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Abstract

Existing zero-shot cross-lingual NER ap-
proaches require substantial prior knowledge
of the target language, which is impractical
for low-resource languages. In this paper,
we propose a novel approach to NER using
phonemic representation based on the Inter-
national Phonetic Alphabet (IPA) to bridge
the gap between representations of different
languages. Our experiments show that our
method significantly outperforms baseline
models in extremely low-resource languages,
with the highest average F1 score (46.38%)
and lowest standard deviation (12.67), par-
ticularly demonstrating its robustness with
non-Latin scripts. Our codes are available at
https://github.com/Gabriel819/zeroshot_ner.git

1 Introduction

Named entity recognition (NER) plays a crucial
role in many Natural Language Processing (NLP)
tasks. Achieving high performance in NER gener-
ally requires extensive resources for both sequence
labeling and gazetteer training (Das et al., 2017).
However, access to training resources for many
low-resource languages (LRLs) is very limited, mo-
tivating zero-shot approaches to the task. While
various strategies have been explored to enhance
zero-shot NER performance across languages, they
required either parallel data or unlabeled corpora
in the target language, which is difficult and some-
times impossible to obtain.

Our work tackles zero-shot NER under a strict
condition that disallows any target language train-
ing data. We decided to approach this condition by
projecting data into an International Phonetic Al-
phabet (IPA) space. Since different languages often
share similar pronunciations for the same entities,
such as geopolitical entities and personal names
(e.g., the word for China is /

>
tSajn@/ in English and

*These authors contributed equally to this work.

Figure 1: Zero-shot Cross-Lingual NER with IPA
phonemes.

/
>
tSina/ in Sinhala), the model trained on one lan-

guage can be transferred to others without target-
language training in NER. As shown in Figure 1,
we first convert orthographic scripts into IPA, and
then fine-tune a pre-trained model on the phonemes
of the source language, i.e., English. By using a
shared notation system—IPA—we can apply the
model to target languages directly. Our findings
show that fine-tuning phoneme-based models out-
performs traditional grapheme-based models (e.g.,
mBERT (Devlin et al., 2019)) by a large margin for
LRLs not seen during pre-training. Furthermore,
our approach demonstrates robustness with non-
Latin scripts, exhibiting stable performance across
languages with different writing systems.

2 Related Work

2.1 Zero-shot Cross-lingual NER

Recent approaches for zero-shot cross-lingual NER
can be categorized into three groups based on how
they use resources from target languages. One
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line of work involves using translation between
source and target languages to transfer NER ca-
pability (Yang et al., 2022; Liu et al., 2021; Mo
et al., 2024). These methods require parallel data
from both languages, which is not always avail-
able. Alternatively, some methods use unlabeled
target language data and adopt knowledge distil-
lation without needing parallel data (Deb et al.,
2023; Li et al., 2022). However, these approaches
are still not widely applicable to languages with
extremely low-resources, as such languages often
lack sufficient resources for training. On the other
hand, (Rathore et al., 2023) assumes that no data in
target language is available during training. While
it provides a practical setting for extremely low-
resource languages, it requires language adapters
pre-trained on similar languages to the target lan-
guage, as well as typological information (i.e., lan-
guage family) of various languages.

We assume a very strict problem setting where
the target language for zero-shot inference, as well
as its typological information, is completely un-
available during training. Unlike previous methods
that rely on some of the target language data during
training, we use IPA phonemes for NER, making
our method entirely data-independent for the tar-
get language. It only relies on the availability of
an easily constructed grapheme-to-phoneme (G2P)
module.

2.2 Phonemic Representation
Phonological traits of languages are useful in un-
derstanding different languages, as they often share
similar pronunciations for similar entities. It is par-
ticularly beneficial for NER, where many items,
such as geopolitical entities and personal names,
are pronounced similarly across various languages.
Moreover, phonemes are represented in IPA, which
is shared across all languages. By providing a
universal script, phonemic representations help
the model better address low-resource languages,
as the poor NER performance in these languages
comes significantly from the model’s limited abil-
ity to handle relevant scripts (Muller et al., 2020;
Severini et al., 2022).

While phonological information has been shown
to be helpful in language understanding for cross-
lingual transfer (Chaudhary et al., 2018; Sun et al.,
2021; Bharadwaj et al., 2016; Leong and White-
nack, 2022), few works have explored its bene-
fits compared to orthographic input, particularly in
zero-shot scenario where the target language is not

available for fine-tuning. Given that creating rule-
based transcription module for most low-resource
languages takes only a few hours and limited train-
ing, we use IPA to enable zero-shot cross-lingual
NER on languages with very scarce resources, with-
out requiring any additional corpus for those lan-
guages.

3 Our Approach

3.1 NER with Phonemes

In this paper, we conduct NER using phonetic
transcriptions (IPA) instead of conventional ortho-
graphic text. Leveraging the standard practice of
using multilingual pre-trained models for cross-
lingual transfer, we employ XPhoneBERT (Nguyen
et al., 2023), a model pre-trained on phonemes
from 94 different languages. By utilizing pre-
trained phonemic representations, the model can
fully utilize the phonological knowledge across di-
verse languages.

To create a phoneme-based version of the
dataset originally containing graphemes, we con-
vert the dataset into IPA representations. For
G2P conversion of various languages, we use
Epitran (Mortensen et al., 2018) along with the
CharsiuG2P toolkit (Zhu et al., 2022) which
XPhoneBERT originally employed. Epitran sup-
ports the transliteration of approximately 100
languages, including numerous low-resource lan-
guages. We apply transliteration at the word level,
maintaining the pre-tokenized units consistent with
the original version.

We adopt the BIO tagging scheme for entity tag-
ging. As the phoneme is the input unit for the
model, we assign each phoneme a named entity tag.
Only the first phoneme segment of the first word
of a named entity is assigned with a ‘B’ tag, indi-
cating the beginning of the entity. For example, the
phoneme sequence “bEn

>
dZ@m@n (Benjamin)” com-

prises nine segments1, and is labeled as [“B-PER",
“I-PER", ...,“I-PER"].

3.2 Cross-lingual Transfer to Unseen
Languages

We perform zero-shot named entity recognition on
low-resource languages, where the model is only
trained on a single high-resource language, in this
case, English. Although the model is fine-tuned on
a single language, its pre-training on approximately

1Phoneme segmentation is performed using the Python
library ‘segments,’ as utilized in XPhoneBERT.
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Case
Models

Languages Num
M C X

1 - - - sin, som, mri, quy, uig, aii, kin, ilo 8

2 - - ✓ epo, khm, tuk, amh, mlt, ori, san, ina, grn, bel, kur, snd 12

3 ✓ ✓ - tgk, yor, mar, jav, urd, msa, ceb, hrv, mal, tel, uzb, pan, kir 13

Table 1: Languages for each case. M, C, X indicates
mBERT, CANINE, and XPhoneBERT, respectively, and
✓represents the languages pre-trained on the model.

100 languages allows it to retain some knowledge
of other languages. We hypothesize that (i) each
model will leverage its pre-trained knowledge on
the target languages in performing NER, and (ii)
phoneme-based models will generally achieve su-
perior performance with unseen languages, bene-
fiting from phonological traits shared across lan-
guages.

To investigate the generalizability of phone-
mic representations in extremely low-resource lan-
guages, we do not allow any access to the target lan-
guage during training and exclude their typological
information to keep our method language-agnostic.
We use mBERT and CANINE as baselines, as these
models are compatible with our problem setting,
requiring no additional training data for the target
languages.

As shown in Table 1, we define three sets of lan-
guages based on whether the language has been
seen during pre-training of each model. Let L be
the set of all languages in our benchmark dataset
that are able to be transliterated, B the set of lan-
guages pre-trained on the baseline models, and X
the set of languages pre-trained on XPhoneBERT.
Case 1: (L \ (B ∪X)) includes languages not in
the pre-training data for any models.
Case 2: ((L ∩X) \ B) includes languages in the
pre-training data of XPhoneBERT only.
Case 3: ((L ∩ B) \X) includes languages in the
pre-training data of mBERT and CANINE only.

4 Experiments

Here we provide information about the datasets and
models we employed for the experiments. More
implementation details including hyperparameters
are provided in Appendix A.

4.1 Benchmark Dataset
We train and evaluate our method on the WikiANN
NER datasets (Pan et al., 2017) which has three
different named entity types: person (PER), orga-
nization (ORG), and location (LOC). The models
are trained only on English data and evaluated on
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Figure 2: Distribution of F1 scores for each language
set. X-axis shows each model using their first three let-
ters, with ‘(gr)’ and ‘(ph)’ indicating their input forms
(graphemes and phonemes, respectively). Colored hor-
izontal lines and the numbers above show the average
F1 scores for each model.

various low-resource languages. We select lan-
guages that are (i) supported by either Epitran or
CharsiuG2P toolkit for transliteration, and (ii) not
included in the pre-training of at least one of the
baseline models. This yields 33 languages in total,
as listed in Table 1.

4.2 Baseline Models

We use mBERT (Devlin et al., 2019) and CA-
NINE (Clark et al., 2022), both grapheme-based
language models, as baselines to compare to
XPhoneBERT (Nguyen et al., 2023), a phoneme-
based language model. All three models are BERT-
like transformer architectures pre-trained on a
Wikipedia corpora of multiple languages: mBERT
and CANINE are trained on the same 104 lan-
guages, while XPhoneBERT is trained on 94 lan-
guages and locales. Initializing with pre-trained
weights from Huggingface2, we train the encoders
with a fully connected layer added at the end of
each encoder for NER prediction. We also provide
a comparison with XLM-R (Conneau et al., 2020)
in Appendix D, with different set of languages for
Case 1, Case 2, and Case 3.

5 Results

5.1 Zero-Shot NER on Seen Languages

Figure 2 illustrates zero-shot performance of each
model for each language set (Case 1, Case 2, and
Case 3). Results on Case 2 and Case 3 align with
our expectation, with languages seen during pre-
training achieving better scores with the model.
For the 12 languages in Case 2, XPhoneBERT,

2https://huggingface.co/
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Input Model
Languages

AVG STD
sin som mri quy uig aii kin ilo

grapheme mBERT 10.71 44.76 38.48 55.07 18.70 12.58 62.37 79.51 40.27 25.00
grapheme CANINE 26.31 43.35 51.30 59.48 27.19 22.38 54.74 80.70 45.68 19.99

phoneme (ours) XPhoneBERT 43.61 38.91 38.07 51.90 44.82 31.03 49.67 73.05 46.38 12.67

Table 2: Zero-shot performance in F1 scores (%) on unseen languages (Case 1) using different models and input
types.
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Figure 3: NER results on the target language (Sinhala)
produced by each model trained on English data: (a)
CANINE (b) XPhoneBERT.

which was pre-trained on these languages, shows
an average F1 score of 55.20%, outperforming
mBERT and CANINE by 6.62% and 6.07%, re-
spectively. Languages of Case 3 also performs bet-
ter with models that were pre-trained on these lan-
guages. Specifically, mBERT achieves high scores
for pre-trained languages, with average F1 score of
69.18%, indicating its strong ability to generalize
across seen languages. F1 scores for all models
and languages are shown in Table 3 of Appendix.

5.2 Zero-Shot NER on Unseen Languages

Given the performance bias towards seen lan-
guages, we investigate the effect of using phonemes
with languages that were not seen by any model—
languages from Case 1. This ensures a fair
comparison for low-resource languages, since ex-
tremely low-resource languages are often not in-
cluded in the pre-training stage of language models.
As shown in Table 2, the phoneme-based model
demonstrates the best overall performance, achiev-
ing the highest scores on 3 out of 8 languages by
a significant margin. Furthermore, the phoneme-
based model exhibits the most stable performance
across unseen languages, with the lowest standard
deviation in scores.

Figure 3 shows a qualitative result of zero-shot
inference on Sinhala, a language that is not in the
pre-training data any model. While the character-
based model (a) fails to generalize to the language
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Figure 4: Performance distribution of each model on
languages using Latin and non-Latin scripts from unseen
languages.

with different writing system, the phoneme-based
model (b) successfully predicts the named entity
tags due to the similar pronunciation of “China”
and “Russia” across the languages. These results
indicate the robustness provided by phonemic rep-
resentations, validating our hypothesis about the
advantages they convey in NER tasks.

5.3 Robustness Across Writing Systems

One of the important advantages of using phonemic
representations for named entity recognition is that
it allows use of IPA. Using IPA for multilingual
tasks provides a unified notation system. Observ-
ing the significant performance drop of mBERT
on unseen low-resource languages (Figure 2), we
consider this gap is largely attributed to the differ-
ent writing systems of languages. Figure 4 shows
the distribution of F1 scores of each model on lan-
guages using Latin and non-Latin scripts from Case
1. mBERT, which performs the strongest on seen
languages, exhibits the largest performance discrep-
ancy between languages that use Latin and non-
Latin scripts when evaluated on unseen languages.
This highlights the limitation of the grapheme-
based model, as it depends on the specific scripts.

On the other hand, the phoneme-based model—
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XPhoneBERT—demonstrates the most consistent
performance over different unseen languages with
little performance gap between Latin and non-Latin
scripts. This suggests that taking advantage of
phonemes with its unified notation system allows
for better generalization on extremely low-resource
languages.

6 Conclusion

This paper presents the novel method of employing
phonemes for identifying named entities for low-
resource languages in zero-shot environments.

Our experiments compared the results of
phoneme-based models with grapheme-based mod-
els in a strict zero-shot setting, and have shown
that phonemes exhibit the best performance over
low-resource languages unseen by all models. The
results particularly demonstrate robustness towards
non-Latin scripts, which is crucial in context of
multilingual NER since languages are written in
diverse writing systems.

7 Limitations

One limitation is that we examined only the lan-
guages included in WikiANN dataset and G2P
modules we employed, resulting in a comparison
of a small number of completely unseen languages.
Additionally, we used a limited number of baselines
with models of restricted scales, making it difficult
to ensure that the results would remain consistent
if the models were more extensively tailored to the
task.

Perhaps more concerning, the performance
achieved by these approaches is not sufficient for
production use. While this is probably to be ex-
pected of zero-shot approaches, it demonstrates
how much work is left before these approaches
have practical utility.

8 Ethics Statement

In this work, we use WikiANN (Pan et al., 2017)
which is publicly available dataset to train various
models with different languages. The WikiANN
authors already grappled with many of the ethical
issues involved in the curation and annotation of
this resource. We did not find any outstanding ethi-
cal concerns, including violent or offensive content,
though there are likely strong biases in the named
entities represented in the data. We used the dataset
as consistent with the intended use. Nevertheless,

we need to emphasize that, considering the char-
acteristic of NER task, the dataset may contain
personal information such as a specific person’s
real name or actual company name. We do not
believe that this affects our result and the code and
data distributed with our paper do not include any
sensitive data of this kind.
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A Implementation Details

We ran training on English subset of WikiANN
dataset for 10 epochs, with learning rate of 1e-5,
weight decay 0.01, batch size 128, and warmup
ratio 0.025 on 1 NVIDIA RTX A5000 GPU. We set
the maximum sequence length of the input 128 for
all the models. We experimented with models of
BERT-base scale: mBERT with 177M parameters,
CANINE-C with 132M, and XPhoneBERT with
87M.

B Quantitative Results of Case 2 and
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We present the quantitative result of all three cases
in Table 3. The method using phoneme represen-
tation outperforms in Case 1 and Case 2 in terms
of average F1 score and demonstrates more stable
results with a lower standard deviation.
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Case Input Model Languages AVG STD

CASE 1

sin som mri quy uig aii kin ilo

grapheme mBERT 10.71 44.76 38.48 55.07 18.70 12.58 62.37 79.51 40.27 25.00
grapheme CANINE 26.31 43.35 51.30 59.48 27.19 22.38 54.74 80.70 45.68 19.99

phoneme (ours) XPhoneBERT 43.61 38.91 38.07 51.90 44.82 31.03 49.67 73.05 46.38 12.67

CASE 2

epo khm tuk amh mlt ori san ina grn bel kur snd

grapheme mBERT 71.31 16.12 64.52 11.90 63.83 9.96 48.73 73.89 50.44 83.12 54.16 35.02 48.58 25.13
grapheme CANINE 68.19 27.33 58.07 22.65 61.58 33.53 26.79 68.78 55.37 80.07 57.33 29.87 49.13 19.86

phoneme (ours) XPhoneBERT 75.26 31.86 61.17 44.85 52.58 40.73 59.42 68.68 49.95 77.61 52.95 47.28 55.20 13.83

CASE 3

tgk yor mar jav urd msa ceb hrv mal tel uzb pan kir

grapheme mBERT 74.10 56.60 74.30 73.59 57.09 74.98 64.44 84.93 69.94 67.24 80.04 53.98 68.14 69.18 9.28
grapheme CANINE 62.12 51.15 44.28 61.11 42.41 76.82 70.36 77.51 48.29 37.29 72.54 45.74 57.73 57.49 13.77

phoneme (ours) XPhoneBERT 48.93 50.87 35.12 45.98 33.37 61.76 58.72 58.76 32.52 28.93 60.92 43.85 35.95 45.82 11.85

Table 3: Zero-shot F1 score (%) result in Case 1, 2, and 3.
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Figure 5: Performance distribution of each model on
languages using Latin and non-Latin scripts.

C Comparison of Latin and Non-Latin
Languages

Figure 5 shows the performance distribution of
zero-shot NER on all languages, where the perfor-
mance distribution of languages using Latin and
non-Latin scripts are visualized separately. Com-
pared to mBERT and CANINE that exhibit sig-
nificant performance gaps between Latin and non-
Latin scripts, XPhoneBERT shows little difference
in performance distribution.

D Comparison with XLM-R

Here we provide additional results of zero-shot in-
ference of XLM-R(base) (Conneau et al., 2020)
and XPhoneBERT (Nguyen et al., 2023). XLM-R
shares the training objective with XPhoneBERT,
removing the variance that comes from the dif-
ference in pre-training objectives. Since XLM-R
is trained on different set of languages, we listed
up another sets of languages that corresponds to
Case1, Case2, and Case3, which refers to the set
of languages not trained on both models, languages
trained on XPhoneBERT not on XLM-R, and lan-

guages trained on XLM-R not on XPhoneBERT,
respectively.

As shown in Table 4, the result for Case1 is
consistent with our findings in the main exper-
iments, exhibiting relatively stable performance
with XPhoneBERT (higher average and lower stan-
dard deviation). Also, languages that are written in
non-Latin scripts perform significantly better with
XPhoneBERT, which aligns with our analysis in
the main text as well.

E Language Codes

In Table 5, we have listed ISO 639-3 language
codes of all languages used in the experiments.

F Benchmark and License

In Table 6, we provide the datasets, their statistics,
and license. We also used CharsiuG2P (Zhu et al.,
2022) toolkit for transliteration, which is under
MIT license.
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Case Input Model Languages AVG STD

CASE 1
mri quy aii kin ilo tgk yor ceb

grapheme XLM-R 29.93 65.09 14.58 49.05 71.29 40.96 55.01 64.31 48.78 19.42
phoneme (ours) XPhoneBERT 38.07 51.90 31.03 49.67 73.05 48.93 50.87 58.72 50.28 12.62

CASE 2
tuk mlt ina grn

grapheme XLM-R 53.63 58.81 72.55 44.80 57.45 11.61
phoneme (ours) XPhoneBERT 61.17 52.58 68.68 49.95 58.10 8.53

CASE 3
epo khm amh ori san bel kur snd sin som uig

grapheme XLM-R 73.82 48.85 64.89 54.93 59.92 82.93 75.61 42.90 64.91 55.52 61.74 62.37 11.88
phoneme (ours) XPhoneBERT 75.26 31.86 44.85 40.73 59.42 77.61 52.95 47.28 43.61 38.91 44.82 50.66 14.60

Table 4: Zero-shot F1 score (%) result in Case 1, 2, and 3 languages specifically selected for XLM-R and
XPhoneBERT.

Language ISO 639-3

Amharic amh
Assyrian Neo-Aramaic aii
Ayacucho quechua quy
Cebuano ceb
Croatian hrv
English eng
Esperanto epo
Ilocano ilo
Javanese jav
Khmer khm
Kinyarwanda kin
Korean kor
Kyrgyz kir
Malay msa
Malayalam mal
Maltese mlt
Maori mri
Marathi mar
Punjabi pan
Sinhala sin
Somali som
Spanish spa
Tajik tgk
Telugu tel
Turkmen tuk
Urdu urd
Uyghur uig
Uzbek uzb
Yoruba yor

Table 5: Language codes for all languages used in the
experiments.

Dataset Lang. Script Train Dev Test License

WikiANN

eng Latn 20k 10k 10k

ODC-BY

sin Sinh 100 100 100
som Latn 100 100 100
mri Latn 100 100 100
quy Latn 100 100 100
uig Arab 100 100 100
aii Syrc 100 100 100
kin Latn 100 100 100
ilo Latn 100 100 100
epo Latn 15k 10k 10k
khm Khmr 100 100 100
tuk Latn 100 100 100
amh Ethi 100 100 100
mlt Latn 100 100 100
ori Orya 100 100 100
san Deva 100 100 100
ina Latn 100 100 100
grn Latn 100 100 100
bel Cyrl 15k 1k 1k
kur Latn 100 100 100
snd Arab 100 100 100
tgk Cyrl 100 100 100
yor Latn 100 100 100
mar Deva 5k 1k 1k
jav Latn 100 100 100
urd Arab 20k 1k 1k
msa Latn 20k 1k 1k
ceb Latn 100 100 100
hrv Latn 20k 10k 10k
mal Mlym 10k 1k 1k
tel Telu 1k 1k 1k
uzb Cyrl 1k 1k 1k
pan Guru 100 100 100
kir Latn 100 100 100

Table 6: Statistics and license types for the dataset.
The table lists the script, number of examples in the
training, development, and testing sets for languages
in the WikiANN dataset. The dataset is strictly used
within the bounds of these licenses.
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