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Abstract

Benchmarking the performance of information
retrieval (IR) is mostly conducted with a fixed
set of documents (static corpora). However, in
realistic scenarios, this is rarely the case and
the documents to be retrieved are constantly
updated and added. In this paper, we focus on
Generative Retrievals (GR), which apply au-
toregressive language models to IR problems,
and explore their adaptability and robustness
in dynamic scenarios. We also conduct an ex-
tensive evaluation of computational and mem-
ory efficiency, crucial factors for real-world
deployment of IR systems handling vast and
ever-changing document collections. Our re-
sults on the StreamingQA benchmark demon-
strate that GR is more adaptable to evolving
knowledge (4 – 11%), robust in learning knowl-
edge with temporal information, and efficient in
terms of inference FLOPs (ˆ2), indexing time
(ˆ6), and storage footprint (ˆ4) compared to
Dual Encoders (DE), which are commonly used
in retrieval systems. Our paper highlights the
potential of GR for future use in practical IR
systems within dynamic environments.

1 Introduction

Transformer-based information retrieval (IR) mod-
els play a vital role in advancing the field
of semantic document search for information-
seeking queries. Notably, Generative Retrieval
(GR) (Petroni et al., 2019; De Cao et al., 2020;
Wang et al., 2022; Bevilacqua et al., 2022; Tay et al.,
2022; Zhou et al., 2022; Lee et al., 2022b,a; Sun
et al., 2023; Li et al., 2023b) has recently gained a
significant amount of recognition from the research
community for its simplicity and high performance.
However, Dual Encoder (DE) (Gillick et al., 2018;
Karpukhin et al., 2020a; Ni et al., 2021; Gao et al.,
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2022; Izacard et al., 2022; Ram et al., 2022) con-
tinues to hold sway in practical IR systems. This
contrast underscores the need for an investigation
into their practical applicability. There is a lack of
comprehensive comparison between GR and DE in
real-world scenarios where knowledge is continu-
ally evolving and efficiency is crucial.

To this end, we establish Dynamic Information
Retrieval (DynamicIR), a setup designed to sim-
ulate realistic scenarios for corpus updates in IR.
This DynamicIR setup includes two distinct up-
date strategies, (1) indexing-based updates: up-
dating only the index without any further pre-
training or finetuning and (2) training-based up-
dates: continually pretraining the parameters on
new corpora in addition to updating the index
(See Figure 1). Within this experimental setup,
we evaluate the adaptability of recent state-of-
the-art retrieval models: SEAL (Bevilacqua et al.,
2022), MINDER (Li et al., 2023b), and LTRGR (Li
et al., 2023a) for GR, and SPIDER (Ram et al.,
2022), CONTRIEVER (Izacard et al., 2022), and
DPR (Karpukhin et al., 2020a) for DE. Further-
more, we perform extensive comparison for the
efficiency of each method, considering factors such
as floating-point operations (FLOPs) (Kaplan et al.,
2020) required for the inference, indexing time,
inference latency, and storage footprint.

The findings of our study underscore the strength
of GR compared to DE across three key aspects:
adaptability, robustness, and efficiency. (1) GR
exhibits superior adaptability to evolving corpora
(Section 5). GR outperforms DE, showcasing 4
– 11% greater adaptability in both indexing-based
and training-based updates. Notably, GR not only
acquires new knowledge more effectively but also
shows no sign of forgetting; rather, training with
new corpora appears to enhance its existing knowl-
edge. (2) GR is more robust without inducing un-
desired bias from data characteristics (Section 5).
DE reveals a bias towards lexical overlap of times-
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Figure 1: Structure of DynamicIR. This figure shows the training and inference processes for three setups in
DynamicIR. We differentiate each model by color. First, in StaticIR, (A) retrieval models are pretrained on Cinitial

and finetuned on the query-document pairs Rinitial. (B) During inference, they perform retrieval only with the
indexed Cinitial. Second, in Indexing-based Update, (C) we use the same retriever developed from StaticIR and
conduct an inference with the indexed Cinitial and Cnew. Lastly, in Training-based Update, (D) we take the pretrained
model on Cinitial in StaticIR and continually pretrain it on Cnew. Subsequently, it is finetuned on the combination of
Rinitial and R1

new. (E) Using the updated retrieval model, we conduct an inference with the indexed Cinitial and Cnew.

tamps inserted into queries and documents, show-
ing significant degradation (52.23% Ñ 17.40%)
when the timestamps are removed. Whereas, GR
shows robust retrieval performance over temporal
data. (3) GR requires lower inference flops, re-
duced indexing costs, and a smaller storage foot-
print (Section 6). For inference flops, GR has Op1q
complexity with respect to the corpus size, requir-
ing 2 times less computation per query compared
to DE which has OpNq complexity, where N rep-
resents the corpus size. Regarding indexing, DE
necessitates re-indexing each time whenever the
model is updated. To make matter worse, the in-
dexing time itself is 6 times longer than GR. In
terms of storage footprint, GR requires 4 times less
storage by effectively compressing the knowledge
in its internal parameters.

2 Related Work

Temporal Information Retrieval. While recent
advancements have focused on the temporal up-
dating of language models (Dhingra et al., 2022),
the attention on temporal information retrieval
(IR) (Kanhabua and Anand, 2016) has diminished
somewhat with the rise of robust contextualized
transformer-based models (Devlin et al., 2019).
However, temporal considerations in IR remain
crucial, especially with the widespread use of
Retrieval-Augmented Generation (RAG) in many
chat models. It is also worthwhile to examine

whether emerging IR approaches are effective in
adapting to evolving knowledge. Unlike previous
works on document updates (Chen et al., 2023;
Mehta et al., 2023), which pose disjoint questions
from existing ones when retrieving updated docu-
ments and require parameter updates, our approach
conducts experiments on the retrieval of distinct
documents for the same query across varying times-
tamps. Similar to the text box in Figure 1, users
often want to search for information based on a
specific time period (e.g., laws, national curricu-
lum, etc.). We also consider two realistic update
scenarios with and without parameter updates and
use a large-scale corpus of 50 million passages.

Generative Retrieval (GR). GR initially
emerged with the work of GENRE (De Cao
et al., 2020), in which an encoder-decoder model
retrieves a document by generating the title of
the document from a given query. (Tay et al.,
2022) introduces DSI that produces a document
ID as the output sequence. NCI (Wang et al.,
2022) and DSI-QG (Zhuang et al., 2022) apply
query generation, significantly improving DSI’s
performance. Recent methods that uses document
ID, such as RIPOR (Zeng et al., 2023) and PAG
(Zeng et al., 2024), also demonstrate superior
performance. Instead of mapping to IDs for docu-
ment identifiers, other works explore generating
content directly from documents as identifiers. For
instance, SEAL utilizes spans (Bevilacqua et al.,
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Type Split Count

Query-Doc pairs
Rinitial (2007 – 2019) 99,402

R1
new (2020) 90,000

Evaluation
Qinitial (2007 – 2019) 2,000

Qnew (2020) 3,000

Qtotal (2007 – 2020) 5,000

Corpus
Cinitial (2007 – 2019) 43,832,416

Cnew (2020) 6,136,419

Ctotal (2007 – 2020) 49,968,835

# Tokens
Initial (2007 – 2019) 7.33B

New (2020) 1.04B

Total (2007 – 2020) 8.37B

# Tokens per passage
Initial (2007 – 2019) 169.7

New (2020) 167.1

Total (2007 – 2020) 167.5

Table 1: Statistics of the StreamingQA dataset modified
for our setup. # Tokens is the total number of words
separated by space in each passage.

2022), and MINDER (Li et al., 2023b) and LTRGR
(Li et al., 2023a) leverage a combination of titles,
pseudo-queries, and spans. Other works focus on
the broader application of GR, such as multi-hop
reasoning (Lee et al., 2022b), contextualization of
token embeddings (Lee et al., 2022a), auto-encoder
approach (Sun et al., 2023), and giving ranking
signals (Li et al., 2023a).

Dual Encoder (DE). DE (Lee et al., 2019;
Karpukhin et al., 2020b) refers to a set of model
architectures where we project the query and doc-
ument individually into a fixed sized embedding.
Through contrastive learning, the projected em-
beddings of positive documents are learned to be
close to the query and negative documents to be
far away. Some works try to train the model in
an unsupervised fashion with contrastive learning
(Izacard et al., 2022; Lee et al., 2019; Sachan et al.,
2023). While FAISS (Johnson et al., 2019) and
ANCE (Xiong et al., 2020) can improve efficiency
during inference, these models still face the limita-
tion of requiring asynchronous creation of model-
dependent embedding dumps.

3 Dynamic Information Retrieval

3.1 DynamicIR Task Setup

Adapting the retrieval models to evolving corpora
is crucial for providing user with up-to-date knowl-
edge. In order to evaluate the adaptability of retriev-
ers, we create a setup called Dynamic Information

Retrieval (DynamicIR). As depicted in Figure 1,
our experimental setup includes three approaches:
(1) StaticIR, where the retriever is trained on the
initial corpus, (2) Indexing-based updates, incorpo-
rating the index of newly arrived documents into
the existing index without further training on the
new corpus; and (3) Training-based updates, where
the retriever is continually pretrained on the new
corpus, along with updating the index.

To conduct these experiments, we assume that
we have an initial corpus Cinitial and a newly
introduced corpus Cnew, and datasets of query-
document pairs Rinitial and R1

new from Cinitial and
Cnew, respectively. Unlike Rinitial, R1

new consists
of pseudo-queries, which are generated from Cnew

using docT5query (detailed explanation is in Sec-
tion 3.2). These query-document pairs are used
for supervised learning. Moreover, we assess the
retrieval performance with two types of evaluation
sets, Qinitial and Qnew, where the answers to the
questions are within Cinitial and Cnew, respectively.
Some questions between Qinitial and Qnew are iden-
tical except for the timestamps, which necessitates
the retrieval of different passages. Each set is em-
ployed to assess the forgetting of initial knowledge
(McCloskey and Cohen, 1989; Kirkpatrick et al.,
2017) and the acquisition of new knowledge.

StaticIR. In this part, we focus on retrieving doc-
uments only from Cinitial. The training process
begins with pretraining the model on Cinitial using
self-supervised learning, followed by finetuning it
with Rinitial using supervised learning. We evaluate
it only on Qinitial with pre-indexed Cinitial.

Indexing-based Update. In this update setup,
we incorporate the new corpus to the retrieval mod-
els by updating only the index without any param-
eter updates. Since we utilize a retrieval model
trained in StaticIR, this updating approach is quick
and straightforward. We evaluate the retriever on
Qinitial and Qnew with pre-indexed Cinitial and Cnew.

Training-based Update. In this advanced
setup for update, we take the model pretrained
on Cinitial and continually pretrain it on Cnew.
Subsequently, we finetune it using a combination
of datasets, Rinitial and R1

new. Like indexing-based
updates, we evaluate the updated retrieval model on
Qinitial and Qnew with pre-indexed Cinitial and Cnew.
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3.2 Benchmark
To evaluate the performance of retrieval mod-
els in a dynamic scenario, we employ STREAM-
INGQA (Liška et al., 2022) designed for temporal
knowledge updates. Unlike other benchmarks on
temporal retrieval (Deveaud et al., 2023), Stream-
ingQA is the only benchmark that includes both the
timestamps of question-asked time and document
publication dates, which is critical for considering
the temporal dynamics. The temporal information
is prepended to the text in the format of ‘Today is
Wednesday, May 6, 2020. [question]’ for question,
and ‘Thursday, February 7, 2019. [document text]’
for documents (Liška et al., 2022). The dataset cov-
ers 14 years and includes over 50 million passages,
more than double the content size of Wikipedia
used in DPR (21M).

Temporal Information. StreamingQA includes
a corpus spanning from 2007 to 2020, along with a
supervised dataset of question-document pairs cov-
ering the years 2007 to 2019. In our work, Cinitial

comprises articles from 2007 to 2019 and Cnew

consists of articles from 2020. Regarding the su-
pervised dataset, the questions in Rinitial are asked
in the time range of 2007 to 2019 to query arti-
cles from this period, and the questions in R1

new are
asked in 2020 to query articles from 2020. Notably,
all questions in the evaluation dataset Qinitial and
Qnew are asked in 2020, beginning with the prefix
‘Today is [Day], [Month Date] , 2020’, although
they query articles from 2007 to 2019 (Cinitial) and
2020 (Cnew), respectively.

Pseudo-Queries for R1
new. The original Stream-

ingQA dataset lacks query-document pairs from
Cnew, making it challenging to explore training-
based updates including supervised learning. To
address this, we generate additional 90,000 queries
from Cnew. To make this, we employ a trained
model similar to the one used in docT5query1 for
query generation. The size of this additional dataset
R1

new is similar to that of Rinitial. Examples of gen-
erated dataset are in Table 11 and details of the
query construction are explained in Appendix A.5.

4 Experimental setup

4.1 Retrieval Models
Generative Retrieval (GR). We select SEAL
(Bevilacqua et al., 2022) that employs the sub-
strings in a passage as document identifiers and

1https://github.com/castorini/docTTTTTquery

MINDER (Li et al., 2023b) and LTRGR (Li et al.,
2023a) that uses a combination of the titles, sub-
strings, and pseudo-queries as identifiers. We
choose these three models as baselines since they
can more effectively update individual pieces of
knowledge by autoregressively generating tokens
in context using the FM-index. The FM-index for
constrained decoding provides complete informa-
tion about the documents with compression, al-
lowing for the generation of a specific n-gram in
the documents for each decoding step (Bevilacqua
et al., 2022). Conversely, other GR models that
use document IDs as identifiers (Tay et al., 2022;
Wang et al., 2022) store contexts as sequential vec-
tors mapped to document IDs, which introduces
an additional mapping step between contexts and
identifiers and may potentially limit the distinctive
advantages of GR. Implementation details are in
Appendix A.2.2.

Dual-Encoder (DE). We select Spider (Ram
et al., 2022) and Contriever (Izacard et al., 2022)
as representative models for DE. Since our experi-
ments include a pretraining phase to store the cor-
pus itself, we use Spider and Contriever as base-
lines that focus on the self-supervised methods.
Since these models do not include a supervised
method, we use DPR (Karpukhin et al., 2020a) dur-
ing a finetuning phase, and adhere to its original
training scheme such as utilizing in-batch negative
training. Our DE baselines, Spider (+DPR) and
Contriever (+DPR), include both phases. Imple-
mentation details are in Appendix A.2.1.

Sparse Retrieval. Although our main focus is
on transformer-based semantic search models to
explore corpora adaptation, we also evaluate BM25
(Lucene)2, a traditional lexical matching retriever.

4.2 Effective Continual Pretraining of GR

When continually pretraining GR on Cnew, we em-
ploy LoRA (Hu et al., 2021) widely recognized
for its training efficiency. To better target key pa-
rameters for incorporating new knowledge, we ana-
lyze which parameters undergo the most significant
change during the acquisition of new knowledge.
This analysis is inspired by works on model merg-
ing (Ansell et al., 2023; Wortsman et al., 2022). We
refer to these crucial parameters in learning new
knowledge as Dynamic Parameters (DPs).

2https://github.com/castorini/pyserini
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Figure 2: Analysis on key parameters in acquiring new
knowledge. Through this analysis, we identify the loca-
tions of the top 10% most activated parameters.

To identify DPs, as illustrated in Figure 2, we fol-
low these steps: (1) Pretrain the model on Cinitial as
Minit, and continually pretrain the model on Cnew

with full parameters as Mnew. (2) Calculate the
absolute differences in parameters between Minit

and Mnew. (3) Identify parameters that exceed the
90th percentile of these absolute differences.

DPs are twice as prevalent in the feed-forward
networks (FFN) compared to the attention layer,
as shown in Table 2. This result aligns well with
previous studies on the memorization of factual
knowledge (Geva et al., 2021; Dai et al., 2022).
Consequently, based on this analysis, we apply
LoRA on FFN in addition to the attention layer
during the continual pretraining phase. The per-
formance is noticeably improved compared to full-
parameters and conventional LoRA. In contrast to
GR, DE experiences significant degradation when
this approach is applied (See Appendix A.6); thus,
we pretrain DE with full parameters.

4.3 Evaluation

We assess retrieval performance with three evalu-
ation dataset, Qinitial, Qnew, and Qtotal. First, we
evaluate the retention of initial knowledge by 2,000
questions that should be answered from the Cinitial.
Second, we assess the acquisition of new knowl-
edge by 3,000 questions that should be answered
from Cnew. Both sets of 5,000 questions are ran-
domly extracted from the entire evaluation data of
StreamingQA, maintaining the ratio (16.60%) of
each question type for initial knowledge and new
knowledge. Finally, we assess total performance
by calculating the unweighted average of the above
two performances. Furthermore, we measure com-
putational and memory efficiency in Section 6.

Layer Projection Avg num of DPs

FFN
FC1 1.1M

FC2 77K

Total 1.87M

ATTN

Query 41K

Key 35K

Total 76K

Table 2: Average number of Dynamic Parameters (DPs),
the parameters that have a large impact on acquiring
new knowledge per block. It reveals that DPs are sig-
nificantly more prevalent in the fully connected layer,
exceeding those in the attention layer.

4.4 Metric
We assess the retrieval performance and efficiency.
For retrieval performance, we use Hits@5, which
measures whether the gold-standard passages is
included in the top 5 retrieved passages. Most doc-
ument search systems do not limit results to one
or provide too many; we consider 5 to be a reason-
able number for assessment. Additionally, we re-
port full results of Hits@k and AnswerRecall@k
pk P t5, 10, 50, 100uq in Appendix A.8. Answer
Recall measures whether the retrieved passage con-
tains an exact lexical match for the gold-standard
answer. For retrieval efficiency, we measure infer-
ence FLOPs, indexing time, inference latency, and
storage footprint in Section 6.

5 Results and Analysis

In this section, we showcase the adaptability and
temporal robustness of GR and DE and provide
an analysis on the effective continual pretraining
approach and utilizing R1

new during the training-
based updates. We also discuss the performance of
BM25 in dynamic environments.

GR has greater adaptability in both update sce-
narios. We define adaptability as the ability of
retrieval models to maintain the performance after
the updates. To evaluate the adaptability, we ex-
amine the performance on Qtotal in each update
scenario and compare it with that on Qinitial in
StaticIR (See Table 3).

First, in indexing-based updates, GR exhibits 4%
greater adaptability to new corpora compared to
DE. Specifically, when we look from Qinitial of
StaticIR to Qtotal, GR maintains average perfor-
mance, while DE demonstrates a 4% degradation
on average. Second, in training-based updates, GR
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Performance phit@5q Inference Efficiency

Evaluation Qtotal (Qw/o bias
total ) Qinitial Qnew Qw/o bias

new FLOPs Indexing Time
Latency

(Tonline / Toffline)
Storage Footprint

StaticIR

Spider DE - 19.65% - - 9.0e+10 18.9h 24.48ms / 26m 173.8G
Contriever DE - 16.10% - - 9.0e+10 18.9h 212.4ms †/ 9.8m 88.8G
SEAL GR - 34.95% - - 4.3e+10 2.7h 545.9ms / 1m 5s 34.5G
MINDER GR - 37.90% - - 4.3e+10 2.7h 424.6ms / 1m 5s 34.5G
LTRGR GR - 37.85% - - 4.3e+10 2.7h 424.6ms / 1m 5s 34.5G

Indexing-based Update

Spider DE 24.82% (16.5%) 15.60% 34.03% 17.40% 1.0e+11 20.4h 24.84ms / 28m 196.8G
Contriever DE 19.66% (11.01%) 13.75% 28.53% 8.27% 1.0e+11 20.4h 228.8ms† / 10.5m 99.8G
SEAL GR 33.05% (35.13%) 32.75% 33.50% 37.50% 4.3e+10 3.1h 612.2ms / 1m 26s 37.5G
MINDER GR 38.63% (38.56%) 37.65% 39.70% 39.47% 4.3e+10 3.1h 485.4ms / 1m 26s 37.5G
LTRGR GR 38.30% (37.47%) 37.30% 39.30% 37.63% 4.3e+10 3.1h 485.4ms / 1m 26s 37.5G

Training-based Update

Spider DE 36.99% (19.58%) 21.75% 52.23% 17.40% 1.0e+11 20.4h 24.84ms / 28m 196.8G
Contriever DE 23.85% (9.82%) 8.20% 39.50% 11.43% 1.0e+11 20.4h 228.8m† / 10.5m 99.8G
SEAL GR 41.01% (38.89%) 38.25% 43.77% 39.53% 4.3e+10 3.1h 612.2ms / 1m 26s 37.5G
MINDER GR 41.54% (39.31%) 38.85% 44.23% 39.77% 4.3e+10 3.1h 485.4ms / 1m 26s 37.5G
LTRGR GR 41.02% (39.14%) 38.50% 43.53% 39.77% 4.3e+10 3.1h 485.4ms / 1m 26s 37.5G

† For Contriever, Tonline is measured using faiss-cpu.
Spider and Contriever are further supervised using DPR.

Table 3: Results of DynamicIR. Our experiments are divided into 3 setups, (1) StaticIR, (2) Indexing-based updates,
and (3) Training-based updates. For each setups, we assess the performance on Qtotal, Qw/o bias

total , Qinitial, Qnew, and
Qw/o bias

new where the bias-inducing timestamps are removed. Qw/o bias
new is the average of Qinitial and Qw/o bias

new . Efficiency
is evaluated using 4 metrics on the right side. For Inference Latency, Tonline indicates the time required for query
embedding and search, and Toffline represents the time for loading the indexed corpus. We highlight the best scores
in bold for each setup. Additionally, the zero-shot performance for all models is provided in Appendix 7.

shows 11% greater adaptability to new corpora
compared to DE. Notably, GR shows a 5% aver-
age gain in performance. On the other hand, DE
demonstrates a 6% degradation on average.

For DE, we extract the update score from
Qw/o bias

total instead of Qtotal. Because DE exhibits
a significant inherent bias towards the lexical over-
lap of timestamps when evaluating Qnew. We delve
deeper into this phenomenon below.

DE shows significant bias towards temporal
data. We observe a bias in DE towards the lexi-
cal overlap of timestamps from the unusually high
performance on Qnew not only in training-based up-
dates (31% higher than Qinitial) but also in indexing-
based updates (19% higher than Qinitial) where the
models never encounter new corpora during train-
ing. This phenomenon stems from the temporal
information, where all timestamps in the queries
and in the documents of the evaluation dataset to be
retrieved are set to the year 2020, introducing bias
towards lexical overlap. In Table 3, Qw/o bias

new shows

Figure 3: Visualization of total performance in Dynam-
icIR. The star marks highlight the change in the gap
between Qinitial and Qnew of DE before and after the
elimination of the bias-inducing factor (timestamp).

that removing bias-inducing timestamps signifi-
cantly reduces DE’s performance on Qnew, bringing
it to a level similar to Qinitial. See the change in
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Model Continual Pretraining Qtotal Qinitial Qnew

SEAL GR

ours (attn+ffn) 41.01% 38.25% 43.77%
convent. LoRA 31.69% 32.00% 31.37%

full params 29.92% 28.50% 31.33%

MINDER GR

ours (attn+ffn) 41.54% 38.85% 44.23%
convent. LoRA 38.83% 37.60% 40.07%

full params 38.83% 35.30% 42.37%

Table 4: Analysis of the effectiveness of our continual
pretraining approach targeting the key parameters. The
results indicate hit@5 scores for training-based updates
on activating full parameters (557M params), convent.
LoRA (2.4M params), and our approach (3.1M params).

the gap between Qinitial (red star) and Qnew (blue
star) before and after removing timestamps in Fig-
ure 3. For more detailed explanations, refer to
Appendix A.4.

GR better acquires new corpora even without
parameter updates. We assess the ability to ac-
quire new knowledge through Qnew in both update
scenarios. For DE, we consider the performance of
Qw/o bias

new instead of Qnew, reflecting the impact of
bias as described above.

In indexing-based updates, Table 3 demonstrates
that GR excels in retrieving new knowledge even
without parameter updates. GR achieves a 2%
higher score in Qnew compared to Qinitial of Stati-
cIR. Conversely, DE shows a 2% average degra-
dation in Qw/o bias

new . Similarly, for training-based
updates, while DE decreases by 2 – 5% in Qw/o bias

new ,
GR gains 6 – 9% in Qnew and 2 – 5% in Qw/o bias

new .

GR better preserves initial knowledge. To as-
sess the ability to retain initial knowledge, we an-
alyze the performance on Qinitial in both update
setups, comparing it with Qinitial in StaticIR.

For GR, Table 3 shows no signs of forgetting;
rather, training on new corpora enhances perfor-
mance on Qinitial of training-based updates. This
phenomenon can be explained by our results that
selectively activating the well-targeted parameters
for updates mitigates forgetting. Detailed explana-
tions are described in the following analysis section.
Additionally, unlike DE, which stores documents
into single vectors, GR learns to generate tokens
within documents directly, leveraging the power of
autoregressive language models. This approach en-
ables GR to access and update specific knowledge,
thereby helping retain more unchanged knowledge.

On the other hand, DE shows a 3 – 4% degra-
dation in indexing-based updates and a 0 – 8%

Model R1
new Qtotal Qinitial Qnew

Spider DE
with 36.99% 21.75% 52.23%
w/o 35.77% 29.90% 41.63%

Contriever DE
with 23.85% 8.20% 39.50%
w/o 19.12% 13.90% 24.33%

SEAL GR
with 41.01% 38.25% 43.77%
w/o 37.91% 37.25% 38.90%

MINDER GR
with 41.54% 38.85% 44.23%
w/o 37.80% 38.15% 40.03%

Table 5: Analysis the effectiveness of R1
new with pseudo-

queries in training-based updates. In this table, w/o
refers to only using Rinitial during finetuning. The results
in hit@5 show that it is effective to include the R1

new.

decrease in training-based updates. Consequently,
our observation indicates that DE tends to forget
initial knowledge more during updates compared
to GR.

Applying LoRA to FFN benefits GR in both
preservation and acquisition of knowledge.
Based on the analysis described in Section 4.2,
our continual pretraining approach significantly im-
proves the adaptability of GR. As shown in Table 4,
activating FFN modules, which include many key
parameters for adapting to new knowledge, helps
not only Qnew but also Qinitial, compared to using
conventional LoRA (convent. LoRA) and full pa-
rameters (full params). Specifically, targeting the
key parameters helps mitigate the forgetting issue
by updating sparsely, which surprisingly is more ef-
fective than the conventional approach of updating
fewer parameters in LoRA.

Additionally, it maximizes the acquisition of new
knowledge even more than training with full param-
eters in SEAL. Since our evaluation set consists
mostly of unseen data during training and gener-
alization ability is crucially assessed rather than
memorization, well-targeted sparse updates outper-
form full parameter updates by reducing overfitting
and improving generalizability.

R1
new enhances the overall performance of

GR. We analyze the effectiveness of utilizing
R1

new, query-document pairs where the queries
are pseudo-queries generated from Cnew using
docT5query. In addition to the results of related
works (Mehta et al., 2022; Zhuang et al., 2023; Lin
and Ma, 2021; Mallia et al., 2021; Nogueira and
Lin, 2019; Wang et al., 2022; Pradeep et al., 2023),
our findings on dynamic corpora demonstrate that
employing R1

new generated from new corpora is
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Performance (hit@5)

Evaluation Qtotal Qw/o bias
total Qinitial Qnew Qw/o bias

new

[Static] BM25 - - 43.35% - -

[Update] BM25 43.54% 41.19% 37.25% 49.83% 45.13%

Table 6: Performance of BM25 in StaticIR and Indexing-
based updates. Through these results, we see the bias
of temporal information via difference between Qnew

and Qw/o bias
new and adaptability through a comparison be-

tween [Static] Qinitial and [Update] Qw/o bias
total which is

unweighted average of Qinitial and Qw/o bias
new .

beneficial for retrieving not only new knowledge
but also initial knowledge for GR (See Table 5).

We believe experiencing benefits on Qinitial de-
spite training with R1

new is also attributed to the
utilization of language model attributes for learn-
ing language distributions. Conversely, in the case
of DE, we observe a 5 – 8% degradation in Qinitial,
indicating forgetting. Moreover, since DE has a
bias towards timestamps, if we explore Qw/o bias

new
instead of Qnew, R1

new would not help DE at all.

BM25 shows temporal bias and limited adapt-
ability. We investigate how BM25 performs in
dynamic corpora with temporal information. No-
tably, BM25 surpasses transformer-based retrieval
models on the StreamingQA benchmark, in con-
trast to its performance (Chen et al., 2022; Wang
et al., 2023; Li et al., 2023b,a; Bevilacqua et al.,
2022; Zeng et al., 2023) on other benchmarks such
as KILT (Petroni et al., 2021), MSMARCO (Bajaj
et al., 2018) and NaturalQuestions (Kwiatkowski
et al., 2019) (See Table 6). However, BM25 ex-
hibits limitations in handling temporal data, with
a 4.7% degradation observed when timestamps
are removed (Qnew Ñ Qw/o bias

new in [Update]), in-
dicating a bias towards lexical matching of data
from 2020. Furthermore, it struggles to main-
tain its initial performance, experiencing a 2.16%
degradation when integrated with a new 6M cor-
pus (Qinitial in [Static] Ñ Qw/o bias

total in [Update]).
These findings underscore the need for retrieval
models to move beyond textual matching, focus-
ing not only on semantic searching (Magesh et al.,
2024) but also on adapting to evolving corpora and
maintaining robustness across diverse data charac-
teristics.

6 Computation & Memory Efficiency

In this section, we provide the results of compu-
tational and memory efficiency. We use an 80G

Figure 4: Inference FLOPs according to the number
of instances. The flops for GR on both the static and
updated corpus are identical, as it maintains consistent
flops regardless of the corpus size unlike DE.

A100 GPU.

Inference FLOPs. We analyze the inference
FLOPs ‡ of GR and DE to assess their computa-
tional efficiency. The FLOPs function and detailed
calculations are in Appendix A.7. As shown in
Table 3, our results reveal that GR requires 2 times
fewer computations per instance over DE. Figure 4
illustrates that GR offers superior efficiency as the
number of instances increases. Moreover, unlike
DE, which exhibits OpNq complexity, where N
represents the corpus size, GR maintains a constant
Op1q complexity.

Indexing Time. There is a difference in the con-
cept of indexing between GR and DE. For DE,
this involves embedding, which converts the cor-
pus into representations using an encoder. In GR,
indexing refers the data processing of document
identifiers to constrain beam search decoding, en-
suring the generation of valid identifiers. Note that
we process data without applying sharding.

As shown in Table 3, our results exhibit that GR
(3.1h) requires 6 times less time than DE (20.4h)
for indexing Cinitial and Cnew. The crucial aspect
of indexing is that unlike GR, DE necessitates re-
indexing the entire corpus each time whenever the
model is updated, irrespective of the corpus update.

Inference Latency. Inference process can be di-
vided into two stages: (1) loading a pre-indexed
corpus and (2) retrieving, which includes query

‡FLOPs (Floating Point Operations) is the number of
floating-point arithmetic calculations.
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embedding and search. We classify the former as
offline latency (Toffline) and the latter is referred to
as online latency (Tonline). We measure both. Tonline

in Table 3 is reported for a single instance.
Table 3 shows GR is 10 times faster than DE

when retrieving from updated corpora for Toffline.
Unlike DE, which stores each passage representa-
tion in vector form, GR does not need much time
to load the index since it stores knowledge within
its parameters. For Tonline, however, GR is 20 times
slower than DE using faiss-gpu. Although DE
requires 2 times more inference flops, it seems
that the FAISS (Johnson et al., 2019) module con-
tributes significantly to the inference speed of DE.
For GR, there is potential for further speedup us-
ing techniques such as FlashAttention (Dao et al.,
2022; Dao, 2023), speculative decoding (Leviathan
et al., 2023), and a Mixture of Experts (Shazeer
et al., 2017; Lepikhin et al., 2020; Kudugunta et al.,
2021).

Storage Footprint. We measure the storage foot-
print of the retrieval model and the pre-indexed
corpus, which are required for performing retrieval.

Table 3 indicates that GR has 4 times less storage
requirements over DE for updated corpora. No-
tably, the memory requirements for DE are directly
affected by the corpus size, as they store represen-
tations of all documents in vector form outside the
retrieval model. In contrast, GR has minimal de-
pendence on the corpus size by storing knowledge
in its internal parameters.

7 Conclusion

In this work, we explore the practicality of GR in
terms of adaptability to new corpora, temporal ro-
bustness, and inference efficiency, compared to DE.
By establishing a DynamicIR setup, we showcase
how retrieval models perform in dynamic environ-
ments where knowledge evolves over time, with
and without parameter updates. Our findings indi-
cate that GR better adapts to changing knowledge
and less forgets by leveraging the power of lan-
guage models. In terms of temporal robustness, GR
retrieves information effectively regardless of data
characteristics, while DE struggles with temporal
information. Additionally, GR has fewer inference
FLOPs, reduced indexing time, and lower mem-
ory requirements. By comprehensively exploring
GR across these three aspects, we underscore its
potential as an IR system.

8 Limitations

Our study has certain limitations. First, in the
StreamingQA benchmark, all timestamps in the
queries and in the documents to be retrieved from
Qnew are set to the year 2020. This matching may
introduce a bias towards the lexical overlap of tem-
poral information when evaluating the acquisition
of new knowledge. For a more dynamic evaluation,
it is better to consider diverse query timestamps.
Second, due to the scarcity of datasets that reflect
temporal updates, we rely only on StreamingQA.
While this dataset comprises 50 million articles
spanning 14 years, a more comprehensive assess-
ment across various datasets is needed to generalize
our findings. Third, our findings cover large-scale
corpus updates, yet they raise the question of how
these results apply across multiple update frequen-
cies. Lastly, while our results highlight the numer-
ous advantages of GR in terms of adaptability to
new corpora, inference flops, and memory, our eval-
uation of online inference latency demonstrates that
DE has a faster speed compared to GR, primarily
due to the FAISS module.

Acknowledgements

This work was partly supported by the Samsung
Electronics grant (General-purpose generative re-
trieval, 2022, 50%) and the Institute of Information
& Communications Technology Planning & Eval-
uation(IITP) grant funded by the Korea govern-
ment(MSIT) (RS-2024-00397966, Development
of a Cybersecurity Specialized RAG-based sLLM
Model for Suppressing Gen-AI Malfunctions and
Construction of a Publicly Demonstration Platform,
50%). An earlier version of this work was pre-
sented at the Gen-IR workshop@SIGIR 2024.

References
Alan Ansell, Edoardo Maria Ponti, Anna Korhonen, and
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Model Qtotal Qinitial Qnew

Spider DE 13.28% 8.95% 17.60%
Contriever DE 18.74% 7.15% 30.33%

SEAL GR 20.60% 19.80% 21.40%
MINDER GR 25.87% 25.00% 26.73%

Table 7: Zero-shot performance on updated corpora.
It demonstrates the zero-shot performance in hit@5
achieved without further training from released check-
points. Overall, it exhibits a similar trend to our models
trained on StreamingQA dataset.

A Appendix

A.1 Zero-shot performance of DE and GR

We conduct zero-shot experiments to assess the
base performance of retrieval models on Stream-
ingQA, utilizing Spider trained on NQ, Contriever
trained on CCNet and Wikipedia, SEAL trained on
KILT, and MINDER trained NQ. The results of the
zero-shot experiments are presented in in Table 7.

A.2 Implementation Details

A.2.1 Dual Encoder
Spider. Spider experiments are conducted using
8ˆ A100 80GB GPUs, and our implementation
setup is primarily based on Spider. SPIDER (Ram
et al., 2022)§ code. We employ the bert-large-
uncased pretrained model (336M) from Hugging-
Face, with fp16 enabled and weight sharing, config-
uring a batch size of 512 and a maximum sequence
length of 240. For the pretraining stage, we run a
full epoch with a learning rate of 2e-05 and a warm-
up of 2,000 steps. The pretraining data is made
by running the spider code on the provided docu-
ments from StreamingQA. This yields 95,199,412
pretraining data from base corpus and 21,698,933
from new corpus, which are used for StaticIR and
DynamicIR, respectively. It takes about 5 days
for pretraining the base model and 25 hours for
continual pretraining the updated model. For the
finetuning stage, we run for maximum 10 epochs
with learning rate of 1e-05 and warm-up of 1,000
steps with batch size of 512. We select the best
checkpoint with lowest validation loss.

Contriever. Contriever experiments are done
on 4ˆ A100 40GB GPUs. We employ bert-
large-uncased pretrained model (336M) and

§https://github.com/oriram/spider

follow the paper (Izacard et al., 2022) and their
official codebase¶for the implementation and
hyperparameter setup. We adjust the per_gpu batch
size from 256 to 64 to fit in our gpu resource. Total
step size is 110,000 for base (warmup 4,000 steps)
and 16,000 (warmup 1,000 steps) for continual
pretraining on Cnew, which is equivalent to one
epoch. Learning rate is set to 1e-04. For the
finetuning stage, we run contriever for maximum
10 epochs (about 8000 steps, warmup for 100
steps) with eval frequency of 200 steps and select
the checkpoint with lowest eval loss. The per_gpu
batch size is set to 32. All the hyperparemeters
are the same with the pretraining setup, except the
ones mentioned above.

A.2.2 Generative Retrieval
SEAL. We employ the bart-large pre-trained
model (400M) for GR and train the model in
Fairseq framework for using SEAL.(Bevilacqua
et al., 2022)||. Due to this context, when we utilize
LoRA method, we implement the method within
the Fairseq framework. For the pretraining stage of
the base retrieval model in StaticIR, we generate
2 random spans and 1 full passage with the publi-
cation timestamp as input for each instance using
the past corpus, resulting in 130,897,221 (130M)
unsupervised data. We train the initial model on
16ˆ A100 40GB GPUs with a batch size of 7,400
tokens and a learning rate of 6e-5. Subsequently,
for the finetuning stage in StaticIR using Rinitial,
we use 10 random spans as document identifiers
per question, resulting in 994,020 (994K). We train
this model using 4ˆ A100 80GB GPUs with batch
size of 11,000tokens and a learning rate of 6e-5.
In the continual pretraining stage for the updated
model in training-based updates of DynamicIR,
we use 3 random spans and 1 full passage with
the publication timestamp as input for each in-
stance, utilizing the updated corpus, which results
in 24,471,541 (24M) unsupervised data. We train
this updated model using 4ˆ A100 80GB GPUs
with a batch size of 11,000 tokens and a learning
rate of 1e-4. Subsequently for finetuning stage in
training-based update of DynimicIR using Rinitial

and R1
new, we generate 10 random spans as passage

identifiers per question, respectively, resulting in

¶https://github.com/facebookresearch/
contriever

||https://github.com/facebookresearch/SEAL
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MINDER GR Qtotal Qinitial Qnew

w/o title 41.54% 38.85% 44.23%

with pseudo-title 40.86% 38.15% 43.57%

Table 8: MINDER with and without Titles as Identifiers.
The results in hit@5 indicate that there is little difference
between the use of identifiers with and without the title.

1,894,020(1.8M) data. During inference, we set the
beam size to 10.

MINDER. We use 2ˆ A100 80GB GPUs for
MINDER experiments. We use the pretrained
model which is used for SEAL experiments, since
MINDER has identical pretraining process to that
of SEAL. For retrieval model of StaticIR, we create
MINDER-specific data comprising of 10 spans and
5 pseudo-queries as passage identifiers per ques-
tion, resulting in 1,491,030 (1.4M). For retrieval
model of training-based updates in DynamicIR, we
generate 10 spans and 5 pseudo-queries, resulting
in 2,841,030 (2.8M) data. We run all MINDER
models for maximum 10 epochs using with max
token of 18,000 and a learning rate of 6e-5. During
inference, we set the beam size to 10.

LTRGR. We use 4ˆ A100 80GB GPUs for the
learning-to-rank phase. We employ MINDER to
create base models and then follow the configura-
tion of LTRGR when learning to rank, except for
setting the number of epochs and hits to 5 and 150,
respectively, and omitting the title. During infer-
ence, we set the beam size to 10. When generating
the training dataset for learning to rank, due to com-
putational memory issues in processing 150 hits
of our large finetuning dataset, we randomly sam-
ple 25% from Rinitial when training initial models
used for StaticIR and Indexing-based update se-
tups. For updated models, we randomly sample
25% from the combination of Rinitial and R1

new,
maintaining a 1:1 ratio between them.

A.3 Difference in the presence of Titles as
Identifiers for MINDER

The original MINDER model employs three com-
ponents, titles, substrings, and pseudo-queries,
as its identifiers. However, as the StreamingQA
dataset lacks title information, we exclude docu-
ment titles when constructing the MINDER model.
To investigate the impact of this omission on per-
formance, we conduct an analysis within training-

based updates by finetuning utilizing pseudo-titles
generated by GPT-3.5. Our results demonstrate
that the omission of titles, in comparison to the
utilization of pseudo-titles, has a negligible impact
on performance as shown in Table 8.

A.4 Exploration of DE’s bias towards lexical
overlap of timestamps

All timestamps in the queries and in the documents
to be retrieved are set to the year 2020. In this
context, to clarify the bias of DE towards temporal
information, we finetune the models using a dataset
where query dates are removed. Subsequently, we
evaluate the models using an evaluation dataset
where query dates are eliminated. This experiment
is viable because, out of a total of 5,000 evalua-
tion instances, only 7 cases require different doc-
uments for the same question but with different
query timestamps. Through the results Qw/o bias

new
in Table 9 compared to Qnew in Table 3, we iden-
tify that the unexpectedly high performance of DE
models stems from the lexical overlap with the
timestamp. On the other hand, GR conducts re-
trievals more stably with fewer constraints on the
lexical characteristics. See the change in the gap be-
tween Qinitial and Qnew before and after removing
timestamps in Figure 3.

A.5 Constructing the query-document pairs
from new corpus

Reflecting the original evaluation dataset’s distri-
bution which balanced similar proportions of new
(2020) and base (2007 – 2019) data, we replicate
this distribution in our query generation based on
new corpus. We randomly selected 90,000 pas-
sages from the 6 million 2020 passages. Sub-
sequently, we finetuned a T5-base model on the
query-document pairs from StreamingQA’s base
corpus, applying a hyperparameter configuration
similar to docT5 query generation, feeding date-
prefixed passages as input and producing date-
prefixed queries as output. The training process
comprises three epochs, with each taking roughly
45 minutes on an NVIDIA A6000 GPU. We then
use the trained T5 model to generate one pseudo-
query for each of the 90,000 selected passages, a
process lasting approximately 90 minutes. Ensur-
ing alignment with our study’s temporal focus, we
verify that the date information in the generated
queries corresponded to 2020. Following a man-
ual adjustment to ensure the queries are asked in
2020, we assemble the queries and corresponding
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Indexing-based updates Training-based updates

w/o timestamp Qw/o bias
initial Qw/o bias

new Qw/o bias
initial Qw/o bias

new

Spider DE 18.90% 17.40% 18.90% 17.40%
Contriever DE 6.25% 8.27% 9.85% 11.43%

SEAL GR 35.35% 37.50% 35.30% 39.53%

MINDER GR 36.85% 39.47% 38.45% 43.57%

Table 9: Ablation Study on the bias towards temporal information. DE shows a lexical bias toward timestamps on
Qnew where all queries are asked in 2020 and the gold documents are published also in 2020. When removing the
timestamp of query, the performance drastically drops, while GR does not exhibit noticeable changes.

Spider DE Qtotal Qinitial Qnew

Full parameters 36.99% 21.75% 52.23%

LoRA 26.44% 10.05% 42.83%

Table 10: Spider with and without LoRA when pre-
training on Cnew. The results in hit@5 show that DE
achieves higher performance when pretraining with full
parameters not to apply LoRA

documents into an additional finetuning dataset for
the retrieval models, a process that takes about four
hours in total. Examples of the finetuning dataset
are in Table 11.

A.6 Application of LoRA on DE

Unlike GR, LoRA does not improve the retrieval
performance of DE. As shown in Table 10, it is
evident that DE achieves higher performance when
pretraining on Cnew with the full parameters rather
than using LoRA. The degradation in hit@5 is no-
ticeable not only in Qnew but also in Qinitial, indicat-
ing that the application of LoRA is not beneficial
for both retaining initial knowledge and acquiring
new knowledge.

A.7 Calculation Details of Inference FLOPs

We approximately measure FLOPs per instance
using DEflops for DE and GRflops for GR defined
as below. We use the notation IP for inner prod-
uct, FW for a forward pass, and Beam for beam
search.

DEflops “ FW enc
flops ` C

1

ncluster
nnearestIPflops

GRflops “ FW enc
flops ` LBeamflops

IPflops “ dmodel ` pdmodel ´ 1q
FWflops “ 2N ` 2nlayernctxdattn

Beamflops “ pFW dec
flops ` IPflops|V | log |V |qB

where C is the corpus size, L is the sequence length
of output, dmodel is dimension of hidden vector, N
is the model size, nlayer is the number of layers,
nctx is the length of input context, dattn is the di-
mension of attention, V is the vocab size, and B
is the beam size. ncluster is the total number of cen-
teroids (clusters), nnearest is the number of clusters
to search, |V | log |V | is the complexity of obtaining
possible token successors with FM-index (Bevilac-
qua et al., 2022). We calculate FWflops for the
transformer based on Table 1 in (Kaplan et al.,
2020) and apply it to the encoder and decoder.

We provide an approximate calculation of in-
ference flops for DE and GR on updated corpora.
For DE using the bert-large-uncased, its config-
urations are N=336M, dmodel=1,024, nlayer=24,
nctx=512, nnearest=1, ncluster=1, and C=50M. For
query embedding, FWflops is 697M, and for search-
ing, C ˆ IPflops is 102B. The total inference flops
(DEflops) amount to approximately 102B + 697M
« 102.7B. For GR using the bart-large, its con-
figurations are N=400M, dmodel=1,024, nlayer=12,
nctx=1,024, V=50,265, L=10, and B=10. For the
encoding process, FWflops is 425M, and for the
decoding process, FWflops is 42.5B. The total in-
ference flops (GRflops) amount to approximately
425M + 42.5B « 43B.

Note that for DE, we employ the exhaustive
(brute-force) search method adopted by our base-
lines. Some models can employ approximate
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search techniques, such as clustering, introducing
a trade-off between speed and accuracy as they
conduct exhaustive searches within nearby clusters.

A.8 Full performance on Hit and Answer
Recall

We present the full results of evaluating the perfor-
mance of DE and GR in both StaticIR and Dynami-
cIR (indexing-based updates and training-based up-
dates). We employ Hit@N and Answer Recall@N
metrics, where N is set to 5, 10, 50, and 100, to
assess retrieval performance. The results are in
Table 12 and Table 13 for Hit and Answer Recall,
respectively.
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Pseudo-Query Gold Passage

Today is Sunday, October 25, 2020. When
did the pay gap between Pakistani employees
and white employees decrease to 2%?

Monday, October 12, 2020. In 2019 median hourly earnings for white Irish
employees were 40. 5% higher than those for other white employees at 17.55,
while Chinese workers earned 23.1% more at 15.38 an hour and Indian workers
earned 14.43 an hour - a negative pay gap of 15.5%. Annual pay gap Breaking
down the data by gender, the ONS said ethnic minority men earned 6.1% less than
white men while ethnic minority women earned 2.1% more than white women.
The ONS added that ethnicity pay gaps differed by age group. Ämong those aged
30 years and over, those in ethnic minority tend to earn less than those of white
ethnicities,ït said. In contrast, those in the ethnic minority group aged 16 to 29
years tend to earn more than those of white ethnicities of the same age. Gender
pay gap The ONS found that the pay gap of 16% for Pakistani employees aged
more than 30 shrank to 2% for those aged 16-29.

Today is Sunday, May 2, 2020. What was the
top level of the FTSE 100?

Tuesday, April 28, 2020. But the big weekly shop has made a comeback, with
the amount families spend on an average shopping trip hitting a record high. The
new tracking data comes after Tesco boss Dave Lewis said the pandemic had
changed people’s shopping habits, which he said have r̈everted to how they were
10 or 15 years ago.M̈eanwhile, is this the end of loo roll wars? Spaghetti hoops
have overtaken lavatory paper as the most out-of-stock item in Britain’s stores.
Follow our guide to minimising your risk of catching Covid-19 while shopping.
The oil giant said there would continue to be an ëxceptional level of uncertaintyïn
the sector. Meanwhile, the FTSE 100 soared to a seven-week high. Follow live
updates in our markets blog.

Today is Tuesday, March 24, 2020. Why did
President Trump sign an executive order
banning hoarding?

Tuesday, March 24, 2020. President Donald Trump signs executive order banning
hoarding March 23 (UPI) – President Donald Trump on Monday signed an execu-
tive order to prevent hoarding and price gouging for supplies needed to combat the
COVID-19 pandemic. During a briefing by the White House Coronavirus Task
Force, Trump and Attorney General William Barr outlined the order which bans
the hoarding of vital medical equipment and supplies including hand sanitizer,
face masks and personal protection equipment. Ẅe want to prevent price goug-
ing and critical health and medical resources are going to be protected in every
form,T̈rump said. The order will allow Health and Human Services Secretary
Alex Azar to designate certain essential supplies a s scarce, which will make it a
crime to stockpile those items in excessive quantities. Barr said the limits prohibit
stockpiling in amounts greater than r̈easonable personal or business needsör for
the purpose of selling them in ëxcess of prevailing market pricesädding that the
order is not aimed at consumers or businesses stockpiling supplies for their own
operation. Ẅe’re talking about people hoarding these goods and materials on
an industrial scale for the purpose of manipulating the market and ultimately
deriving windfall profits,ḧe said.

Today is Tuesday, November 27, 2020. What
is the name of the radio channel Joe Biden
was on?

Monday, November 16, 2020. ’Heal the damage’: Activists urge Joe Biden to
move beyond b̈order securityÄs Joe Biden prepares to take office, activists say
the president-elect must not only take mean ingful action to stabilize the US-
Mexico border, but also reckon with his own history of militarizing the border
landscape and communities. Biden has promised to end many of the Trump
administration’s border policies, but has yet to unveil the kind of bold immigration
plan that would suggest a true departure from Obama-era priorities. Cecilia Muoz,
Obama’s top immigration adviser who memorably defended the administration’s
decision to deport hundreds of thousands of immigrants, was recently added
to Biden’s transition team. Biden has stated that he will cease construction
of the border wall, telling National Public Radio in August that there will be
n̈ot another foot of wall,änd that his administration will close lawsuits aimed
at confiscating land to make way for construction. His immigration plan will
also rescind Trump’s declaration of a n̈ational emergencyön the southern border,
which the Trump administration has used to siphon funds from the Department of
Defense to finance construction, circumventing Congress in an action recently
declared illegal by an appeals court. Some lawmakers along the border find these
developments heartening, after Trump’s border wall construction has devastated
sensitive ecosystems, tribal spaces, and communities, a nd has been continuously
challenged in court.

Table 11: Examples of Finetuning dataset R1
new created by docT5.
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hit@5 hit@10 hit@50 hit@100

Model Method Total initial New Total initial New Total initial New Total initial New

Spider
StaticIR 19.65 19.65 – 25.40 25.40 – 38.20 38.20 – 44.50 44.50 –
Index-based Update 24.82 15.60 34.03 30.67 20.20 41.13 44.92 32.80 57.03 51.28 38.45 64.10

Train-based Update 36.99 21.75 52.23 43.74 26.95 60.53 58.75 40.40 77.10 64.84 46.95 82.73

Contriever
StaticIR 16.10 16.10 – 20.25 20.25 – 33.80 33.80 – 40.90 40.90 –
Index-based Update 21.14 13.75 28.53 25.17 17.35 36.90 39.44 29.45 54.43 46.26 35.65 62.17

Train-based Update 23.85 8.20 39.50 29.26 10.55 47.97 43.66 20.35 66.97 49.64 25.35 73.93

SEAL
StaticIR 34.95 34.95 – 41.80 41.80 – 57.25 57.25 – 63.10 63.10 –
Index-based Update 33.13 32.75 33.50 39.64 38.90 40.37 54.14 54.50 53.77 59.71 60.55 58.87

Train-based Update 41.01 38.25 43.77 47.99 45.30 50.67 62.90 60.20 65.60 67.79 65.00 70.57

MINDER
StaticIR 37.90 37.90 – 45.00 45.00 – 59.60 59.60 – 64.00 64.00 –
Index-based Update 38.68 37.65 39.70 45.27 44.40 46.13 60.87 60.60 61.13 66.13 66.35 65.90

Train-based Update 41.54 38.85 44.23 48.29 45.60 50.97 63.12 60.80 65.43 68.43 66.25 70.60

Table 12: Full results on the Hit of DE and GR.

answer recall @5 answer recall @10 answer recall @50 answer recall @100

Model Method Total initial New Total initial New Total initial New Total initial New

Spider
StaticIR 37.55 37.55 – 47.45 47.45 – 67.65 67.65 – 74.80 74.80 –
Index-based Update 44.24 33.45 55.03 52.93 41.50 64.37 70.77 61.70 79.83 76.68 69.20 84.17

Train-based Update 55.79 41.05 70.53 64.32 49.90 78.73 79.25 68.90 89.60 83.63 75.50 91.77

Contriever
StaticIR 28.90 28.90 – 37.60 37.60 – 60.20 60.20 – 68.25 68.25 –
Index-based Update 31.34 25.15 40.63 41.84 34.80 52.40 63.05 55.15 74.90 70.98 64.30 81.00

Train-based Update 37.14 20.15 54.13 46.54 28.15 64.93 66.21 48.65 83.77 72.33 56.85 87.80

SEAL
StaticIR 58.25 58.25 – 66.30 66.30 – 80.45 80.45 – 83.60 83.60 –
Index-based Update 55.85 56.80 54.90 63.68 64.45 62.90 77.58 78.95 76.20 81.49 82.75 80.23

Train-based Update 62.44 59.95 64.93 70.25 68.10 72.40 81.65 80.30 83.00 85.02 84.10 85.93

MINDER
StaticIR 59.50 59.50 – 68.10 68.10 – 80.35 80.35 – 83.75 83.75 –
Index-based Update 54.23 54.45 54.00 62.96 63.75 62.17 76.54 78.00 75.07 79.79 81.20 78.37

Train-based Update 56.74 55.35 58.13 64.45 63.70 65.20 77.19 77.40 76.97 80.34 80.50 80.17

Table 13: Full results on the Answer Recall of DE and GR.
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