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Abstract

Large Language Models (LLMs) have shown
impressive capabilities, yet they still strug-
gle with math reasoning. In this work, we
propose CoT-Influx, a novel approach that
pushes the boundary of few-shot Chain-of-
Thoughts (CoT) learning to improve LLM
mathematical reasoning. Motivated by the ob-
servation that adding more concise CoT ex-
amples in the prompt can improve LLM rea-
soning performance, CoT-Influx employs a
coarse-to-fine pruner to maximize the input
of effective and concise CoT examples. The
pruner first selects as many crucial CoT ex-
amples as possible and then prunes unimpor-
tant tokens to fit the context window. A math
reasoning dataset with diverse difficulty lev-
els and reasoning steps is used to train the
pruner, along with a math-specialized reinforce-
ment learning approach. As a result, by en-
abling more CoT examples with double the
context window size in tokens, CoT-Influx
significantly outperforms various prompting
baselines across various LLMs (LLaMA2-7B,
13B, 70B) and 6 math datasets, achieving
up to 4.40% absolute improvements. Re-
markably, without any fine-tuning, LLaMA2-
70B with CoT-Influx surpasses GPT-3.5 and
a wide range of larger LLMs (PaLM, Min-
erva 540B, etc.) on GSM8K. CoT-Influx
is a plug-and-play module for LLMs, adapt-
able in various scenarios. It’s compatible
with advanced reasoning prompting techniques,
such as self-consistency, and supports different
long-context LLMs, including Mistral-7B-v0.3-
32K and Yi-6B-200K. Codes are available at
https://github.com/HuangOwen/CoT-Influx

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities across a range of

†Work was done during the internship at Microsoft Research
‡Corresponding author: lzhani@microsoft.com

tasks (Brown et al., 2020; OpenAI, 2023a). How-
ever, it remains a significant challenge to im-
prove LLM performance on math reasoning tasks.
While existing efforts focus on optimizing Chain-
of-Thought (CoT) prompts (Wei et al., 2022; Wang
et al., 2023d; Yao et al., 2023) and fine-tuning
LLMs (Luo et al., 2023) under the zero-shot set-
ting, the potential of few-shot learning in improv-
ing LLM reasoning has not been fully explored.
Inspired by the human reasoning process, we pro-
pose the hypothesis: if LLMs are exposed to more
step-by-step problem-solving examples (i.e., CoTs)
before answering questions, it could potentially
improve LLMs reasoning capability to generate a
correct solution. This leads us to ask: what’s the
boundary of LLM reasoning capability achievable
through inputting more CoT examples?

We face two major obstacles. First, the limited
token length of LLMs’ context window restricts
the number of few-shot examples. Extending the
context window is one solution, but it requires ex-
pensive fine-tuning and increases inference over-
head (Peng et al., 2023a; Ding et al., 2024). While
prompt compression (Li et al., 2023b; Jiang et al.,
2023b) is another approach, it underperforms in
math reasoning. Tokens like numerical and format
ones, though identified as redundant, are crucial for
few-shot prompting to solve math problems.

Second, it’s challenging to select effective CoT
examples. Section 3 reveals that random choices
can even harm reasoning performance. Existing
retrieval-based methods (Liu et al., 2021; Scarlatos
and Lan, 2023) are not tailored for math reason-
ing, making them suboptimal. These retrieved ex-
amples are model-agnostic, while we found that
different LLMs favor CoT examples of varying
characteristics (e.g., diverse difficulty levels).

In this work, we propose CoT-Influx, which ad-
dresses all the above challenges and pushes the
boundaries of utilizing few-shot learning to im-
prove LLM math reasoning capability. CoT-Influx
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is motivated by the observation that current LLM
context window has not been fully utilized due to
redundancy at both the example and token levels in
natural language input. As such, these redundant
inputs can be pruned to free up space for more in-
formative context. The central idea of CoT-Influx is
to input long lengthy CoT examples, select the cru-
cial examples for the target LLM, and then prune
redundant tokens. As a result, by inputting much
more helpful CoT examples, each composed solely
of informative tokens and with a shorter length,
we greatly improve LLM math reasoning ability.
Moreover, as all these inputs remain within the
context window, we do not increase any inference
overhead. This stands in stark contrast to other
methods (Hao et al., 2022; Chen et al., 2023a).

CoT-Influx treats the target LLM as a black box,
and serves as a plug-and-play module for LLMs as
shown in Fig. 3. The key module is a coarse-to-fine
pruner consisting of two steps: (i) a shot pruner
first selects the most helpful CoT examples from
candidates, and (ii) a token pruner then removes
unimportant tokens from selected CoT examples.

However, training the pruner presents two chal-
lenges: (1) since we identify discrete tokens before
the LLM tokenizer, the loss gradient cannot be
backpropagated through the tokenizer to update
the pruner; (2) The high difficulty of many math
problems, which consistently yield incorrect an-
swers regardless of the quality of compressed few-
shot examples, poses a challenge to the effective
training of the pruner. To this end, we introduce a
novel training approach with reinforcement learn-
ing to mitigate the gradient issue. We design a
reward function to measure the LLM loss, few-
shot math reasoning effectiveness, and token length
constraints. Then, we propose a difficulty-aware
dataloader filtering appropriate problems and intro-
duce two techniques to stabilize the RL training.

Extensive experiments on various LLMs and di-
verse reasoning datasets demonstrate the effective-
ness of CoT-Influx. CoT-Influx significantly boosts
LLM reasoning capability, achieving up to 14.09%
absolute improvements over SOTA baselines, and
establishes a new prompting-based benchmark in
math reasoning accuracy without any fine-tuning or
additional inference costs. Remarkably, LLaMA2-
70B with CoT-Influx outperforms a broad range of
larger LLMs and surpasses GPT-3.5 by 2.5% on
GSM8K. Moreover, we prove that CoT-Influx is
also highly beneficial on long-context LLMs. For
example, we achieve ∼2.5% higher GMS8K accu-

racy with 15× fewer input tokens on Yi-6B-200K.

2 Related Works

LLMs for Math Reasoning. Drawing from the
Chain-of-Thought (CoT) (Wei et al., 2022), recent
research has greatly improved the reasoning capa-
bilities of LLMs by providing step-by-step reason-
ing paths. The main efforts are twofold: enhancing
CoT prompts, such as Program-of-Thoughts (Chen
et al., 2023b), Tree-of-Thoughts (Yao et al., 2023),
and Everything-of-Thoughts (Ding et al., 2023),
and innovating CoT-based training data for fine-
tuning LLMs like WizardMath (Luo et al., 2023).

However, most works focus on the zero-shot set-
ting with only task instruction or CoT prompts,
leaving the potential of few-shot CoT largely un-
tapped. We explore leveraging few-shot CoT learn-
ing to improve LLMs’ math reasoning capabilities.
Prompt Compression. One related works involve
compressing input prompts, including (1) token
pruning (Kim et al., 2022; Li et al., 2023a); (2) soft
prompt compression (Mu et al., 2023; Chevalier
et al., 2023); and (3) information-entropy-based
approaches (Li et al., 2023b; Jiang et al., 2023b).

However, they do not effectively solve our prob-
lem for two reasons. First, they prune tokens based
on designed metrics, often failing to remove re-
dundancy of the entire CoT examples. Second,
some tokens such as numerical and format tokens,
although redundant, are crucial for math reasoning.
Prompt Retrieval aims to optimize LLM perfor-
mance by selecting effective few-shot examples.
Heuristic methods, such as the TopK retrieval (Liu
et al., 2021; Gao et al., 2021), BM25 (Robert-
son et al., 2009), VoteK (Hongjin et al., 2022),
and entropy (Lu et al., 2022), select examples
based on semantic similarity. Recently, supervised-
based methods like EPR (Rubin et al., 2021), LLM-
R (Wang et al., 2023b), and IDS (Qin et al., 2023)
have been proposed, which train a retrieval model
to learn better example selection. However, these
methods do not consider token redundancy, which
can limit the number of retrieved examples.

3 Pilot Study

This section presents our key observations of few-
shot learning in improving LLMs math reasoning,
upon which the CoT-Influx design is based. Note
that experiments are done with our CoT dataset,
MRD3, as introduced in Sec. 4.1.
Observation 1: LLMs can improve reasoning with

13675



Decreased accuracy due to 

squeezed token limits of response

0

5

10

15

0 2 4 6 8 12 16 20

Number of CoT Examples

Exceed token limits!

LLaMA2-7B on GSM8K accuracy 

Standard 8-shot CoT

Figure 1: LLaMA2-7B reasoning accuracy under an
increasing number of TopK retrieved CoT examples.

more helpful CoT examples, but the context window
length limits further accuracy gains.

A standard practice for evaluating LLMs’ math
reasoning capability is the use of 8-shot manually-
designed CoTs (Wei et al., 2022). We increase the
number of CoT shots to see if reasoning accuracy
improves. To avoid poor-quality examples, we use
the TopK method (Liu et al., 2021) to select the
k most relevant CoT examples for each question.
Given LLaMA2’s context window limit of 4096
tokens, we could only input up to 20 CoT exam-
ples‡. As Fig. 1 shows, increasing CoT examples
improves LLaMA2-7B’s reasoning accuracy on the
GSM8K dataset, significantly outperforming the
standard 8-shot setting. However, the limited LLM
context window hinders the full potential of few-
shot CoT learning for improving math reasoning.
For instance, even with 20 CoTs not hitting the to-
ken limit, accuracy drops as the large input context
limits the LLM’s response space.
Observation 2: CoT example selection is crucial
for math reasoning. Simply adding CoT examples
randomly doesn’t boost performance.

The prior study suggests that more CoT exam-
ples can improve LLM reasoning performance.
However, the quality of CoT examples is crucial
to the final performance. As shown in Table 1,
even with up to 16 CoT shots, random selection
underperforms the standard 8-shot setting, which
is manually curated for quality.

Table 1: The selection of CoT examples heavily impacts
LLM math reasoning performance on GSM8K.

Model Manual 8 Shots Random 16 Shots

LLaMA2-7B 13.79 12.82±0.94
LLaMA2-13B 27.82 23.16±0.42

Observation 3: A CoT example contains redundant
tokens for math reasoning, which can be pruned to

‡The input token length is less than the context window
token limit, as the answer generation also shares this limit.

free up space for more informative content.
Observation 2 indicates that few-shot CoT ex-

amples contain useless or even harmful examples
that can be pruned. We further observe that a CoT
example often has redundant tokens. For instance,
the blue tokens in Fig. 2 can be removed without
affecting LLM performance. However, identifying
redundant tokens for math reasoning poses a chal-
lenge. Simply using existing prompt compression
methods (Jiang et al., 2023b; Li et al., 2023b) leads
to a significant performance decline. Fig. 2 shows
a compressed example using LLMLingua (Jiang
et al., 2023b). Some numerical and format tokens
(colored in red), while identified as redundant, are
crucial for LLM to comprehend the context for
solving a math problem.

Figure 2: A compressed CoT example using the prompt
compression tool of LLMLingua (Jiang et al., 2023b).
The pruned tokens contain truly redundant tokens (col-
ored in blue) and crucial tokens (colored in red).

4 CoT-Influx Methodology

Motivated by our observations, this section intro-
duces CoT-Influx, which maximizes CoT examples
within the original LLM context window by identi-
fying the most important CoT examples and tokens
from a long input context.

4.1 CoT Dataset Collection
We start by collecting a high-quality math reason-
ing dataset comprising diverse CoT examples with
varying steps and difficulties. We merge the train-
ing set of GSM8K (Cobbe et al., 2021), MAWPS,
MAWPS-single (Koncel-Kedziorski et al., 2016),
and 1000 random examples from AQuA (Ling et al.,
2017) to create an initial dataset of 9.7K question-
answer pairs. Then, we prompt GPT-4 to generate
formatted CoT reasoning steps. We apply 5 muta-
tion schemes, three to increase reasoning difficulty
and two to simple questions. The final dataset is
referred to as Math Reasoning Dataset with Diverse
Difficulty (MRD3). The details of dataset evolution
are listed in Section. B in the Appendix.
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Figure 3: Above: The overview procedure of CoT-Influx; Below: an example illustrating the use of CoT-Influx to
first prune entire CoT examples and then prune tokens. The blue-highlighted text indicated the pruned context.

4.2 Problem Formulation
Our CoT-Influx is designed to select the optimal
CoT examples as many as possible within LLM
context window. Let D denote the CoT dataset
(i.e., the MRD3), and D̂ = {xcot

i }ki=1 be a subset
of k CoT examples, each composed of a question,
reasoning steps, and an answer. The total number
of tokens in these k CoT examples far exceeds the
LLM context window length limit of T . CoT-Influx
is designed to perform a two-step pruning process:

D̂ = {xcot
i }ki=1

Shot Pruner−−−−−−→ {xcot
j }k′j=1

Token Pruner−−−−−−−→ {x̂cot
j }k′j=1 (1)

Initially, unhelpful CoT examples are pruned from
D̂, resulting in a reduced set of k′ examples. Then,
for each retained CoT example xcot, redundant to-
kens are pruned, yielding a shorter example, ˆxcot.

Let xquestion denote the question that LLM is
tasked to solve. For final input xinput, we concate-
nate all tokens from {x̂cot

j }k′j=1 and place them be-
fore xquestion. Our goal is to optimize the input
xinput so that LLM can correctly answer the ques-
tion under xinput. Meanwhile, the token count of
xinput, t, must be less than the LLM context window
limit T . Formally, we optimize the following:

min
D̂⊆D

LLLM
(
xinput) , max

D̂⊆D
RAcc

(
yLLM

(
xinput) , yanswer) ,

s.t. t
(
xinput) =

k′∑

1

|x̂cot|+ |xquestion| ≤ T
(2)

where LLLM is LLM loss, and RAcc evaluates if

LLM’s answer yLLM(xinput) matches the correct
answer yanswer, this will be elaborated in Sec. 4.4.
Overview. Fig. 3 illustrates our approach. The
core component is a lightweight, plug-and-play
module (Sec. 4.3), which consists of a small text
embedding extractor and a coarse-to-fine pruner.

To train the pruner, we face the challenge of
gradient backpropagation when pruning discrete
tokens outside the LLM. The LLM loss gradient
cannot be backpropagated through the tokenizer.
To address this, we design a multi-objective reward
function and use reinforcement learning for effec-
tive training (Sec. 4.4). The overall training process
is outlined in Algorithm 1.

4.3 Coarse-to-fine Pruner Design
Text embedding extractor. As CoT-Influx serves
as an external module, we need to extract text em-
bedding as prediction features. However, it’s non-
trivial to extract features for long inputs beyond the
LLM context window. To address this, we use a
small encoder model, BERT-Large (Devlin et al.,
2018), to extract sentence-level (i.e., a CoT exam-
ple) embedding instead of extracting token embed-
ding for the entire long context. For a batch of k
CoT examples, each example is padded to N=512
tokens. BERT then inferences these examples to
obtain the final layer of text embedding, denoted
as Hsshot ∈ Rk×N×DBERT , where DBERT is BERT’s
hidden dimension size.
State. As shown in Fig. 3, we define state sshot ∈
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Rk×N for the first shot pruner, representing the
input batch of k CoT examples ∈ D̂. For the sec-
ond token pruner, we define state stoken ∈ Rk′×N ,
which represents all remaining tokens after the shot
pruner. k′ is the number of retained examples.
Action. Let ashot and atoken denote the actions pre-
dicted by the shot and token pruner, respectively.
The action space is defined as {0, 1}, where 1
signifies retention and 0 indicates pruning. ashot
determines whether each CoT example should be
pruned, while atoken predicts the pruning of each
token in the retained CoT examples.
Two-stage policy network. The pruner module is a
two-stage policy network, each stage is a two-layer
feed-forward network (MLP) with GELU activa-
tion. This module outputs a continuous categorical
distribution π, used for sampling discrete actions
(i.e., {0, 1}). Let θ denote the MLP’s trainable
parameters and σ(·) the sigmoid function. Based
on the current states {sshot, sshot} and the hidden
states {Hsshot , Hstoken}, the policy network sequen-
tially make two action predictions as follows:

π(ashot|sshot; θ) = σ
(
MLP

(
Hsshot

))
(3)

π(atoken|stoken; θ) = σ
(
MLP

(
Hstoken

))
, (4)

where ashot and atoken are the predicted actions,
sequentially predicting whether to prune each of
the k CoT examples and each token within the
retained examples, respectively. We predict the
discrete action by sampling from the categorical
distribution π with a softmax function.

4.4 End-to-end RL Optimization

Multi-objective Reward. Our objective in Eq. 2
is to train the pruner module to identify the most
crucial CoT examples and useful tokens for math
problem-solving while keeping the final tokens
within the original LLM context window. To
achieve this, we design a multi-objective reward.

Let xinput be the final input to LLM, which in-
cludes the retained CoT tokens from the policy
network and the target question. t represents the
token count of xinput, and T is the token count limit.
The reward R is defined as follows:

R
(
xinput

)
= (

1

1 + LLLM
+RAcc)×

[
t

T

]w

(5)

where the first term evaluates the effectiveness of
inputted CoT tokens, and the second term ensures
they are within the LLM context window. LLLM is
LLM’s prediction loss under xinput, RAcc evaluates

Algorithm 1 Pruner Training and Inference
Input: target LLM, embedding extractor BERT, reasoning
dataset D, number of CoTs k, token limit T , manual few-shot
cot xfew-shot, repeat per sample trepeat

1: ▶ Phase 1: MRD3 preperation
2: Perform evolution and difficulty evaluation to get D;
3: Use the difficulty filter and split D into questions set

Dquestion and CoT candidates set Dcot
4: ▶ Phase 2: Training the two-stage pruner (1 epoch)
5: for (xquestion, yanswer) in Dquestion do
6: Retrieve Top-k examples D̂ = {xcot}ki=1 from Dcot

7: Hsshot = BERT
(
{xcot}ki=1

)
8: for j=1 to trepeat do
9: Get π (ashot|sshot; θ) with Eq. 3, sample ashot

10: {xcot}ki=1 −→ {xcot}k′
i=1

11: Hstoken = BERT
(
{xcot}k′

i=1

)

12: Get π (atoken|stoken; θ) with Eq. 4, sample atoken

13: {xcot}k′
i=1 −→ {x̂cot}k′

i=1

14: xinput =
(
{x̂cot}k′

i=1, x
few-shot, xquestion

)

15: Output LLM(xinput); Compute R with Eq. 5
16: end for
17: Compute policy gradient using Eq. 6, update θ
18: end for
19: ▶ Phase 3: LLM reasoning with pruner and MRD3

20: Retrieve Top-k shots {xcot
q }k ∈ D for target question q

21: Do pruning: {xcot
q }k θ−→ {x̂cot

q }k′
, reconstruct {x̂cot

q }k′

22: xinput
q =

(
{x̂cot

q }k′
, xfew-shot, xquestion

q

)

23: Get LLM reasoning output LLM(xinput
q )

the reasoning accuracy (to be discussed later). w
is a hyperparameter that penalizes the token count
t for being too short (i.e., w > 0) or exceeding
(i.e.,w < 0 ) the token limit T .

In addition to LLLM, we introduce RAcc to evalu-
ate math reasoning accuracy. This is because LLLM,
the average loss of generated tokens, doesn’t fully
reflect LLM’s ability to generate correct answers.
Specifically, RAcc is set to 1 for a correct answer
and 0 for an incorrect one. Notably, we found that
if the format or crucial tokens are pruned, LLM
struggles to interpret the input, leading to irrelevant
answers for math problem-solving. In such cases,
we penalize RAcc with a value of -0.1.
Optimization with REINFORCE. We employ re-
inforcement learning to maximize the reward and
train the two-stage policy network. According to
REINFORCE (Williams, 1992), the network pa-
rameters are updated by the gradients:

R · ∇θlogπ(ashot|sshot)π(atoken|stoken) (6)

Notably, as shown in Fig. 3, only the parameters
of the policy network require training. The em-
bedding extractor and LLM are frozen. Thus, the
overall training overhead is lightweight.
Difficulty-aware data filter. Existing LLMs, par-
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ticularly smaller ones, underperform in math rea-
soning. Suppose the question is too challenging
for LLMs. In that case, the answer will always be
incorrect, regardless of the quality of compressed
few-shot CoT examples, making it challenging to
train our pruner module effectively. To address it,
we use a difficulty filter to sample a math question
set Dquestion from D, which includes only easy ques-
tions with a difficulty score below a threshold dthr.
During training, each question in Dquestion samples
a batch of k CoT examples from Dcot, where Dcot
is the CoT candidate set sampled from D.
Stabilize the training. Another challenge is that
pruning CoT and tokens during training introduces
instability, making it difficult for effective training.

First, despite the optimization of question set
Dquestion through the filter, LLM performance for
a randomly sampled question under different few-
shot prompts can still be unpredictable. This un-
predictability, where a question might yield correct
results under low-quality pruned prompts and a
complex question might fail under carefully pruned
prompts, can affect the pruner’s training effective-
ness. To address this, we continuously repeat a
sampled question multiple times, trepeat, each time
with a different pruned few-shot prompt from the
pruner. Moreover, we use exponential moving av-
erage (EMA) to smooth reward RAcc in Eq. 5.

Second, during the early training, our pruner
module makes random decisions, leading to arbi-
trary removal of CoT examples and tokens. These
randomly pruned few-shot prompts can cause in-
stability in RL training. Empirically, we append
the manually-designed few-shot CoTs (Wei et al.,
2022) to the pruned prompts. This ensures a good
lower bound and stabilizes the training.

5 Evaluation and Analysis

Models, datasets and metric. We evaluate CoT-
Influx on LLaMA2-7B, LLaMA2-13B, LLaMA2-
70B and two long-context LLMs. The math
datasets for evaluation include GSM8K (Cobbe
et al., 2021), AddSub (Hosseini et al., 2014), Multi-
arith (Roy and Roth, 2015), Svamp (Patel et al.,
2021), and Singleeq (Koncel-Kedziorski et al.,
2015). We also include MMLU-STEM (Hendrycks
et al., 2020) for general reasoning evaluation, as
well as MATH (Hendrycks et al., 2021) for eval-
uation on challenging reasoning tasks. The Exact
Match (EM) accuracy of the predicted answers are
reported as the metric.

Baselines We set three baselines for comparison:

• CoT and few-shot CoT prompting: We com-
pare with widely-used prompts for LLM reason-
ing, including zero-shot, zero-shot-CoT (Kojima
et al., 2022), and the standard manual few-shot-
CoT (Wei et al., 2022) with 8 shots.

• Prompt retrieval: we also compare with retrieval
baselines, specifically using random, TopK (Liu
et al., 2021), and BM25 (Robertson et al., 2009)
methods. We select as many CoT examples as
possible using each method, without exceeding
the LLM context window. Random retrieval is to
reflect the average quality of our CoT dataset.

• Prompt compression: To evaluate the effective-
ness of identifying crucial tokens, we compare
the resulting compressed prompts from the same
batch of CoT shots with state-of-the-art prompt
compression baselines: Selective Context (Li
et al., 2023b), LLMLingua (Jiang et al., 2023b),
and compression through GPT-4.

5.1 Main Results
Effectiveness of enabling more CoT shots. We
first evaluate how far the boundary of few-shot
learning can be pushed using CoT-Influx. For com-
parison, we set up two baselines: (i) Few-shot CoT,
using 8 manual-designed CoT shots. (ii) TopK,
which retrieves 20 CoT shots from our dataset.
For CoT-Influx, we test LLaMA2 7B and 13B on
GSM8K, adjusting the number of CoT shots from
16 to 64 examples, which corresponds to 0.7× to
2.8× the token count of LLaMA2 context window.
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Figure 4: EM(%) accuracy on GSM8K with inputting
different number of CoT examples for CoT-Influx.

As shown in Fig. 4, we make two observations:
(1) More CoT shots, facilitated by CoT-Influx, in-
deed boosts LLM math reasoning performance, par-
ticularly for larger LLMs. On LLaMA2-13B, by
inputting 48 CoTs, we significantly outperform the
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Table 2: Comparison of EM (%) accuracy on GSM8K with state-of-the-art baselines. Note that the 20 CoT shots
of retrieval baselines are the max number, given that the context window limit of LLaMA2 is 4096 tokens. †The
number of input CoT shots varies across LLMs. Detailed settings for different models can be seen in Table 19.

Method #Input CoT shots #Average tokens LLaMA2-7B LLaMA2-13B LLaMA2-70B

Zero-shot 0 - 4.25 5.84 11.45
Zero-shot-CoT (Kojima et al., 2022) 0 - 1.74 12.28 21.91
Few-shot-CoT (Wei et al., 2022) 8 655 13.79 27.82 55.42

Random retrieval 20 3379.8 12.51 22.21 53.07
TopK retrieval (Liu et al., 2021) 20 3535.4 14.56 23.65 54.59
BM25 retrieval (Zhenyu et al., 2023) 20 3816.1 13.42 25.17 54.21

TopK+GPT4 Compression 40 1376.0 7.08 11.01 25.17
TopK+Selective Context (Li et al., 2023b) 40 2262.4 0.45 0.76 2.50
TopK+LLMLingua (Jiang et al., 2023b) 40 2048.0 5.38 8.34 22.74

CoT-Influx 48† 2037.0 15.85 (↑1.29) 32.22 (↑4.40) 59.59 (↑4.17)

Table 3: Comparison of EM (%) accuracy on Addsub,
Multiarith, Svamp, and Singleeq math reasoning dataset.

Model Method AddSub Multiarith Svamp Singleeq Avg.

Zero-shot 58.73 5.50 32.2 62.79 39.81
Few-shot-CoT 56.96 43.67 38.1 66.54 51.32

LLaMA2-7B TopK retrieval 46.08 34.50 38.1 46.46 41.29
TopK+LLMLingua 12.91 10.50 19.5 19.49 15.60
CoT-Influx 62.28 47.00 40.2 72.05 55.38

Zero-shot 70.13 6.50 43.8 71.07 47.88
Few-shot-CoT 65.82 72.83 42.7 77.36 64.68

LLaMA2-13B TopK retrieval 60.76 57.00 50.2 68.50 59.12
TopK+LLMLingua 22.28 22.33 27.5 25.20 24.33
CoT-Influx 69.62 73.87 50.5 83.07 69.26

standard few-shot CoT and TopK by 4.40% and
8.72%, respectively. (2) There is an optimal num-
ber of CoT shots for CoT-Influx. Its peak perfor-
mance on LLaMA2 7B and 13B are at 40 and 48
shots, respectively. We attribute this to two poten-
tial reasons. First, an extremely large number of
shots complicates CoT-Influx’s optimization. Sec-
ond, there may be an upper limit to improving LLM
reasoning capability through few-shot learning.
Comparison with state-of-the-art baselines. Ta-
ble 2 and Table 3 present the comparison results
of CoT-Influx with state-of-the-art baselines across
LLaMA2 family and 5 mathematical datasets, high-
lighting the following observations: (1) by utilizing
more few-shot CoTs that are twice the LLM con-
text window, CoT-Influx significantly outperforms
all baselines, with up to 4.40% absolute improve-
ments. (2) Despite using fewer input tokens, CoT-
Influx consistently outperforms retrieval baselines
by 1.29% to 14.09% absolute improvements. This
is because our compressed tokens indicate more
informational CoT examples without redundancy.
In contrast, they select entire examples, which may
contain redundant tokens. (3) CoT-Influx signifi-
cantly outperforms prompt compression baselines

Table 4: Comparison of EM (%) accuracy on GSM8K
with larger LLMs under the few-shot-CoT setting.

Model Parameters EM (%)

Finetuned GPT-3 (Wei et al., 2022) 175B 34.0
Chinchilla (Hoffmann et al., 2022) 70B 43.7
Text-davinci-002 (Kojima et al., 2022) 175B 51.5
PaLM (Chowdhery et al., 2022) 540B 56.5
GPT-3.5 (OpenAI, 2023a) - 57.1
Minerva (Lewkowycz et al., 2022) 540B 58.8

LLaMA2-70B+CoT-Influx 70B 59.6

in preserving the most crucial tokens for math rea-
soning, while methods like Selective Context and
LLMLingua suffer accuracy declines due to diffi-
culties in maintaining few-shot prompt structure.
GPT-4 tends to prune essential reasoning steps,
which negatively impacts CoT effectiveness.

We further demonstrate the effectiveness of CoT-
Influx by comparing LLaMA2-70B with larger-
size LLMs on GSM8K. As shown in Table 4,
CoT-Influx significantly boosts LLM reasoning ca-
pabilities. Remarkably, without any fine-tuning,
LLaMA2-70B with CoT-Influx outperforms much
larger LLMs such as GPT-3.5.
CoT-Influx for more difficult math reasoning
tasks. To evaluate the generalizability of CoT-
Influx to higher-difficulty math reasoning problems,
we further verify our method on one additional
benchmark MATH (Hendrycks et al., 2021) con-
sisting of 12,500 challenging competition mathe-
matics problems, covering algebra, calculus, statis-
tics, geometry, linear algebra, and number theory.
We directly apply our CoT-Influx pruner trained
on MRD3 to optimize the prompt for MATH eval-
uation. The results are shown in Table 5. Al-
though the MRD3 dataset is specifically designed
for grade-school level math reasoning tasks, CoT-
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Influx still shows accuracy improvements on the
MATH benchmark. The improvement could be fur-
ther enhanced by incorporating MATH-level chains
of thought (CoTs) prompts into MRD3.

Table 5: Comparison of accuracy on MATH dataset with
state-of-the-art baselines.

Method #shots LLaMA2-7B LLaMA2-13B LLaMA2-70B

Zero-shot 0 2.8 3.9 13.5
Few-shot-CoT 8 7.7 11.5 24.1
TopK retrieval 20 9.1 13.5 24.5
TopK+LLMLingua 40 6.6 10.3 19.9

CoT-Influx 48 9.3 (↑0.2) 14.0 (↑0.5) 25.2 (↑0.7)

Generalization to other reasoning tasks. To vali-
date the generalizability of CoT-Influx on general
reasoning tasks beyond math, we further verify
our method on an additional benchmark: MMLU-
STEM (Hendrycks et al., 2020). We utilize the
original 5-shot demonstration for each task and ap-
pend our prompt selected and pruned from MRD3

using CoT-Influx. As shown in Table 6, despite
CoT-Influx being trained on MRD3 with only math
data, it still improves commonsense reasoning per-
formance over various baselines. We believe that
by integrating CoT datasets for more tasks, our
CoT-Influx can achieve superior reasoning perfor-
mance. We leave this as future work.

Table 6: Comparison of accuracy on MMLU-STEM
benchmark with state-of-the-art baselines.

Method #Input shots LLaMA2-7B LLaMA2-13B

Few-shot 5 36.4 44.1
TopK retrieval 5+20 35.7 43.9
TopK+LLMLingua 5+40 34.2 43.3

CoT-Influx 5+40 37.0 (↑0.6) 44.3 (↑0.2)

CoT-Influx on instruct models. We have
demonstrated the effectiveness of CoT-Influx
on foundational LLMs like LLaMA2-7B, 13B,
and 70B. Additionally, instruct models such as
LLaMA2-chat (Touvron et al., 2023) and GPT-3.5-
Turbo (OpenAI, 2023b) are also widely utilized.
To show that our CoT-Influx can also help improve
the reasoning ability of these instruct LLMs, we
conduct experiments of LLaMA2-13B-Chat and
GPT-3.5-Turbo (gpt35-turbo-0613) on GSM8K
dataset. As shown in Table 7, CoT-Influx outper-
forms a range of prompting baselines with more in-
put shots and fewer tokens. Notably, for LLaMA2-
13B-Chat, CoT-Influx achieves an absolute im-
provement of 9.78% over the TopK retrieval base-
line, using only 57.6% of the average tokens.

Table 7: CoT-Influx can also improves instruction-
finetuned LLaMA2-13B-Chat and GPT-3.5-Turbo.

Method #shots #tokens LLaMA2-13B-Chat GPT-3.5-Turbo

Few-shot-CoT 8 655 27.82 72.55
TopK retrieval 20 3535.4 31.16 70.74
TopK+LLMLingua 40 2048.0 10.69 49.96

CoT-Influx 48 2037.0 40.94 73.31

Table 8: CoT-Influx is compatible with advanced prompt
techniques like self-consistency (i.e., maj@20) and self-
verification (i.e., verify@20).

Method LLaMA2-13B LLaMA2-70B

CoT-Influx 32.22 59.59
CoT-Influx+maj@20 33.43 (↑1.21) 60.73 (↑1.14)
CoT-Influx+verify@20 34.04 (↑1.82) 61.79 (↑2.20)

Compatible with existing reasoning prompts. As
a method to improve LLM reasoning capability,
CoT-Influx is complementary with other advanced
reasoning-based prompts. To prove this, we ap-
ply self-consistency (Wang et al., 2023d) and self-
verification (Weng et al., 2023) to the prompts gen-
erated by CoT-influx. For evaluation efficiency, we
sampled 20 times. As Table 8 shows, applying self-
consistency and self-verification further improves
LLaMA2’s performance on GSM8k.

5.2 CoT-Influx on Long Context LLMs

Recently, an increasing number of long-context
LLMs (context length≥32K) have emerged to
address tasks involving extensive input contexts.
These models naturally facilitate handling as many
few-shot examples as possible. However, re-
searchers have pointed out that scaling the few-
shot examples does not consistently improve the
in-context learning performance (Zhao et al., 2024;
Li et al., 2024), and most long-context tasks can be
solved by short-context input (Qian et al., 2024).

We verify these observations and further demon-
strate that CoT-Influx is highly beneficial to long-
context LLMs by selecting high-quality, concise
CoT examples. Moreover, CoT-Influx can serve
as a prompt compressor for long-context LLMs,
saving inference costs by pruning redundant input
tokens. Fig. 5 shows the results on Mistral-7B-
v0.3-32K (Jiang et al., 2023a) and Yi-6B-200K (AI
et al., 2024). While more CoT examples may not
consistently improve accuracy, CoT-Influx signif-
icantly outperforms current few-shot and prompt
retrieval baselines. With an average 72.9% and
86.4% input token reduction in the prompt, we can
achieve 2.7% and 2.5% absolute improvement on
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GSM8K, respectively.
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Figure 5: Prompt compression effect on long-context
LLMs. The x-axis indicates the number of input tokens.

5.3 Ablation Study and Analysis
Ablation study on coarse-to-fine pruner. Our
pruner operates at both shot and token levels to
fully exploit redundancy within CoT examples. To
verify the effectiveness, we conducted experiments
with only a shot or token pruner in the same set-
ting. As shown in Table 9, removing any pruning
stage decreases performance. Notably, removing
token-only pruning causes a larger accuracy drop
than shot-only pruning, indicating that shot-level
redundancy is easier for the pruner to learn.

Table 9: Comparison of different pruning strategies.

Pruning Strategy LLaMA2-7B LLaMA2-13B LLaMA2-70B

CoT-Influx (shot+token) 15.85 32.22 59.59
Prune shot only 15.69 (↓0.16) 31.08 (↓1.14) 57.77 (↓1.82)
Prune token only 12.05 (↓3.80) 25.32 (↓6.90) 49.36 (↓10.23)

Token pruning ratios. We now investigate token
pruning ratios by our pruner. Fig. 6 shows the
remaining token length for LLaMA2-70B after our
pruner. In total, we achieve a 4.28× pruning ratio,
with the shot pruner contributing a 3.87× ratio. The
results suggest that our pruner favors pruning more
coarse-grained shots over fine-grained tokens.

8751.8 tokens (48-shot)

2261.4 tokens

2045.7 tokens

3.87× Compression Ratio

4.28× Compression Ratio

Figure 6: Token length after each stage of our pruner.

Inference cost. CoT-Influx is a lightweight plug-
and-play module, including a 336MB BERT-Large
model and a tiny 4MB coarse-to-fine pruner. We
measure its additional inference cost. Table 10

shows the total inference latency and GPU memory
required to run LLaMA2-7B with different meth-
ods on GSM8K, measured on a single NVIDIA
A100 GPU. The results reveal that CoT-Influx in-
troduces a negligible 1.4GB additional memory
and a 1.7% increase in latency. This is more effec-
tive than prompt compression baselines, such as
Selective Context and LLMLingua, which require
significantly higher latency and more GPU mem-
ory, potentially hindering efficient deployment.

Table 10: The total inference costs on GSM8K.

Method #Input-shot #Token Time GPU Memory

LLaMA2-7B 12 2108.6 2.99h 19.7GB

Selective Context 40 2262.4 4.38h 23.5GB
LLMLingua 40 2048.0 3.65h 33.0GB

CoT-Influx 40 2037.0 3.04h 21.1GB

Implications. Our analysis of retained CoT exam-
ples and tokens yields the following insights: (1)
More capable LLMs favor harder CoT examples,
while smaller LLMs opt for simpler ones. (2) Nu-
merical and format tokens are essential for math
reasoning. Function words like with, the, then, and
irrelevant background context can be pruned with-
out affecting reasoning capability.

6 Conclusion
We present CoT-Influx, a plug-and-play module
that improves LLM math reasoning by pruning
unnecessary few-shot examples at shot and token
levels for a more effective input context. To train
the module, we use reinforcement learning to opti-
mize a math reasoning-specific reward. Extensive
experiments on various datasets and LLMs com-
pared with state-of-the-art baselines demonstrate
the effectiveness of our method. This paper high-
lights the vast potential of few-shot CoT prompting
in augmenting LLMs’ math reasoning abilities.

Limitations

As in-context learning with LLM heavily relies
on the selected examples in the prompt, the per-
formance of CoT-Influx can be influenced by the
quality of CoT generation. Despite this, CoT-Influx
still demonstrates strong performance on our GPT4-
evolved dataset MRD3. We currently use BERT to
obtain the feature embedding of a CoT example,
which cannot handle long-sequence examples ex-
ceeding 512 tokens. We will take these limitations
into account and mitigate them in future work.
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Appendix

This appendix includes additional analysis, the evolution of MRD3, pruner training details, additional
related works, and prompt settings. These contents are organized in separate sections as follows:

• Sec. A provides additional analysis and case studies, including the comparison of CoT-Influx with
context window extension methods, ablation study on the reward design, and sensitivity analysis on
hyperparameters of the pruner. Additional case studies on the GSM8K with different prompting methods
are given to prove the effectiveness of our method.

• Sec. B introduces the prompt we used for the evolution of the examples in our MRD3. Both the original
input and the evolution results are given as examples. We also analyze the difficulty and reasoning step
distribution of different evolution methods and derive a new observation regarding difficulty preference
for different LLMs.

• Sec. C includes the algorithm for training data preparation as a supplement to Algorithm 1. The
hyperparameter settings, the training dynamic of the pruner, and the detailed introduction of the evaluation
dataset are also included.

• Sec. D elaborates previous LLM context window extension and LLM in-context learning methods and
analyzes the advantage of our proposed CoT-Influx compared with various previous methods.

• Sec. E demonstrates the prompt we used in this work for difficulty and reasoning step evaluation, and
GPT-4 based compression on input few-shot prompts.

A Additional Analysis and Case Study

A.1 Comparison with context window extension methods

While our work tackles the challenge of the limited context window by pruning the redundant input
few-shot prompts, another solution is to extend the context window of LLMs. We compare the math
reasoning performance of LLaMA2-7B with CoT-Influx and LLaMA2-7B with 32K token context window
extended with Positional Interpolation (PI) (Chen et al., 2023a). The results are listed in Table 11.

Table 11: Comparsion of EM(%) on GSM8K of LLaMA2-7B with CoT-Influx and LLaMA2-7B-32K with PI.

Number of input shots 12 16 20 24 28 32 40

Average number of tokens 2108.6 2820.6 3535.4 4217.2 4929.1 5641.2 7070.8

LLaMA2-7B 13.87 15.08 14.02 - - - -
LLaMA2-7B+CoT-Influx - - - 14.33 15.09 15.85 15.77

LLaMA2-7B-32K 11.37 12.81 11.37 11.83 11.83 11.52 11.30

When the input prompt does not exceed the window token limit (the number of input shots is not
more than 20), we compare the performance of LLaMA2-7B-32K with LLaMA2-7B. When the input
prompt exceeds the context window length, we apply our CoT-Influx to prune the prompts to make sure
that they can be directly input to LLaMA2-7B without PI. The results show that the context window
extension weakens reasoning ability when using the same input prompt. The limit of the context window
can be unlocked with our CoT-Influx. Moreover, our observation that LLMs can improve reasoning with
more helpful CoT examples does not hold true for LLMs with extended context windows, which is also
discussed in recent research (Li et al., 2024).

Another drawback of the existing context window extension method lies in the efficiency of fine-tuning
models with the extended context. Compared to the previously proposed methods such as PI (Li et al.,
2024), YaRN (Peng et al., 2023a), and LongRoPE (Ding et al., 2024), as can be seen from the Table 12
which compares the number of GPUs and the training time, our CoT-Influx is significantly more efficient
in terms of the training cost.
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Table 12: Comparsion of Efficiency of CoT-Influx and common context extension methods.

Method PI (Li et al., 2024) YaRN (Peng et al., 2023a) LongRoPE (Ding et al., 2024) CoT-Influx

Devices for Training 128 A100 GPUs 16 A100 GPUs 16 A100 GPUs 1 A100 GPU

Training Time unknown unknown 2 weeks 3 hours

Recently, researchers proposed a training-free LLM context window extension method InfLLM (Xiao
et al., 2024), which improves the efficiency of attention computation by storing distant contexts into
additional memory units and using dynamic multi-step memory lookup. While this work solves the
problem of expensive finetuning costs to some extent, significant inference overhead still exists for
inputting the long context to the LLM and additional operations such as the memory lookup. In addition
to the computation overhead, the results in our paper also suggest that removing informative tokens in
prompts can also improve reasoning performance. However, context extension methods keep the original
prompt as the input and also retain these “harmful tokens”. We believe this is another important advantage
of our method compared to all context extension methods, including InfLLM (Xiao et al., 2024).

A.2 Ablation study on reward design
The reward of our CoT-Influx pruner is made up of three parts: math reasoning accuracy reward RAcc,
LLM loss reward RLoss =

1
1+LLLM

, and context window token limit reward RLimit =
[
t
T

]w. Each part of
the full reward function is important for the effective learning of the pruner. We perform ablation studies
on these components and the results are listed in Table 13. As can be seen from the results, whenever a
reward component is removed, the CoT-Influx pruner gives sub-optimal prompt selection and compression
results, which cause a decrease compared to the full reward baseline. Among these three reward function
parts, the token limit reward RLimit is the most important because training without this term will cause the
pruner not to prune any shot or token and directly output the truncated prompt of the redundant input.

Table 13: The EM (%) accuracy on GSM8K of LLaMA2-7B and LLaMA2-13B with different reward function.

Reward Function LLaMA-2-7B LLaMA-2-13B

Full Reward 15.85 32.22
w/o RAcc 15.24 31.46
w/o RLoss 14.78 31.16
w/o RLimit 14.25 29.72

A.3 Sensitivity analysis on hyperparameters and training settings
We perform sensitivity analysis on the hyperparameters to investigate the robustness of our CoT-Influx
pruner training. The most important setting in the training of our CoT-Influx pruner is the token target
T , token penalty co-efficient w, and the reward penalty value in RAcc. Table 14 and Table 14 present
the results of CoT-Influx using different sets of hyperparameters T , w, and reward penalty in RAcc. The
results demonstrate that the training of our CoT-Influx pruner is highly robust as long as the token target
T is not overly aggressive (token target T should not be too small). We also empirically set the value of
the reward penalty in RAcc as -0.1 based on the experiments.

Table 14: Sensitivity analysis on token target T and token penalty co-efficient w

Token target T LLaMA-2-13B

2048 32.22
1024 29.57
3072 31.08

Token penalty co-efficient w LLaMA-2-13B

(-1,1) 32.22
(-0.5,1) 31.69
(-1,0.5) 32.22

We have also verified the effect of applying different LLMs for the training of the CoT-Influx pruner.
The results are listed in Table 16. Based on our observations, the choices of LLM during training will not
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Table 15: Sensitivity analysis on reward penalty value in RAcc

Reward Penalty in RAcc 0 -0.05 -0.1 -0.2 -0.5

LLaMA2-13B@GSM8K 31.69 32.22 32.22 32.07 31.92

significantly influence the pruning capability of CoT-Influx, as the performance of CoT-Influx+LLaMA2-
7B on GSM8K with different training LLM is close.

Table 16: Comparison of different choices on the LLMs used for training the CoT-Influx pruner.

LLM used for training LLaMA2-7B LLaMA2-13B LLaMA2-70B

CoT-Influx+LLaMA2-7B 15.77 15.85 15.85

A.4 Case Study on different prompt compression methods
To show how different prompt compression methods prune input few-shot prompts in different manners,
we give an example of an 8-shot prompt selected using the TopK retriever. The original full few-shot
prompts are listed in the following box:

Original full few-shot prompt for math reasoning (1331 tokens):

Q: Dave won 11 tickets at the arcade and spent 5 on a beanie. Afterward, he won 10 more tickets. Calculate his final ticket count by first finding the
remaining tickets after his purchase and then adding the newly won tickets.
A: Let’s think step by step. Dave had 11 tickets, spent 5, leaving him with 6. Then he won 10 more, resulting in: 6 + 10 = 16 tickets. The answer is 16.

Q: At the carnival, tickets for rides cost 0.75 dollars each, or you can buy a 15-dollar armband for unlimited rides for one night. To determine the
number of rides where the armband’s cost equals that of individual tickets, set up and solve an equation involving x, the number of rides.
A: Let’s think step by step. Let x be the number of rides. Equate the cost of x rides using individual tickets, 0.75x dollars, to the 15-dollar armband
cost: 0.75x = 15. Solve for x: x = 15/0.75, which gives x = 20. The answer is 20.

Q: Mitch, Jam, and Jay went out for a movie. Mitch paid $7 per ticket for 3 friends, Jam purchased 2 popcorn boxes at $1.5 each, and Jay got 3 milk
teas for $3 each. To equitably split the expenses, how much should each of them contribute?
A: Let’s think step by step. The total cost of 3 tickets at $7 each, 2 popcorn boxes at $1.5 each, and 3 milk teas at $3 each is $21 + $3 + $9 = $33.
Dividing the overall expenses among 3 friends results in a contribution of $33/3 = $11 per person. The answer is $11.

Q: Connor is taking his date to the movies, with tickets costing $10.00 each. They opt for the large popcorn & 2 drink combo meal at $11.00, and each
choose a box of candy at $2.50 per box. Determine the combined expenses for the movie tickets, combo meal, and candy to find the total amount
Connor will spend on his date.
A: Let’s think step by step. Calculate the cost of two movie tickets (2 x $10.00 = $20.00), the combo meal ($11.00), and two boxes of candy (2 x $2.50
= $5.00), then sum them up ($20.00 + $11.00 + $5.00 = $36.00). The answer is $36.00.

Q: Scott has 4 tickets. Ernest starts with 9 tickets and later discovers a stash of 72 more. Calculate the final number of tickets Ernest possesses.
A: Let’s think step by step. Ernest initially holds 9 tickets and acquires 72 additional ones, leading to a total of 9 + 72 = 81 tickets. The answer is 81.

Q: Joseph and his friends watched two movies at his place. The first movie lasts 1 hour and 30 minutes, and the second is 30 minutes longer. They took
10 minutes for popcorn and double that for fries. Determine, in hours, the cumulative time spent cooking and watching movies by breaking down each
component of time spent.
A: Let’s think step by step. First, find the second movie’s length (1 hour and 30 minutes + 30 minutes = 2 hours). Then, sum both movies’ lengths (1
hour and 30 minutes + 2 hours = 3 hours and 30 minutes). Next, calculate cooking time (10 minutes for popcorn + 20 minutes for fries = 30 minutes).
Lastly, add movie and cooking times (3 hours and 30 minutes + 30 minutes = 4 hours). The answer is 4 hours.

Q: The movie theater sold a number of tickets to the horror and romance movies. The horror movie ticket sales were 18 more than three times the
romance movie ticket sales. If there were 25 romance movie tickets sold, how many tickets were sold for the horror movie, considering the given
relationship?
A: Let’s think step by step. Let "h" represent the horror movie tickets sold. Given that h = 3(25) + 18, we can simplify the equation: h = 75 + 18,
resulting in h = 93. The answer is 93.

Q: On Saturday, Sara purchased 2 movie theater tickets at $10.62 each, rented a movie for $1.59, and bought another movie for $13.95. Determine
Sara’s total expenditure on movies by performing a step-by-step calculation.
A: Let’s think step by step. Firstly, calculate the movie tickets’ cost by multiplying the ticket price ($10.62) by the quantity (2), resulting in $21.24.
Secondly, combine the rental ($1.59) and purchase ($13.95) costs, equaling $15.54. Lastly, sum the ticket cost and rental/purchase cost: $21.24 +
$15.54 = $36.78. The answer is $36.78.

Most of the examples above have similar backgrounds and targets (tickets, movies, expenses, etc.),
but the difficulty and number of reasoning steps are various. In addition, the solutions to most questions
are highly redundant. When performing math reasoning, it is important to select the most suitable and
concise examples considering the characteristics of the current input question. In our evaluation across
different methods shown in Sec. 5.1, we have empirically observed the previous methods fail to retain the
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structural integrity of the prompt. We show the pruned prompt with different methods and similar token
lengths in the following box. We can see that Selective Context and LLMLingua frequently discard the
important part including ‘Q:’, ‘A:’, ‘\n’, “Let’s think step by step”, and “The answer is” in these examples.
Although GPT-4 can retain a majority of these tokens, the reasoning steps are systematically removed
because GPT-4 cannot be instructed to utilize the redundancy in both example-level and token-level. Our
proposed CoT-Influx, however, selects the most representative examples and only removes the redundant
function words.

Pruned few-shot prompt of different methods:

Selective Context:
Q Dave won 11 tickets Afterward won: step Dave 11 tickets spent leaving Then won 10 resulting: 16 Q At tickets
rides rides where set solve x: step Let x rides Equate x rides individual tickets dollars = x 20 Q Mitch Jam went
paid per 3 friends Jam purchased equitably how: step 3 tickets + 3 friends results $ Q Connor tickets They opt the
large popcorn & 2 drink combo meal choose candy combo meal candy Connor: step combo boxes sum $ Q Scott 4
tickets starts 9 tickets discovers 72 Ernest possesses: step initially holds 9 tickets 72 additional ones leading 81 Q
Joseph watched lasts They popcorn double hours cooking breaking: step First find + Then sum both movies’ lengths
+ Next, calculate cooking time popcorn + Lastly add movie cooking times + 4 hours Q sold 25 romance movie tickets
considering the given relationship: step Let "h the horror movie tickets Given = 18 simplify 75 93 Q Sara purchased
rented movies performing: step Firstly calculate resulting Secondly combine rental Lastly sum $

LLMLingua:
: Dave won11ets the and5 a be. After he. his final count by first theets after the: Lets think. Daveets5„ in.
: the,ets 5, or a-ollarides for one. To theidesband cost equals of, equation involving r. A: think. Let.ides
using individualets, the1ollar cost5 which. :, Jam and Jay a7 ticket3 Jam2orn5 Jay3 milk. To equ the.ets
boxes53 milk each1. the overallenses3 friends a. The : Connor is his,.. They theorn & drinkbo and0. theandy
think. ofets0 theboal and two then :. Ernest and later a7. think. Ernest initially and, 9: friends at movie
the minutes They and for. the spent by think, the, calculate The a the and ticket, think.:, bought.by-step
calculation. A: Let’s think step by step. Firstly, calculate the movie tickets’ cost by multiplying the ticket price
($10.62) by the quantity (2), resulting in $21.24. Secondly, combine the rental ($1.59) and purchase ($13.95) costs,
equaling $15.54. Lastly, sum the ticket cost and rental/purchase cost: $21.24 + $15.54 = $36.78. The answer is $36.78.

GPT-4 Compression:
Q: Dave won 11, spent 5 and won 10 more. Determine final count.
A: The answer is 16.
Q: Tickets cost 0.75 per ride, armband cost 15. Determine rides that armband’s cost equals tickets.
A: The answer is 20.
Q: $7 per ticket for 3, 2 popcorn boxes at $1.5, 3 milk teas for $3. Determine each contribute.
A: The answer is $11.
Q: Tickets cost $10.00 each, meal cost $11.00, a box of candy at $2.50. Determine the expenses.
A: The answer is $36.00.
Q: Scott has 4. Ernest starts with 9 and discovers 72 more. Determine the final number.
A: The answer is 81.
Q: The first 1.5 hour, the second is 30 minutes longer. 10 minutes for popcorn. Determine the time.
A: The answer is 4 hours.
Q: Horror movie were 18 more than 3 times romance. 25 romance movie sold, Determine number of horror movie.
A: The answer is 93.
Q: Sara purchased 2 at $10.62 each, a movie for $1.59, and another $13.95. Determine total expenditure.
A: The answer is $36.78.

CoT-Influx:
Q: Mitch, Jam, and went out a. Mitch paid $7 per ticket for 3, Jam purchased 2 boxes at $1.5 each, and got 3 for $3
each. To equitably split, how much should each them contribute?
A: Let’s think step by step. The total cost 3 tickets $7 each, 2 popcorn boxes $1.5 each, and 3 milk $3 each is $21 +
$3 + $9 = $33. Dividing the overall expenses among 3 results of $33/3 = $11 per. The answer is $11.

Q: The theater sold number tickets to horror and romance movies. The horror movie ticket sales were 18 more than
three times romance ticket. If there 25 romance sold, how many tickets were sold horror movie, considering?
A: Let’s think step by step. Let "h" represent horror tickets sold. Given h = 3(25) + 18, we can simplify equation: h =
75 + 18, resulting h = . The answer is 93.

Q: On, Sara purchased 2 theater tickets $10.62 each, rented movie $1.59, and bought movie $13.95. Determine
Sara’s total expenditure movies performing a calculation.
A: Let’s think step by step. , calculate tickets’ cost price ($10.62) by quantity (2), resulting $21.24. Secondly, combine
rental ($1.59) purchase ($13.95), equaling. Lastly, sum ticket rental/purchase: $21.24 + $15.54. The answer is $36.78.
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B Evolution of MRD3

B.1 Prompt template for evolution

The prompt we used for the evolution of the examples in our dataset is listed as follows:

Prompt for different evolution strategies

I want you to act as a Prompt Rewriter. Your objective is to rewrite a given prompt into a more complex version to
make those famous AI systems (e.g., LLaMA, ChatGPT, and GPT4) a bit harder to handle.
The prompt is made up of a math reasoning question and the corresponding answer.
The rewritten prompt must be reasonable and must be understood and responded by humans.
Your rewriting cannot omit or change the input and results in #Given Prompt#. Also, please retain the format of
’Question: ’ and ’Answer: ’ in your response.
You SHOULD complicate the given prompt using the following method:
{Evolution template}
You should try your best not to make the #Rewritten Prompt# become verbose, #Rewritten Prompt# can only add 10
to 20 words into #Given Prompt#.
The #Rewritten Prompt# should also follow the format that the rewritten question appears after ’Question: ’ and the
rewritten answer appears after ’Answer: ’.
The rewritten answer should end up with ’The answer is [results]’.
#Given Prompt#:
Question: {Given question}
Answer: {Given answer}
#Rewritten Prompt#:

Evolution template for evolution strategy add_constraints:
Please add one more constraint/requirement to the question of #Given Prompt#

Evolution template for evolution strategy deepening:
Please increase the depth and breadth of the question and answer of #Given Prompt#

Evolution template for evolution strategy increase_reasoning:
If #Given Prompt# can be solved with just a few simple thinking processes, please rewrite it to explicitly
request multiple-step reasoning.

Evolution template for evolution strategy revise_difficulty:
Please revise the high-difficulty questions to lower difficulty.

Evolution template for evolution strategy produce_easier:
Please produce a new and easier question with another different topic.

Most parts of the prompt of different evolution strategies are similar. Based on our quantitative analysis of
the difficulty and reasoning step distribution, GPT-4 can effectively follow our instructions to modify the
constraints or difficulty level of input questions.

B.2 Difficulty and Reasoning Steps Distribution of MRD3

Based on the GPT-4-based estimation, we are able to quantitatively look into the distribution of difficulty
and reasoning step distribution in MRD3 without evolution and MRD3 with various evolution schemes.
The results are shown in Figure 7. The original distribution of both difficulty level and reasoning steps
of questions centralized between 2 and 4. More questions with higher difficulty using add_constraints,
deepening, and increase_reasoning. As we discuss in the reward design of our RL pruner, easy questions
are important for the stabilization of RL and can help effectively identify the quality of pruned prompts.
Easier questions are generated with revise_difficulty and produce_easier evolution scheme.

B.3 Additional observation on difficulty distribution

As shown in Figure 7, the difficulty diversity of examples in MRD3 is improved after prompt evolution.
We then research the difficulty distribution of the input examples for in-context learning. The observation
is shown as follows in addition to the 3 main observations proposed in Sec. 3:

Observation 4: LLMs with different capabilities prefer CoT examples of varying difficulties.
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Figure 7: The difficulty distribution (first row) and the number of reasoning steps distribution (second row).

In our further exploration of the optimal selection of CoT examples for improved mathematical
reasoning, we observe that LLMs of different capabilities exhibit preferences for CoT examples of varying
difficulty levels. As Table 17 shows, we categorize each CoT example in the MRD3-Evol dataset by
difficulty level. We then select the top 16 CoT examples from different groups as few-shot examples for
LLaMA2 models. Results show LLaMA2-7b prefers CoT examples with a difficulty level of 3-4, while
LLaMA2-13b, more capable, prefers those with a difficulty level of 4 or above. This aligns with intuition:
for instance, when assisting a middle school student with math problems, it is more beneficial to provide
examples of moderate difficulty that they can comprehend, whereas for a high school student, examples
with a higher level of difficulty are more useful.

Table 17: Smaller, less capable LLMs favor simpler CoT examples, while larger ones prefer more complex ones.

Model Difficulty (≤ 3) Difficulty (3-4) Difficulty (≥ 4)

LLaMA2-7B 14.49 15.39 14.86
LLaMA2-13B 23.81 25.32 25.47

In our evaluation of CoT-Influx with various LLMs, we found that the shot selection results are
consistent with our observation. The average difficulty score and number of reasoning steps for the
examples selected by LLaMA2-70B pruner are 3.57 and 3.04, which are higher than the results of
LLaMA2-13B are 3.51 and 2.98. The empirical results further support our assumption that LLMs with
larger sizes prefer harder examples than smaller-scale LLMs.

B.4 The effectiveness of MRD3 dataset

We verify the effectiveness of the MRD3 dataset, which is evolved by GPT-4 for diverse reasoning
steps and difficulties. We compare with two baselines: (1) MRD3 without evolution, excluding GPT-4
evolved examples, and (2) the human-labeled GSM8K training set, which excludes GPT-4’s reformatted
generation. We apply our pruner on these datasets under the same setting. As shown in Table 18, both
GPT-4 generated and evolved CoT examples are vital for improving the reasoning performance.

Table 18: Comparison of EM(%) on GSM8K using CoT-Influx pruner across different CoT datasets.

CoT dataset LLaMA2-7B LLaMA2-13B LLaMA2-70B

MRD3 15.85 32.22 59.59
MRD3 w/o evolution 14.94 30.55 57.70
GSM8K training set 14.18 29.64 56.71

B.5 Evolution example

We give an example of a math question and then show the evolved results of the questions and answers.
The evolved results follow our instructions given in Sec. B.1. As can be seen from the evolution results,
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the answer to input questions can be modified (e.g. ground truth answer change from 16 to 12 in
add_constraints). The whole background of the questions can also be replaced (e.g. computation target of
question change from current tickets at the arcade to final points of a game in produce_easier). These
modifications and variations improve the diversity of our prompt candidate sets, which are the building
block for the training and reasoning with CoT-Influx.

Example of prompt evolution

Input example for evolution:
Q: At the arcade Dave won 11 tickets. If he spent 5 tickets on a beanie and later won 10 more tickets, how many
would he have?
A: Dave initially had 11 tickets, spent 5 on a beanie, and later won 10 more, resulting in a total of: 11 - 5 + 10 = 16
tickets. The answer is 16.

Evolution result of add_constraints:
Q: At the arcade, Dave won 11 tickets. If he spent 5 tickets on a beanie, won 10 more tickets, and gave 4 tickets to his
friend, how many would he have?
A: Dave initially had 11 tickets, spent 5 on a beanie, won 10 more, and gave 4 to his friend, resulting in a total of: 11 -
5 + 10 - 4 = 12 tickets. The answer is 12.
Evolution result of deepening:
Q: At the arcade, Dave triumphed in a game and earned 11 tickets. He redeemed 5 of those tickets for a beanie and
subsequently won an additional 10 tickets. What is his final ticket count?
A: Dave started with 11 tickets, used 5 to acquire a beanie, and later added 10 more to his collection, resulting in: 11 -
5 + 10 = 16 tickets. The answer is 16.
Evolution result of increase_reasoning:
Q: Dave won 11 tickets at the arcade and spent 5 on a beanie. Afterward, he won 10 more tickets. Calculate his final
ticket count by first finding the remaining tickets after his purchase and then adding the newly won tickets.
A: Dave had 11 tickets, spent 5, leaving him with 6. Then he won 10 more, resulting in: 6 + 10 = 16 tickets. The
answer is 16.
Evolution result of revise_difficulty:
Q: Dave got 11 tickets at the arcade. He used 5 tickets to get a beanie and then won 10 more tickets. How many
tickets does he have now?
A: Dave started with 11 tickets, used 5 for a beanie, and won 10 more, giving him: 11 - 5 + 10 = 16 tickets. The
answer is 16.
Evolution result of produce_easier:
Q: In a game, Sarah scored 11 points. She lost 5 points in a penalty and then scored 10 more points. What is her final
score?
A: Sarah initially scored 11 points, lost 5 due to a penalty, and scored 10 more, resulting in a total of: 11 - 5 + 10 = 16
points. The answer is 16.

C Pruner Training and Evaluation Details

C.1 Detailed algorithm for training data preparation

As a supplement to phase 1 in Algorithm 1, we show the algorithm for training data preparation in
Algorithm 2. Both the difficulty level and the number of reasoning steps are involved in the GPT-4-based
evaluation. However, we omit the reasoning step in this algorithm as we only use difficulty level in the
training set split.

C.2 Detailed settings and hyperparameters

The detailed hyper-parameters setting of different LLMs’ pruners are listed in Table 19. The majority of
these hyperparameters are shared across different LLMs. The evolution subset as the prompt candidates
for evaluation is determined by searching the performance of math reasoning on 100 random examples.

C.3 Training dynamics

We visualize the RL training dynamics of the LLaMA2-13B pruner in Figure 8 including the LLM loss
reward 1

1+LLLM
, prediction reward RAcc, moving average of the final pruner reward R, and remaining

token count t. We can see from the results that the reward increases steadily with the RL training steps.
The number of remaining tokens decreases rapidly in the early steps and then oscillates around the token
target. Since our prediction reward RAcc are discrete values of {−0.1, 0, 1}, the oscillation phenomenon is
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Algorithm 2 Training dataset preparation
Input: CoT dataset {xcot

i }Li=1, difficulty threshold dthr,

Output: MRD3 D = {xcot
j , dj}L

MRD3

j=1 , questions set Dquestion, prompt set Dcot

1: ▶ Phase 1: MRD3-Evol Preparation
2: MRD3 dataset D = {}
3: for i = 1 to L do
4: Perform GPT-4 based prompt evolution on xcot

i to get {xcot-E
i,e }e

5: Evaluate difficulty on {xcot-E
i,e }e to get score {di,e}e using GPT-4

6: Append examples {xcot-E
i,e , di,e}e to D

7: end for
8: Prompt set Dcot = {}, question set Dquestion = {}
9: for j = 1 to LMRD3

do
10: if dj ≤ dthr then
11: Append example (xcot

j , dj) to Dquestion
12: else
13: Append example (xcot

j , dj) to Dcot
14: end if
15: end for
16: Return full dataset with evolution D, questions set Dquestion, prompt candidate set Dcot

Table 19: Detailed hyper-parameters for pruner training scheme of different LLMs.

Model LLaMA2-7B LLaMA2-13B LLaMA2-70B

Epoch 3 3 3
Batch Size 1 1 1

Pruner LLM Base LLaMA2-13B LLaMA2-13B LLaMA2-70B
Input Shot 40 40 48

Input Shot (TopK) 32 24 32
Input Shot (Few-shot) 16 16 16

Optimizer AdamW AdamW AdamW
Weight Decay 1e−2 1e−2 1e−2

Learning Rate 1e−5 1e−5 1e−5

Embedding Extractor BERT-Large (cased) BERT-Large (cased) BERT-Large (cased)
Embedding Size 1024 1024 1024

Tokenizer Padding 512 512 512
Difficulty Threshold dthr 2 2 2

Token Target T 2048 2048 2048
Token Penalty Coefficient w (-1,1) (-1,1) (-1,1)

Selection Repeat trepeat 10 10 5

Evol Subset revise_difficulty increase_reasoning increase_reasoning
max_new_tokens 128 128 128

more obvious compared with another reward term. This highlights the effectiveness of question repetition
and using the Exponential Moving Average (EMA) of the final reward to suppress this oscillation.

C.4 Detailed introduction of dataset for evaluation

We introduce the details of the datasets we used for evaluation as follows:

• GSM8K (Cobbe et al., 2021) is a math reasoning dataset consisting of high-quality linguistically diverse
grade school math word problems created by human problem writers. There are 7473 training examples
and 1319 validation examples in the dataset.

• SVAMP (Patel et al., 2021) representing Simple Variations on Arithmetic Math word Problems that
conduct question sensitivity variation, reasoning ability variation, and structural variation on existing
math datasets. There is a total of 1000 examples, and all of them are used for evaluation in our settings.

• MultiArith (Roy and Roth, 2015) is a collection of multi-step arithmetic problems with 600 examples
that are used for evaluation in our settings.
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Figure 8: RL training dynamics of the LLaMA2-13B pruner.

• AddSub (Hosseini et al., 2014) is a dataset consisting of addition and subtraction problems with 395
examples, all used for evaluation in our settings.

• SingleEq (Koncel-Kedziorski et al., 2015) consists of grade-school algebra word problems that map to
single equations with varying length. Every equation may involve multiple math operations, including
multiplication, division, subtraction, and addition over non-negative rational numbers and only one
variable. There are 508 problems, 1117 sentences, and 15292 words in the dataset.

C.5 Rule-based prompt reconstruction
To make sure the input prompt for inference remains structurally intact, we apply a rule-based prompt
reconstruction on the input. For example, “\n [question]” will be reconstructed to “\nQ: [question]”
and “A: Let’s step by step” will be repaired to “A: Let’s think step by step”. While our pruner has been
trained to learn the importance of structure integrity and consistency, there are still a few cases when
important tokens are pruned, leading to incorrect reasoning results. The rule-based reconstruction can
effectively alleviate the influence of a sub-optimal pruning strategy. The important tokens that should be
reconstructed include ‘Q:’, ‘A:’, ‘\n’, “Let’s think step by step”, and “The answer is”.

D Additional Related Works

LLM In-Context Learning In-context learning (ICL) is one of the emerging abilities of LLMs that
conduct various downstream tasks with provided few-shot demonstrations. To fully understand and
optimize the ICL paradigm, previous research mainly focuses on the underlying mechanism of ICL or the
proper application of ICL. Pioneering research (Von Oswald et al., 2023; Dai et al., 2023) empirically
find the similarity between gradient-descent (GD) and ICL, which interprets the trained LLMs as meta-
optimizers that can learn the examples in the context in the forward pass. More recently, Wang et al.
(2023a) propose a hypothesis that label words in examples serve as anchors in ICL, and the anchors can
help aggregate and distribute the task-relevant information flow. To better utilize ICL, previous research
also researched the input format (Yoo et al., 2022) and order of examples (Min et al., 2022). Our work
falls in the second category, which shows that compressed examples are an optimal choice for the input of
ICL.
LLM Context Window Extension Recently, there has been rising interest in extending the context
window of existing pre-trained LLMs. Common approaches include augmenting external memory
modules (Tworkowski et al., 2023; Wang et al., 2023c), which add extra modules to memorize long past
contexts but requires complex training, manipulating attention mechanisms (Han et al., 2023; Xiao et al.,
2023) or the positional encoding (Chen et al., 2023a; Peng et al., 2023b). However, these require LLM
modifications. Our method, applicable to black-box LLMs and extendable context windows, is orthogonal
to this direction.
Comparison of CoT-Influx with Previous Methods We summarize the advantage of our CoT-Influx
compared with previous prompting strategies in Table 20. Gradient-free indicates the methods do not need
to be backward through LLMs. Unlimited-token represents the original input prompt for these methods,
which are not limited by the context window length of LLMs. Difficulty-aware refers to whether the
method takes the difficulty of problems into consideration of their prompt design. Dynamic #Shots means
we do not need to set a target shot number, and the pruned input shot numbers are different across various
questions. Our CoT-Influx demonstrates a significant advantage over all previous methods.
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Table 20: Comparison of the advantages of different prompting strategies.

Methods Frozen LLMs Automated Gradient-free Unlimited-token Transferable Interpretable Difficulty-aware Dynamic #Shots

Fine-Tuning % ! % % % % % %

Manual Prompt ! % ! % ! ! % %

Soft Prompt Tuning ! ! % % % % % %

Prompt Retrieval ! ! ! % ! ! % %

AutoPrompt (Shin et al., 2020) ! ! % % ! ! % %

RLPrompt (Deng et al., 2022) ! ! ! % ! ! % %

Context Extension ! ! ! ! ! ! % %

LLMLingua (Jiang et al., 2023b) ! ! ! ! ! ! % %

CoT-Influx(Ours) ! ! ! ! ! ! ! !

E Prompt Settings

In this section, we show the prompt we used in this work for reproducibility. The prompt for evaluating
the difficulty and reasoning steps of each example are:

Prompt for difficulty and reasoning steps estimation:

We would like you to evaluate and rate the difficulty and complexity of the following question. You should first give
an overall score on a scale of 1 to 10, where a higher score indicates higher difficulty and complexity. You should
then evaluate the answer and give how many reasoning steps are in the answer. You must just give the score and the
number of reasoning steps without any other reasons. The reply format should be ’Score’: [score], ’Steps: [#steps]’
## Question: {Given question}
## Answer: {Given answer}
## Evaluation:

The prompt for GPT-4 Compression on prompts is shown as follows. Note that we encode the
restriction of token limits in both the prompt and API by setting the max_new_token. However, the prompt
compression results still fail to follow the restrictions for most cases. This disadvantage of uncontrollable
token length is also discussed in previous work (Jiang et al., 2023b).

Prompt for GPT-4-based compression:

Please compress the following examplars for few-shot in-context learning on math reasoning. The complete exemplars
could be removed if they are redundant, and the tokens within each exemplar can also be pruned. ’The answer is’ in
each examplar should be retained and please keep less than {Given token} tokens in total:
{Given examplars}
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