely consistent with ref-
erence, while other compared methods have their
own shortcomings. See Fig. 7 for details. (2) Un-
expectedly, both CodeBERT and CodeT5+ output
some erroneous characters (e.g., “[jOOQ]”) in gen-
erated messages. (3) GPT-3.5-Turbo demonstrates
accurate commit messages, capturing the main idea
of code changes (e.g., removing methods, see Fig.
8). (4) The commit messages generated by CodeL-
lama are lengthy and over-described ( Fig. 9∼11).

6 Conclusion

This paper proposes the CODEC dataset and the
COMMIT model. As dependency-sensitive con-
texts to the code changes are fully considered,
CODEC is featured as context-aware comparing
with commonly used datasets. We also propose a
dependency extraction algorithm based on the inno-
vative added-deleted context graphs and implement
COMMIT using CodeT5+ as backbone. Exten-
sive experiments and case studies demonstrate the
effectiveness and superiority of our proposals.

Future works are as follows. Our current dataset
collected only Java programs. We would like to
extend the dataset by including other programming
language codes such as C++ and Python in future.
We will further validate the effective of our method
on diverse programming-style codes. Besides, we
will conduct an in-depth analysis on the contribu-
tion of each kind of program dependence used in
this paper, to the overall performance of our model.

Limitations

We summarize the limitations of this paper here.
First, our CODEC dataset only collected Java pro-
grams. By contrast, the Multilang dataset included
C++ and Python codes and the MCMD dataset fur-
ther took C# and JavaScript into consideration. The
effectiveness of our proposal has not fully explored
with other programming languages yet. Second, we
identified the crucial contexts to the code changes
via considering data- or control-dependence based
on program property analysis. However, the unique
contribution of each dependence to the model’s per-
formance has not deeply investigated.
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A Dataset Statistics

Statistics of CODEC is in Tab. 11. The average
number of tokens in Diff messages and commit
messages are 366.6 and 16.5, correspondingly.

Repo # commit # changed
line

Avg.
changes

graal 915 6,416 7.01
bazel 806 5,697 7.07

tomcat 657 4,661 7.09
buck 621 4,615 7.43
trino 589 4,206 7.14

jenkins 492 3,204 6.51
selenium 445 3,189 7.17

jmeter 428 3,166 7.4
dbeaver 416 2,809 6.75

closure-compiler 414 3,042 7.35

150 projects more

total 17,169 119,683 6.97

Table 11: Statistics of CODEC.

We provide an example of commit message as
shown in Fig. 5. The aim of the code change
and corresponding commit messages is to optimize
and simplify the implementation of the hashCode
method. The added code is showed by green lines
marked with “+”, and the deleted code is showed by
red lines marked with “-“. At the top, the commit
messages are displayed. For the sample in Fig. 5,
the data items collected by PyDriller is shown in
Fig. 6.

B Experiment Settings

Experiment settings are listed in Tab. 12. We ran
all experiments on two parallel Nvidia GeForce
RTX™ 3090 GPUs.
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Figure 5: A commit message.

Figure 6: Data Items of Fig. 5.

C Details of Prompt Design for LLMs

The design of prompts for LLMs is showed in Tab.
13. Tab. 14 lists design of prompts for in-context
learning (i.e., zero-shot, one-shot, and few-shot
cases). Results of GPT-3.5-Turbo and LlaMa-7B
are presented in Tab. 8∼9 of the main paper.

Prompt-1 is a comprehensive and instructive
prompt that asks the user to generate a concise
and informative commit message based on code

Diffs. It emphasizes the need to summarize the
code changes accurately and follow common com-
mit message standards, including no additional ex-
planations or translations. It ensures focus on the
main task by limiting the response to commit mes-
sages only. Prompt-2 is a prompt that aims to gen-
erate concise and well-formatted commit messages,
adhering to the standard format. It specifies that
no additional explanations or translations should
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Environment Settings

OS Ubuntu22.04
CPU I7-11700K
Memory 48G
GPU GeForce RTX 3090 × 2
Python 3.9.0
Pytorch 2.2.0
OpenPrompt 1.0.1
transformers 4.37.2
CodeT5+ CodeT5p-220m
Java JDK19
Joern 2.0
PyDriller 2.6
Optimizer AdamW
Learning Rate 5e-5

Epsilon Decay 1e-8
Warmup steps 1000
Max Gradient Norm 1.0

Epoch 8
Batch Size 16
Max Source length 512
Max Target length 128
Beam Search Size 10

Table 12: Experiment Settings

be included, which helps keep commit messages
concise. This prompt prioritizes directness and ef-
ficiency of the conversation. Prompt-3 builds on
Prompt-2 by adding a role in setting, requiring that
as a commit message generator, the user needs to
focus on creating clear, informative, and concise
commit messages. This prompt further clarifies the
nature of the task and encourages users to think
from the perspective of generators, avoiding any
unnecessary explanations or extra words in commit
messages to improve the efficiency and purpose of
communication.

D Details of Case Studies

In Fig. 7, the commit messages generated by COM-
MIT are completely consistent with the reference.
This shows that COMMIT can accurately identify
the key points of code changes and effectively ex-
tract meaningful contextual information from code
differences. Although the commit message gener-
ated by the NNGen model mentions the removal
of redundant code, it is not relevant to the specific
comparison “a==b”. The commit message gener-
ated by the Lucene method mentions the removal
of unnecessary if statements, which does not match
the actual code changes. The commit message gen-
erated by the PtrGNCMsg model is vague, incom-
plete, and has syntax errors. Although the CoRec
model focuses on solving a specific problem, it is
also irrelevant to the actual changes. The RACE

model mentions the removal of redundant method
calls, but the generated commit message contains
undefined symbols at the end and does not indicate
that it is a method related to the ValueTimestamp-
TimeZone class. Although the CommitBERT and
CodeBERT models mention the correction of the
error message, they do not change the error mes-
sage, but remove some methods. The message
generated by CommitBART inaccurately includes
a discussion of “setting exceptions,” which is irrel-
evant to the actual code changes. The UnixCoder
model generates messages that are not relevant to
the code changes and may cause confusion. In
regards to the messages produced by the CodeT5
model, they incorporate “add/subtract” and pertain
to the timestamp; however, the content does not
correspond to the desired alteration. The commit
message generated by the CodeT5+ model seems
to point to a specific problem, but “Revert” shows
that the previous changes are undone, which does
not match the actual changes. From the perspective
of generation accuracy, the ARIES model in this pa-
per shows high accuracy in this specific case that is
completely consistent with the standard reference,
demonstrating its ability of code commit message
generation based on context-aware enhancement
and prompt learning. The ARIES model success-
fully understands the main content of the code dif-
ference and accurately generates the corresponding
commit message. The other compared models have
different performances in accurately understanding
and reflecting the purpose of the code change, rang-
ing from incomplete commit messages to informa-
tion that is not directly related to the code change.
These deviations emphasize the importance of ac-
curacy in the process of automatically generating
code commit messages.

In Fig. 8, GPT-3.5-Turbo in all paradigms have
demonstrated the ability of generating accurate
commit messages, especially in reflecting the main
idea of code changes. Although different learn-
ing paradigms have different instructions, they can
all understand the context of code differences to a
certain extent and identify the key points of code
changes. In the zero-shot learning scenario, GPT-
3.5 relies on its extensive pre-trained knowledge
to understand code differences and must generate
commit messages without direct example guidance.
Therefore, the model’s output tends to reflect the
core content of the code changes, such as "Refac-
torValueTimestampTimeZone class: remove add()
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Prompts Text

Prompt-1

Generate commit messages based on code diff. Provide succinct and informative commit messages that
precisely encapsulate the modifications within the code. Utilize proper language and adhere to the conventions
typically observed in commit messages. Your responses should be limited to commit messages exclusively,
omitting any explanations or translations.

Prompt-2 Create informative, concise, and conventionally formatted commit messages for the given code diff. Do not
include any extra explanations or translations.

Prompt-3
As a commit messages generator, your task is to create a clear, informative, and concise commit messages
for the given code diff. Avoid adding any explanations or extra words.

Table 13: Design of Prompts for LLMs

Prompts shot Text

Prompt-1/2/3 Zero-shot [Prompt-1/2/3] Generate commit message for the following code diff. [diff]

Prompt-1/2/3 One-shot
[Prompt-1/2/3] Here is the code diff: [sample-1 diff]. This is the generated message:
[sample-1 message]. Generate commit message for the following code diff. [diff]

Prompt-1/2/3 Few-shot

[Prompt-1/2/3] Here is the code diff: [sample-1 diff].This is the generated message:
[sample-1 message]. Here is the code diff: [sample-2 diff]. This is the generated
message: [sample-2 message]. Here is the code diff: [sample-3 diff]. This is the
generated message: [sample-3 message]. Generate commit message for the following
code diff. [diff]

Table 14: Prompts for In-context Learning

and subtract() methods". In one-shot learning, the
model generates commit messages by observing an
example of a related task. This learning paradigm
enables GPT-3.5 to imitate the style and format of
the example and generate output that is both ac-
curate and follows the general format of commit
messages. For example, “Removeunsupported add
and subtract operations for TIMESTAMPWITH
TIMEZONEvalues.” not only accurately describes
the behavior of the code change but also meets the
requirements of conciseness and information rich-
ness of the prompt. When GPT-3.5 observes multi-
ple examples of related tasks, it not only learns how
to generate accurate commit messages but also cap-
tures the commonalities between examples, main-
taining the clarity and precision of the submission
information while generating richer details. For ex-
ample, "Remove unsupported operations from Val-
ueTimestampTimeZone class" reflects both compli-
ance with the prompt requirements and the model’s
improvement in understanding the details of the
task. Therefore, different learning paradigms and
specific prompt guidance enable GPT-3.5 to adjust
the level of detail and format of its output while
maintaining the accuracy of the submission infor-
mation.

The message generated by Code LlaMa is in
Fig. 9∼11. The commit message generated by
CodeLlama is too detailed. It not only accurately

captures the core content of the code changes but
also detailedly describes the code and components
directly related to these changes, followed by a
brief description of the purpose of the change. Al-
though this excessive detail increases the informa-
tion richness of the commit information to a certain
extent, it also violates the principle of simplicity
required by the prompt, resulting in unsatisfactory
performance in the three evaluation indicators of
this article.
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Figure 7: A Case for the Comparison of Models.
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Figure 8: A Case for the Comparison with GPT-3.5-Turbo.
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Figure 9: A Case for the Comparison with Code LlaMa (Zero-shot).
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Figure 10: A Case for the Comparison with Code LlaMa (One-shot).
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Figure 11: A Case for the Comparison with Code LlaMa (Few-shot).
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