@inproceedings{sohn-etal-2024-zero,
title = "Zero-Shot Cross-Lingual {NER} Using Phonemic Representations for Low-Resource Languages",
author = "Sohn, Jimin and
Jung, Haeji and
Cheng, Alex and
Kang, Jooeon and
Du, Yilin and
Mortensen, David",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-main.753",
pages = "13595--13602",
abstract = "Existing zero-shot cross-lingual NER approaches require substantial prior knowledge of the target language, which is impractical for low-resource languages.In this paper, we propose a novel approach to NER using phonemic representation based on the International Phonetic Alphabet (IPA) to bridge the gap between representations of different languages.Our experiments show that our method significantly outperforms baseline models in extremely low-resource languages, with the highest average F1 score (46.38{\%}) and lowest standard deviation (12.67), particularly demonstrating its robustness with non-Latin scripts. Ourcodes are available at https://github.com/Gabriel819/zeroshot{\_}ner.git",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sohn-etal-2024-zero">
<titleInfo>
<title>Zero-Shot Cross-Lingual NER Using Phonemic Representations for Low-Resource Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jimin</namePart>
<namePart type="family">Sohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haeji</namePart>
<namePart type="family">Jung</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alex</namePart>
<namePart type="family">Cheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jooeon</namePart>
<namePart type="family">Kang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yilin</namePart>
<namePart type="family">Du</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Mortensen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Existing zero-shot cross-lingual NER approaches require substantial prior knowledge of the target language, which is impractical for low-resource languages.In this paper, we propose a novel approach to NER using phonemic representation based on the International Phonetic Alphabet (IPA) to bridge the gap between representations of different languages.Our experiments show that our method significantly outperforms baseline models in extremely low-resource languages, with the highest average F1 score (46.38%) and lowest standard deviation (12.67), particularly demonstrating its robustness with non-Latin scripts. Ourcodes are available at https://github.com/Gabriel819/zeroshot_ner.git</abstract>
<identifier type="citekey">sohn-etal-2024-zero</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-main.753</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>13595</start>
<end>13602</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Zero-Shot Cross-Lingual NER Using Phonemic Representations for Low-Resource Languages
%A Sohn, Jimin
%A Jung, Haeji
%A Cheng, Alex
%A Kang, Jooeon
%A Du, Yilin
%A Mortensen, David
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F sohn-etal-2024-zero
%X Existing zero-shot cross-lingual NER approaches require substantial prior knowledge of the target language, which is impractical for low-resource languages.In this paper, we propose a novel approach to NER using phonemic representation based on the International Phonetic Alphabet (IPA) to bridge the gap between representations of different languages.Our experiments show that our method significantly outperforms baseline models in extremely low-resource languages, with the highest average F1 score (46.38%) and lowest standard deviation (12.67), particularly demonstrating its robustness with non-Latin scripts. Ourcodes are available at https://github.com/Gabriel819/zeroshot_ner.git
%U https://aclanthology.org/2024.emnlp-main.753
%P 13595-13602
Markdown (Informal)
[Zero-Shot Cross-Lingual NER Using Phonemic Representations for Low-Resource Languages](https://aclanthology.org/2024.emnlp-main.753) (Sohn et al., EMNLP 2024)
ACL