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Abstract

Activation Editing, which involves directly edit-
ing the internal representations of large lan-
guage models (LLMs) to alter their behaviors
and achieve desired properties, has emerged as
a promising area of research. Existing works
primarily treat LLMs’ activations as points in
space and modify them by adding steering vec-
tors. However, this approach is limited in its
ability to achieve greater performance improve-
ment while maintaining the necessary consis-
tency of activation magnitudes. To overcome
these issues, we propose a novel editing method
that views activations in terms of their direc-
tions and magnitudes. Our method, named
Householder Pseudo-Rotation (HPR), mimics
the rotation transformation, thus preserving ac-
tivation norms and resulting in an improved
performance on various safety benchmarks.

1 Introduction

Building upon the paradigm of pre-training lan-
guage models on large corpora of raw text using
next-sentence-prediction objective (Radford and
Narasimhan, 2018; Radford et al., 2019), Large
Language Models (LLMs) research has taken a big
leap and become an essential asset of AI in recent
years. The latest LLMs can exhibit phenomenal flu-
ency and reasoning capability, excel in numerous
NLP benchmarks, while also aligning to human in-
tent (Wei et al., 2022; Ouyang et al., 2022; Touvron
et al., 2023a; Jiang et al., 2023; OpenAI, 2024). In
the midst of the rapid development of LLMs, efforts
to study and control their societal impacts, includ-
ing issues such as hallucination, bias, and toxicity
to name a few, are of the utmost importance. Yet,
with their ever-growing size, reaching hundreds of
billions of parameters (Brown et al., 2020; Chowd-
hery et al., 2022), the popular approach for con-
trolling and aligning LLMs via fine-tuning proves
to be very challenging and resource-intensive, ne-
cessitating the research into alternative solutions to

adapt the behaviors of LLMs.
Among various approaches to efficiently adapt

LLMs (Lester et al., 2021; Li and Liang, 2021; Hu
et al., 2022; Dong et al., 2023; Wan et al., 2024),
Activation Editing, also referred to as “Intervention”
or “Representation Engineering” in the literature,
has shown promising results. Based on the observa-
tion that LLMs form an internal “belief” about facts
in their activation space even before the responses
are generated (Dai et al., 2022; Li et al., 2023b;
Burns et al., 2023; Joshi et al., 2024), this approach
aims to draw factual knowledge out of the model by
directly editing activation vectors at inference time.
Most existing works in this area utilize a steering
vector (Li et al., 2023b; Turner et al., 2023, Rimsky
et al., 2024; von Rütte et al., 2024), which can be
scaled by a scaling factor and added to the original
activation. In doing so, activations are viewed as
points in space (Figure 1a). Correspondingly, the
process of adding a fixed steering vector to acti-
vations can be interpreted as moving these points
along a vector offset (Mikolov et al., 2013), and the
scaling factor tells how far they should be moved.

In an experiment with the activation space, we
discover an important property that is maintained
by powerful LLMs: activations within the same
layer tend to have roughly the same vector norm.
We refer to this as the Magnitude Consistency
property, i.e., Section 4.3. This observation high-
lights a key limitation of the points-in-space view,
where the steering vector approach cannot simulta-
neously maintain activation magnitude consistency
and effectively edit activation to achieve greater
performance improvement for desired behaviors
for LLMs. If the scaling factor is too large, the
additive edit might drastically alter the activation
norms in each layer, violating the norm consistency
property of LLMs. In extreme cases, this change
can lead to the generation of complete gibberish,
undermining the desired behaviors of the LLM’s re-
sponses. Conversely, if the scaling factor is set too
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low to preserve the activation norms, the steering
vector may have limited abilities to shift an acti-
vation toward new behavior, thus also hindering
editing performance for desired behaviors. More-
over, the steering vector approach does not align
with the commonly used cosine similarity metric,
which emphasizes directional alignment between
vectors rather than their absolute positions.

We argue that activation vectors should instead
be understood in terms of their directions and mag-
nitudes. We call this the direction-magnitude view
(Figure 1b). In this regard, the semantic informa-
tion of activations is reflected in their directions
from the origin, while their magnitude represents
the intensity of such information. This view also
facilitates cosine similarity better since it measures
the relationship between activations via the angle
between their directions. Furthermore, while the
points-in-space view struggles to achieve activation
norm consistency, the direction-magnitude view
can conveniently interpret the activation space in
each layer as a (d − 1)-dimensional hypersphere
centered at the origin. As such, the activations can
have a “stable” norm via the sphere’s radius.

In this work, we introduce a novel editing
method based on the direction-magnitude view. In-
stead of trying to move points, our method aims to
alter a LLM’s behavior by rotating activation vec-
tors around the origin to their designated directions
(Figure 1b). For example, rotating from untruthful
region into truthful region. Usually, computing a
matrix for vector rotation is non-trivial, especially
in high-dimensional space. Therefore, we propose
to relax the problem and resort to an approximated
rotation transformation instead (Figure 1c). To
this end, we first determine a hyperplane going
through the origin that separates the two regions
of interest. We then reflect undesirable activations
about this hyperplane to make them land on the
desirable region. Having an unique hyperplane
for each individual activation vector is infeasible
computationally as it would cost substantial GPU
memory to store them at runtime. We thus learn a
global hyperplane separating the activation vectors
for each edited layer. Finally, for each reflection
of an undersriable activation, we adjust it to the
corresponding desired activation. In this way, our
solution is more efficient as the adjustment for each
activation only involves scalar angles, whose learn-
ing is less expensive than a rotation matrix for each
edited vector. We name this method Householder
Pseudo-Rotation (HPR), based on the Householder

transformation (Householder, 1958) at its core.
We evaluate our editing method HPR on elicit-

ing truthfulness from LLMs. Experiment results on
the TruthfulQA dataset (Lin et al., 2022) demon-
strate a significant boost in performance compared
to Steering Vector editing. We further show that
HPR can improve LLMs’ performance for other
behavior-related problems, including bias, ethics,
and toxicity. Finally, we conduct extensive analysis
to provide deeper insights for the advantages of
HPR for activation editing.

2 Prerequisites

2.1 Problem Statement

Let M = {M(l)|0 ≤ l < L} be a L-layers pre-
trained LLM whose behavior needs to be altered.
Assume that the outputs of M exhibit either of the
two contrasting qualities: a positive behavior p or
a negative behavior n. For instance, p and n can
be truthfulness and untruthfulness. We denote:
• xi = {xi,j |0 ≤ j < Sx} : An input sequence

of length Sx.
• ypi = {ypi,j |0 ≤ j < Sp} : The positive (i.e.

desirable) output sequence with length Sp.
• yni = {yni,j |0 ≤ j < Sn} : The negative (i.e.

undesirable) output sequence with length Sn.
Here, i is the sample index in the dataset, and j

is the token index in a sample. When the label of
the output, i.e. positive or negative, is unknown,
we refer to its length as Sy.

In this work, unless specified otherwise, a “vec-
tor” is understood as a column vector of size d× 1.
Let us further use a

p,(l)
i,j ∈ Ap,(l) to denote the d-

dimensional positive activation vector at the jth

token of the lth layer in M, where Ap,(l) ⊂ Rd is
the positive region in the activation space of M(l).
Similarly, the corresponding negative activation is
denoted as a

n,(l)
i,j ∈ An,(l). These are obtained

by forwarding the concatenation of the input and
the corresponding output sequence, i.e. xi∥ypi or
xi∥yni , through M. Since the question part xi is
the same for each data pair, we only use the activa-
tion vectors at the token positions of the responses.
Without loss of generality, we omit the layer no-
tation (l) and the quality notation (p or n) when
referring to an arbitrary item.

The general framework of Activation Editing uti-
lizes an editing function f(·|θ) with parameter θ
for activation vectors ai,j such that f(ai,j |θ) ∈ Ap.
The design of an Activation Editing method can
thus be broken down to the the design of such a
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(a) Points-in-space view (b) Direction-magnitude view (c) Our approach

Figure 1: Comparison of points-in-space view (a) and direction-magnitude view (b). Positive activations are colored
green and negative activations are colored red. The editing methods are depicted in in blue. Our proposed method
(c) approximates the rotation transformation by first reflecting negative activations through a learned separating
hyperplane and then adjusting the reflections to reach the right angle.

function and how to find the optimal θ. For exam-
ple, in Steering Vector methods (Li et al., 2023b),
the editing function is a simple vector addition:
f(ai,j |θ) = ai,j +αθ where α is a hyperparameter
for scaling factor.

2.2 Householder Transformation
The idea of Householder transformation stemmed
from an important lemma in Householder (1958)
which stated: For any vector a ̸= 0, and any unit
vector v, there exists a unit vector u such that:

(I − 2uuT )a = ∥a∥v (1)

In this case, ∥a∥v is the reflection of a about a
hyperplane which passes through the origin and has
u as its normal vector. Since v is a unit vector, a and
∥a∥v have the same vector norm. Therefore, we
can extend the problem to a more general case: For
any pair of vectors (a, b) of the same magnitude, it
is possible to find a vector c ̸= 0 such that:

b = (I − 2ccT

cT c
)a (2)

The orthogonal matrix H = (I − 2ccT

cT c
) is called

the Householder Matrix.

3 Householder Pseudo-Rotation (HPR)

As discussed in the introduction, our goal is to
find an editing function f to alter the behavior of
LLMs that can: 1) transform any vector in the acti-
vation spaces into one invoking positive behavior;
2) closely mimic the rotation transformation to pre-
serve norm of the activations. The usual calculation

of a rotation matrix between two d-dimensional
vectors consists of several computationally ex-
pensive steps such as the Gram-Schmidt process,
whose complexity is O(d3). The Householder
transformation (Equation 2) can be a cheaper alter-
native since it also retains the vector norm. How-
ever, in the context of Activation Editing, having a
Householder matrix of size d×d for each activation
vector would introduce too much extra data to be
stored on GPU RAM, thus limiting applicability.

To alleviate these problems, we propose House-
holder Pseudo-Rotation (HPR), a pseudo-rotation
method that reflect negative activations in each
layer about a global separating hyperplane and then
adjust the resulting vectors to achieve the desired
angle. The original problem is essentially broken
down into two sub-problems: finding the separat-
ing hyperplane, and finding the rotating angle. We
tackle them by incorporating into each edited layer
a linear probe and an angle prediction module.

3.1 Linear Probe

In the first step, we train a linear probe to dis-
criminate the positive and negative activations of
LLMs in each layer. The non-trivial accuracy of
this probe, as can be seen in Figure 2, suggests
that it can effectively form a separating hyperplane
between the positive and negative regions, and its
weight vector serves as the normal vector of this
hyperplane. We can then utilize the Householder
matrix corresponding to this hyperplane as a means
to reflect activations from one region to the other.

More concretely, the linear probe corresponding
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Figure 2: Probe accuracy of HPR-edited Llama2-7B-
Chat on TruthfulQA. A linear probe is trained for each
layer using positive-negative pairs of the training data
and then evaluated on the validation data.

to a LLM layer can be defined as:

fprobe(a, θprobe) = σ(θTprobea) (3)

where σ(·) denotes the sigmoid function and θprobe
is the weight vector of the probe. Readers may no-
tice that Equation 3 resembles a linear feedforward
layer with no bias term. This is to ensure that the
normal vector of the separating hyperplane passes
through the origin, consistent with the direction-
magnitude view.

At inference time, the probe weight vector is
used to calculate a Householder matrix.

H = I −
2θprobeθ

T
probe

θTprobeθprobe
(4)

The linear probe is trained using the Binary
Cross Entropy (BCE) loss.

Lprobe =
1

NSy

N∑

i=1

Sy∑

j=1

[
BCE(σ(θTprobea

p
i,j), 1)

+BCE(σ(θTprobea
n
i,j), 0)

]
(5)

3.2 Angle Prediction
Given the separating hyperplane for a layer, we
seek to predict a rotating angle that helps transform
the reflection of each negative activation into the
desirable positive activation. As such, our key as-
sumption considers the desirable positive activation
vector to lie on the 2-D plane formed by the origi-
nal negative activation and its reflection, allowing
us to efficiently perform the rotation of the negative
activation vector. To this end, we employ a feedfor-
ward neural network MLP to predict the rotating

angle fangle(a, θangle) for an input vector a:

fangle(a, θangle) = π × σ(MLP (a, θangle)) (6)

where θangle represents the model parameters. The
output of fangle is a scalar value in the range [0, π]
radians.

Among several possible implementations, given
a negative activation ani,j , we train fangle to pre-
dict the angle between the corresponding desired
positive activation api,j and ani,j for rotation. In con-
trast, if the input vector is a positive activation api,j ,
fangle should return zero (i.e., no rotation). Our
training loss for fangle is thus:

g(api,j , a
n
i,j) = arccos

(
(api,j)

Tani,j

∥api,j∥∥ani,j∥

)
(7)

Langle =
1

NSy

N∑

i=1

Sy∑

j=1

[(
fangle(a

n
i,j , θangle)

− g(api,j , a
n
i,j)
)2

+ fangle(a
p
i,j , θangle)

2

]
(8)

where g(·, ·) computes the angle between two vec-
tors using the inverse of cosine arccos. For training,
the linear probe and angle prediction modules are
optimized jointly via: L = Lprobe + Langle.

3.3 Computing the Final Activation

At inference time, let a be an activation in a layer of
LLMs, we first forward it through the correspond-
ing linear probe and the angle prediction module.

σ̂ = ⌊fprobe(a, θprobe)⌉ (9)

γ1 = fangle(a, θangle) (10)

σ̂ is rounded to the nearest integer, 0 or 1 to be
specific, and predicts whether the given activation
a is positive or negative. If a is predicted as a
negative activation, we edit it by first reflecting a
about the separating hyperplane θprobe to obtain the
reflected vector ȧ in the positive region. Afterward,
we calculate a new activation by rotating a within
the 2-D plan formed by a and ȧ by an angle of γ1
radians. The resulting vector â will serve as our
predicted positive activation for a.

In particular, a Householder matrix is computed
from the probe’s weight following Equation 4.
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With this we can reflect a to obtain the reflected
activation ȧ and the angle γ2 between a and ȧ:

ȧ = Ha, γ2 = g(ȧ, a) (11)

The Householder reflection and rotation trans-
formation preserve vector norm. Thus, the norm of
a, ȧ and â are identical. Combined with the com-
puted angles γ1 and γ2, the rotation on 2-D plane
to obtain the predicted positive activation â can be
calculated via a and ȧ as follows:

â =
sin(γ1)

sin(γ2)
ȧ+

sin(γ2 − γ1)

sin(γ2)
a (12)

The proof for Equation 12 is in Appendix A.
Finally, HPR’s editing function can be written

as follows: f(a|θprobe, θangle) = σ̂a+ (1− σ̂)â.

4 Experiments

4.1 Experimental Setup

Datasets: Following previous activation editing
work (Li et al., 2023b), we first evaluate the mod-
els on the TruthfulQA dataset (Lin et al., 2022).
TruthfulQA includes 817 questions, each of which
is coupled with factually correct and incorrect an-
swers. We split the dataset into subsets with ratios
45 / 5 / 50 for training, validation and testing re-
spectively.

Aside from truthfulness, we also demonstrate
the proposed method on other societal issues re-
lated to LLMs, more specifically, bias, ethics, and
toxicity. These are reflected in BigBench’s Bias
Benchmark for QA (BBQ) (Srivastava et al., 2023;
Parrish et al., 2022), BigBench’s Simple Ethical
Questions (SEQ), and Toxigen (Hartvigsen et al.,
2022), respectively. These datasets are already split
into a training set and a validation set. We use the
validation sets to test the models, while splitting
their training sets further with ratios 90 / 10 to make
new training and validation sets.

All four datasets are multiple choice tasks, thus
the main evaluation metrics is multiple choice ac-
curacy. The correct and incorrect answers for each
question can be used handily to create ypi / yni pairs.
Base Models and Baselines: We conduct ex-
periments with three recent popular open source
LLMs: Llama2-7B-Chat (Touvron et al., 2023b),
Mistral-7B-Instruct (Jiang et al., 2023), and
Llama3-8B-Instruct (AI@Meta, 2024). We
compare our method with the following baselines:
• Base: The unaltered base LLMs.

• LoRA (Hu et al., 2022): We fine-tune the base
LLM with LoRA adapter on the same training data
as activation editing methods for a fair comparison.
• Diff: Given a positive or negative activation

ai,j , this baseline employs a feedforward network
to directly predict the difference vector api,j − ai,j
with the corresponding positive activation api,j . At
inference time, we utilize the sum of the original
activation vector ai,j and its predicted difference
vector to obtain the predicted positive activation.

• ITI (Li et al., 2023b): A representative Activa-
tion Editing method for the aforementioned points-
in-space view that shifts the outputs of a set of
attention heads in each layer by a fixed steering di-
rection. The steering vector in ITI is the Mass Mean
Shift vector (i.e. the difference between the centers
of the positive and negative regions) of activations
in training data (i.e., not learnable). We employ
the source code published by the original authors.
However, their code is implemented only for Llama
models and TruthfulQA dataset specifically. Thus
we only report results of ITI with Llama2-7B-Chat
and Llama3-8B-Instruct on TruthfulQA.
Evaluation Framework: We utilize EleutherAI’s
Language Model Evaluation Harness (Gao et al.,
2023), a reliable evaluation framework used in
numerous works including HuggingFace’s Open
LLM Leaderboard. This framework supports auto-
matic evaluation of various benchmark datasets for
LLM. Our experiments involve evaluating mulit-
ple choice accuracy on various datasets. This is
done by calculating the aggregated log-likelihood
of each choice given the input prompt and then pick
the top one.
Hyperparameters: In our model, the linear probe
is a vector of the same dimensions as the LLMs’
hidden dimensions. The angle prediction module
is a feedforward neural network with 4 layers and
one output unit. We train each module for 5 epochs
with batch size 16, AdamW optimizer (Loshchilov
and Hutter, 2019), learning rate 5× 10−4, cosine
learning rate scheduler and warmup. For editing,
we apply HPR to the top k = 5 layers with the high-
est probe accuracy. Appendix C presents model
performance with different values of k.

4.2 Results
TruthfulQA: Table 1 presents the performance of
our method HPR and the baselines on TruthfulQA.
The results include both MC1, multiple choices
with only 1 correct answer per question, and MC2,
which is multiple choices with more than 1 cor-
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Method
Model

Llama2 Llama3 Mistral
MC1 MC2 MC1 MC2 MC1 MC2

Base
29.58 43.00 36.43 50.73 54.28 67.45
± 2.26 ± 2.17 ± 2.38 ± 2.13 ± 2.47 ± 2.14

LoRA
29.10 43.40 38.63 55.84 54.77 70.45
± 2.25 ± 2.15 ± 2.41 ± 2.11 ± 2.46 ± 2.06

Diff
33.74 48.87 29.34 52.53 50.61 68.68
± 2.47 ± 2.24 ± 2.25 ± 2.25 ± 2.48 ± 2.11

ITI
33.74 50.67 39.85 56.58 - -
± 2.34 ± 2.20 ± 2.42 ± 2.18 - -

HPR 51.83 70.95 52.32 71.70 55.01 72.14
± 2.47 ± 2.12 ± 2.47 ± 2.13 ± 2.46 ± 2.07

-AnglePred
30.07 43.36 35.94 49.77 53.79 67.31
± 2.27 ± 2.18 ± 2.375 ± 2.12 ± 2.47 ± 2.14

Table 1: Model performance (in %) on TruthfulQA
multiple choice tasks. ± indicates standard errors.

Model Dataset
BBQ SEQ Toxigen

Llama2-7B-Chat 33.27 21.74 51.38
+ HPR 38.38 60.87 52.34

Llama3-8B-Instruct 60.44 47.83 45.32
+ HPR 67.10 52.17 46.81

Mistral-7B-Instruct 61.62 69.57 55.00
+ HPR 73.24 86.96 61.60

Table 2: HPR performance for bias, ethics, and toxicity.
We report multiple choice accuracy in %.

rect answer for each question. The first observa-
tion from the table is that fine-tuning LLMs with
LoRA does not produce consistent performance
improvement for TruthfulQA over different mod-
els. In contrast, activation editing methods, i.e., ITI
and HPR, consistently outperform the base LLM
models, achieving greater margins than LoRA fine-
tuning. It thus highlights the effectiveness of ac-
tivation editing for altering LLMs for desirable
behaviors. When comparing Diff and ITI, ITI’s su-
perior overall performance indicates that learning
negative-positive difference vectors for activations,
as done in Diff, is ineffective and cannot ensure
optimal aligning performance for LLMs. Most im-
portantly, the proposed model HPR is significantly
better than all the baselines with substantial mar-
gins across all base LLMs. These results clearly
testify to the advantages of HPR, demonstrating
the benefits of our new direction-magnitude view
for activation editing with reflection and rotation
for negative activation transformation.
Ablation Study: The last row in Table 1 further
shows the performance of HPR when the angle
prediction module is excluded from the full model.
In other words, the editing function now only re-
flects negative activation vectors about the separat-

ing hyperplane defined by the linear probe. As can
be seen, this exclusion leads to significant perfor-
mance drops across all base LLMs for HPR, sug-
gesting that simply having the activations landed
on the positive region is not enough to make an ef-
fective edit. Thereby, it justifies the importance of
angle prediction to adjust reflected activations for
our model. We also note that the linear probe mod-
ule cannot be removed from HPR for ablation study
as it is essential for finding the positive-negative
separating hyperplane and rotating plane in our
model. Finally, the superior performance of HPR
for different LLMs confirms the advantages of our
assumption on the shared 2-D plane of a, ȧ, and â.
BBQ, SEQ, and Toxigen: To further illustrate the
effectiveness of HPR in eliciting desirable behav-
ior, Table 2 shows HPR’s performance on the BBQ,
SEQ, and Toxigen datasets. These datasets eval-
uate the abilities of LLMs to generate unbiased
(BBQ), ethically acceptable (SEQ), and non-toxic
(Toxigen) responses. Across various base LLMs,
incorporating HPR can significantly enhance per-
formance on all of these datasets. These results
highlight the benefits of HPR in improving impor-
tant safety criteria for LLMs, leading to unbiased,
ethical, and non-toxic responses for responsible
models.

4.3 Analysis of Activation Space
In this section, we examine the activation norms of
the selected LLMs to gain a better understanding of
the activation space. We first look into base LLMs.
In Figure 3 we plot the activation norms in each
layer, positive vectors and negative vectors side-
by-side. From these box plots, we can observe the
Magnitude Consistency property: activations of
the same layer have roughly the same vector norm
for all considered LLMs. This observation holds
true regardless of the activations being positive or
negative. The gap between the whiskers of each
box is very narrow, suggesting a low variance. This
gap seems to become narrower for more power-
ful models, as can be seen in Figures 3b, 3c for
LLaMA3 and Mistral. Due to this universality, we
consider activation norm consistency as a neces-
sary condition that should be maintained by editing
methods to achieve desired LLMs.

Considering this property, we demonstrate how
the steering vector approach in ITI (Li et al., 2023b)
struggles to simultaneously maintain activation
magnitude consistency and effectively alter their ac-
tivations for greater improvement on desired behav-
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Figure 3: The activation norms in log10 scale across 32 transformer blocks of three popular LLMs. Each box plot
represents the norm distribution in a layer of the LLMs.
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Figure 4: Activation norm distributions of the 14th layer of Llama2 before and after being edited. We use the 14th

layer as it has the highest probe accuracy in Figure 2. Similar trends can be seen for other layers and models.

iors. First, Figures 4a and 4b show the distributions
of activation norms in LLMs before and after edit-
ing with ITI. In Figure 4a, the scaling factor α is set
to 15 (i.e., ITI15), as recommended in the original
ITI paper, while in Figure 4b, α is set to 200 (i.e.,

ITI200). As can be seen, the smaller scaling factor
α = 15 in ITI15 leads to less divergence of acti-
vation norms than ITI200 from the original LLMs
(i.e., better preservation of activation norms).

What is the implication of such slight norm di-
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vergence from base LLMs for ITI? In Table 3, we
present the behavior shift rates of ITI15 and ITI200
compared to the original Llama2-7B-Chat model
on TruthfulQA. Specifically, we show how often
each editing method can flip the LLM’s predictions
of examples from true to false and vice versa. From
the table, we observe that the slight divergence of
activation norms in ITI15 results in a more limited
ability to change the base model’s behavior, with
a behavior shift rate of only 8.56% compared to
34.23% for ITI200. As the behavior shift rate is the
upper bound of the overall performance improve-
ment on TruthfulQA for ITI, this limited ability to
alter LLM behavior will hinder further improve-
ment with a small scaling factor in ITI.

Model False to True to Remains Remains Overall
True↑ False↓ True↑ False↓ Acc.↑

Base model - - 29.58 70.42 29.58
ITI, α = 15 6.36 2.20 27.38 64.06 33.74
ITI, α = 200 14.18 20.05 9.54 56.23 23.72
HPR 28.85 6.60 22.98 41.56 51.83

Table 3: Behavior shift rate (in %) of activation editing
methods on TruthfulQA MC1 task compared to the base
model. The base LLM is Llama2-7B-Chat. ↑ means
greater is better and ↓ means lower is better.

Furthermore, with a larger scaling factor of
α = 200, the greater behavior shift rate in ITI200
might suggest that ITI200 can better boost truthful
performance for ITI. However, a closer examina-
tion at Table 3 reveals that the significant norm
change in ITI200 promotes both “good” False-to-
True and “bad” True-to-False prediction flips from
the base LLM. While ITI200 is more effective at
correcting false predictions, increasing the “False-
to-True” flip rate from 6.36% in ITI15 to 14.18%, it
also introduces more “bad” edits, changing 20.05%
of examples with True predictions in the base LLM
to False, compared to just 2.2% for ITI15. Over-
all, the bad edits significantly dominate the good
edits in the ITI model with more extensive norm
change, ITI200, leading to its poorer performance in
producing truthful responses. To this end, our anal-
ysis demonstrates the fundamental limitations of
steering vector approach on boosting truthful per-
formance for LLMs, regardless of efforts to tune
the scaling factor.

In contrast, Figure 4c highlights the inherent
ability of the proposed HPR method to preserve
activation norms through its activation rotation
mechanisms. In addition, HPR offers substantially
stronger editing capabilities for achieving desired
behaviors in LLMs as shown in Table 3. It signif-

icantly improves the False-to-True prediction flip
rate while minimizing undesirable True-to-False
edits for the base LLM, demonstrating the effec-
tiveness of our method for activation editing.

4.4 Impact on Generation Capability

Generation Quality: To assess the impact of the
proposed method on generation capability, we per-
form evaluations in the open-ended generation set-
ting of TruthfulQA with LLaMA models. For this
evaluation, we employ BLEU accuracy, which is
calculated as the ratio of generated responses hav-
ing BLEU scores with their respective correct (pos-
itive) references higher than that with the incor-
rect (negative) references, as described in Lin et al.
(2022). We use the popular implementation in Gao
et al. (2023) and the same data split as in Section
4.1. The results are presented in Table 4, where
ITI15 and ITI50 refer to the ITI method with a scal-
ing factor α = 15 and α = 50 respectively.

Backbone Method BLEU Acc

Llama2-7B-Chat

Base 38.39
ITI15 41.56
ITI50 34.96
HPR 42.30

Llama3-8B-Instruct

Base 43.28
ITI15 41.32
ITI50 41.08
HPR 44.74

Table 4: Automated evaluation of TruthfulQA open-
ended generation task.

It is clear from the table that the proposed HPR
method also outperforms different baselines signif-
icantly on generation-based evaluation for Truth-
fulQA.

In addition, we evaluate the fluency of the mod-
els’ generated responses. Table 5 shows the per-
plexity scores and bits per byte (smaller is better)
on the test set of WikiText-2 (Merity et al., 2017).

Backbone Method Word Ppl↓ Byte Ppl↓ BpB↓

Llama2

Base 13.7077 1.6316 0.7063
ITI15 14.2038 1.6425 0.7158
ITI50 133.7374 2.4982 1.3209
HPR 13.7206 1.6319 0.7066

Llama3

Base 11.9524 1.5903 0.6693
ITI15 17.0515 1.6996 0.7652
ITI50 4303.4616 4.7813 2.2574
HPR 11.9558 1.5904 0.6694

Table 5: Perplexity and bits-per-byte on WikiText-2 test
set.
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As can be seen, our method HPR does not need
to sacrifice the models’ fluency to achieve effec-
tive editing for desirable model behavior, unlike
the Steering Vector methods such as ITI. Notably,
when the scaling factor of ITI is high (i.e., 50), the
perplexity scores become extremely large, leading
to gibberish responses.

Llama2-7B Llama3-8B Mistral-7B
Base 2.33 2.08 2.33
LoRA 1.30 1.24 1.23
ITI 2.06 1.87 -
HPR1 2.18 1.99 2.25
HPR5 1.98 1.80 1.98
HPR10 1.73 1.63 1.76

Table 6: Inference speed in samples per second (larger
is better).

Inference Speed: Table 6 compares HPR with the
base model, ITI, and LoRA adapter in terms of
inference speed. For HPR, we report the speed for
its three variants corresponding to the number of
edited layers. We see that with only one edited
layer, the inference speed is slower than the base
model but faster than LoRA and ITI. HPR slows
down when we choose more layers to edit, which
is natural. Importantly, we do not see significant
speed reduction due to the introduction of our acti-
vation editing method, thus suggesting its potential
applications in different scenarios.

In fact, efficiency is a key motivation for the de-
sign of our method. Our method does not perform
direct rotation for each activation in the models as it
will be very expensive. Instead, we find a common
hyperplane to separate the negative and positive
regions of the activations, and we use this hyper-
plane to efficiently find the rotating direction for
all activations in the layer (i.e., via the reflections).
As finding rotating directions is the most expen-
sive part for a rotation operation, using a common
hyperplane for all activations significantly reduces
our computation costs for editing. Finally, to com-
pute the rotating angles, our method employs a
regression model, which is very efficient and can
be applied for each activation to improve the per-
formance of our method.

5 Related Work

Concerning the societal risks of LLMs, various ap-
proaches have been explored to control and align
their behavior post-pretraining. Unlike resource-
intensive methods for LLM alignment such as in-
struction tuning and reinforcement learning from

human feedback (Ouyang et al., 2022; Bai et al.,
2022), our work falls into the category of resource-
efficient methods for controlling LLMs. Several
resource-efficient approaches exist in this area.
First, parameter-efficient fine-tuning aims to fine-
tune LLMs with safety data while minimizing the
number of learnable parameters, such as prompt-
tuning (Lester et al., 2021), prefix-tuning (Li and
Liang, 2021), and LoRA (Hu et al., 2022). How-
ever, fine-tuning might also compromise the safety
of LLMs (Qi et al., 2023). Additionally, model
editing attempts to locate and edit model param-
eters associated with safety issues using minimal
invasions for efficiency (Meng et al., 2022; Ilharco
et al., 2023). However, model editing might im-
pact the general robustness of the models (Brown
et al., 2023). Our work belongs to the third di-
rection for efficient LLM control, i.e., activation
editing, which involves editing their inner repre-
sentations towards a desired behavior at inference
time (Li et al., 2023a; Hernandez et al., 2023) and
can be traced back to plug-and-play controllable
text generation research (Dathathri et al., 2020;
Krause et al., 2021). Accordingly, activation edit-
ing can preserve the pretrained LLMs to achieve
better robustness while still offering adjustable and
minimally invasive benefits.

In one approach to activation editing, Liu et al.
(2021), Li et al. (2023c), and Liu et al. (2024)
contrast the behavior of an expert and an amateur
model. Additionally, vector steering edits inner
representations by adding steering vectors (Burns
et al., 2023; Li et al., 2023b; Turner et al., 2023;
Rimsky et al., 2024; von Rütte et al., 2024). How-
ever, none of these work explores the direction-
magnitude perspective with activation rotations.

6 Conclusion

This work proposes a new activation editing ap-
proach based on the direction-maginitude view. By
rotating negative activations instead of adding to
them a fixed steering vector, our proposed method
effectively addresses the shortcomings of existing
work, as evidenced by the improved performance
on various benchmarks. Our analyses highlight
the magnitude consistency property of LLMs, pro-
viding insights into the operations of our editing
method. In the future, we plan to extend our re-
search to study how the activation space evolves
during fine-tuning and how the proposed method
scales to larger models and other architectures.
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Limitations

As an empirical study, our work is not without
limitations. Acknowledging this, we would like to
discuss them as follows:

• Due to limited computational resources, we
only employ open-source LLMs of size 7-8B
parameters. However, we show that the pro-
posed method can effectively alter the behav-
iors of LLMs for diverse base models and
tasks. We leave further research on the scala-
bility of HPR as well as its impact on models
of larger sizes for future work.

• Although our method exhibits strong edit-
ing performance for desired behaviors, the
method itself, like all other Activation Edit-
ing methods, only serves to alter LLMs’ be-
havior and elicit knowledge embedded into
them during pre-training, not to introduce any
new knowledge. Combining activation editing
with knowledge updates can be a promising
area for future research.

• Though HPR outperforms our baselines by a
significant margin (i.e., over 15% better than
the second best baseline ITI with LLama3),
there is still room for improvement. For exam-
ple, the best MC1 accuracy of HPR on Truth-
fulQA is currently only about 55% with the
base model Mistral. As such, future work
can expand our method to develop stronger
alignment methods and address safety con-
cerns for LLMs.

• HPR has been shown to perform well on a
variety of behavior-related tasks. However,
our experiments involves only English data,
thus not fully reflecting the capability of the
proposed method for multilingual LLMs and
data. Future work can explore the effective-
ness of our method for multilingual settings,
aiming for more robust methods for diverse
languages and multilingual LLMs.

Ethics Statement

Our work utilize open-source LLMs, i.e.,
Llama2-7B-Chat (Touvron et al., 2023b),
Mistral-7B-Instruct (Jiang et al., 2023), and
Llama3-8B-Instruct (AI@Meta, 2024), as the
base models, thus potentially inheriting their
inherent societal issues like bias, hallucination,

privacy, etc. Simultaneously, we propose a novel
activation editing method aiming at altering
LLMs’ behaviour for the better, contributing to
the on-going efforts to advance LLM safety. As
activation and model editing for LLMs has been
studied in recent published work (Li et al., 2023b;
Liu et al., 2021; Ilharco et al., 2023), we do not
believe our work poses greater societal risks than
such studies and open-source LLMs. Finally, we
confirm that we follow all the ethical guideline
from ACL to the best of our knowledge when
performing this research.

Acknowledgements

This research has been supported by the Army Re-
search Office (ARO) grant W911NF-21-1-0112,
the NSF grant CNS-1747798 to the IUCRC Center
for Big Learning, and the NSF grant # 2239570.
This research is also supported in part by the Office
of the Director of National Intelligence (ODNI),
Intelligence Advanced Research Projects Activity
(IARPA), via the HIATUS Program contract 2022-
22072200003. The views and conclusions con-
tained herein are those of the authors and should
not be interpreted as necessarily representing the
official policies, either expressed or implied, of
ODNI, IARPA, or the U.S. Government.

References
AI@Meta. 2024. Llama 3 model card.

Yuntao Bai, Andy Jones, and et al. 2022. Train-
ing a helpful and harmless assistant with reinforce-
ment learning from human feedback. Preprint,
arXiv:2204.05862.

Davis Brown, Charles Godfrey, Cody Nizinski,
Jonathan Tu, and Henry Kvinge. 2023. Robustness
of edited neural networks. In ICLR 2023 Workshop
on Mathematical and Empirical Understanding of
Foundation Models.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

13746

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2204.05862
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf


Collin Burns, Haotian Ye, Dan Klein, and Jacob Stein-
hardt. 2023. Discovering latent knowledge in lan-
guage models without supervision. In The Eleventh
International Conference on Learning Representa-
tions.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways. Preprint, arXiv:2204.02311.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao
Chang, and Furu Wei. 2022. Knowledge neurons in
pretrained transformers. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 8493–
8502, Dublin, Ireland. Association for Computational
Linguistics.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane
Hung, Eric Frank, Piero Molino, Jason Yosinski, and
Rosanne Liu. 2020. Plug and play language models:
A simple approach to controlled text generation. In
International Conference on Learning Representa-
tions.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong
Wu, Baobao Chang, Xu Sun, Jingjing Xu, Lei Li, and
Zhifang Sui. 2023. A survey on in-context learning.
Preprint, arXiv:2301.00234.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi,
Maarten Sap, Dipankar Ray, and Ece Kamar. 2022.
ToxiGen: A large-scale machine-generated dataset
for adversarial and implicit hate speech detection.
In Proceedings of the 60th Annual Meeting of the

Association for Computational Linguistics (Volume
1: Long Papers), pages 3309–3326, Dublin, Ireland.
Association for Computational Linguistics.

Evan Hernandez, Belinda Z. Li, and Jacob Andreas.
2023. Inspecting and editing knowledge representa-
tions in language models. In Arxiv.

Alston S. Householder. 1958. Unitary triangularization
of a nonsymmetric matrix. J. ACM, 5(4):339–342.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Worts-
man, Ludwig Schmidt, Hannaneh Hajishirzi, and Ali
Farhadi. 2023. Editing models with task arithmetic.
In The Eleventh International Conference on Learn-
ing Representations.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

Nitish Joshi, Javier Rando, Abulhair Saparov, Najoung
Kim, and He He. 2024. Personas as a way to
model truthfulness in language models. Preprint,
arXiv:2310.18168.

Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann,
Nitish Shirish Keskar, Shafiq Joty, Richard Socher,
and Nazneen Fatema Rajani. 2021. GeDi: Gener-
ative discriminator guided sequence generation. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 4929–4952, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Kenneth Li, Aspen K Hopkins, David Bau, Fernanda
Viégas, Hanspeter Pfister, and Martin Wattenberg.
2023a. Emergent world representations: Exploring
a sequence model trained on a synthetic task. In
The Eleventh International Conference on Learning
Representations.

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter
Pfister, and Martin Wattenberg. 2023b. Inference-
time intervention: Eliciting truthful answers from a
language model. In Advances in Neural Information
Processing Systems, volume 36, pages 41451–41530.
Curran Associates, Inc.

13747

https://openreview.net/forum?id=ETKGuby0hcs
https://openreview.net/forum?id=ETKGuby0hcs
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2022.acl-long.581
https://arxiv.org/abs/2301.00234
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.18653/v1/2022.acl-long.234
https://doi.org/10.18653/v1/2022.acl-long.234
https://doi.org/10.1145/320941.320947
https://doi.org/10.1145/320941.320947
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.18168
https://arxiv.org/abs/2310.18168
https://doi.org/10.18653/v1/2021.findings-emnlp.424
https://doi.org/10.18653/v1/2021.findings-emnlp.424
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://proceedings.neurips.cc/paper_files/paper/2023/file/81b8390039b7302c909cb769f8b6cd93-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/81b8390039b7302c909cb769f8b6cd93-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/81b8390039b7302c909cb769f8b6cd93-Paper-Conference.pdf


Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang,
Jason Eisner, Tatsunori Hashimoto, Luke Zettle-
moyer, and Mike Lewis. 2023c. Contrastive decod-
ing: Open-ended text generation as optimization. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 12286–12312, Toronto, Canada.
Association for Computational Linguistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597, Online. Association for Computational Lin-
guistics.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
TruthfulQA: Measuring how models mimic human
falsehoods. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 3214–3252, Dublin,
Ireland. Association for Computational Linguistics.

Alisa Liu, Xiaochuang Han, Yizhong Wang, Yu-
lia Tsvetkov, Yejin Choi, and Noah A. Smith.
2024. Tuning language models by proxy. Preprint,
arXiv:2401.08565.

Alisa Liu, Maarten Sap, Ximing Lu, Swabha
Swayamdipta, Chandra Bhagavatula, Noah A. Smith,
and Yejin Choi. 2021. DExperts: Decoding-time con-
trolled text generation with experts and anti-experts.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
6691–6706, Online. Association for Computational
Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual asso-
ciations in gpt. In Advances in Neural Information
Processing Systems.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In International Conference on Learning Repre-
sentations.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 746–751, Atlanta,
Georgia. Association for Computational Linguistics.

OpenAI. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems, volume 35, pages 27730–27744.
Curran Associates, Inc.

Alicia Parrish, Angelica Chen, Nikita Nangia,
Vishakh Padmakumar, Jason Phang, Jana Thompson,
Phu Mon Htut, and Samuel Bowman. 2022. BBQ:
A hand-built bias benchmark for question answering.
In Findings of the Association for Computational
Linguistics: ACL 2022, pages 2086–2105, Dublin,
Ireland. Association for Computational Linguistics.

Xiangyu Qi, Yi Zeng, Tinghao Xie, Pin-Yu Chen,
Ruoxi Jia, Prateek Mittal, and Peter Henderson. 2023.
Fine-tuning aligned language models compromises
safety, even when users do not intend to! Preprint,
arXiv:2310.03693.

Alec Radford and Karthik Narasimhan. 2018. Im-
proving language understanding by generative pre-
training.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Nina Rimsky, Nick Gabrieli, Julian Schulz, Meg Tong,
Evan Hubinger, and Alexander Matt Turner. 2024.
Steering llama 2 via contrastive activation addition.
Preprint, arXiv:2312.06681.

Aarohi Srivastava, Abhinav Rastogi, and et al. 2023. Be-
yond the imitation game: Quantifying and extrapolat-
ing the capabilities of language models. Transactions
on Machine Learning Research.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,

13748

https://doi.org/10.18653/v1/2023.acl-long.687
https://doi.org/10.18653/v1/2023.acl-long.687
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2022.acl-long.229
https://arxiv.org/abs/2401.08565
https://doi.org/10.18653/v1/2021.acl-long.522
https://doi.org/10.18653/v1/2021.acl-long.522
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://aclanthology.org/N13-1090
https://aclanthology.org/N13-1090
https://arxiv.org/abs/2303.08774
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://doi.org/10.18653/v1/2022.findings-acl.165
https://doi.org/10.18653/v1/2022.findings-acl.165
https://arxiv.org/abs/2310.03693
https://arxiv.org/abs/2310.03693
https://arxiv.org/abs/2312.06681
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971


Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023b. Llama 2: Open foundation and
fine-tuned chat models. Preprint, arXiv:2307.09288.

Alexander Matt Turner, Lisa Thiergart, David Udell,
Gavin Leech, Ulisse Mini, and Monte MacDiarmid.
2023. Activation addition: Steering language models
without optimization. Preprint, arXiv:2308.10248.

Dimitri von Rütte, Sotiris Anagnostidis, Gregor Bach-
mann, and Thomas Hofmann. 2024. A language
model’s guide through latent space. Preprint,
arXiv:2402.14433.

Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam,
Yu Zheng, Jiachen Liu, Zhongnan Qu, Shen Yan,
Yi Zhu, Quanlu Zhang, Mosharaf Chowdhury, and
Mi Zhang. 2024. Efficient large language models: A
survey. Transactions on Machine Learning Research.
Survey Certification.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy
Liang, Jeff Dean, and William Fedus. 2022. Emer-
gent abilities of large language models. Transactions
on Machine Learning Research. Survey Certifica-
tion.

13749

https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2308.10248
https://arxiv.org/abs/2308.10248
https://arxiv.org/abs/2402.14433
https://arxiv.org/abs/2402.14433
https://openreview.net/forum?id=bsCCJHbO8A
https://openreview.net/forum?id=bsCCJHbO8A
https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=yzkSU5zdwD


A Derivation of Equation 12

In this section we describe the process of deriving
Equation 12. Since the rotation of interest occurs
on a 2-D plane, and ∥â∥ = ∥ȧ∥ = ∥a∥, we can
calculate â by combining a and ȧ. If γ1 = γ2,
Equation 12 trivially holds: â = ȧ. If not, there are
two cases that can occur: γ1 < γ2, and γ1 > γ2.
We illustrate both of them in Figure 5 to make the
derivation easier to follow. In this figure, we color
the original negative activation a in red, the target
positive activation â in green, and the intermediate
vector ȧ in orange.

Say, we have

â = β1ȧ+ β2a (13)

In the first case (Figure 5a), applying the law of
sines in trigonometry, we obtain

∥â∥
sin(π − γ2)

=
β1∥ȧ∥
sin(γ1)

=
β2∥a∥

sin(γ2 − γ1)
(14)

This is equivalent to

1

sin(γ2)
=

β1
sin(γ1)

=
β2

sin(γ2 − γ1)
(15)

Thus,

β1 =
sin(γ1)

sin(γ2)
(16)

β2 =
sin(γ2 − γ1)

sin(γ2)
(17)

Similarly for the second case (Figure 5b), we
have

1

sin(γ2)
=

β1
sin(π − γ1)

=
−β2

sin(γ1 − γ2)
(18)

=⇒ 1

sin(γ2)
=

β1
sin(γ1)

=
β2

sin(γ2 − γ1)
(19)

=⇒
{
β1 =

sin(γ1)
sin(γ2)

β2 =
sin(γ2−γ1)
sin(γ2)

(20)

Combining both cases, we arrive at a general
formula for calculating the target activation vector:

â =
sin(γ1)

sin(γ2)
ȧ+

sin(γ2 − γ1)

sin(γ2)
a (21)

B Training efficiency

During the training phase, we use a
(l),p
i,j / a(l),ni,j

pairs to form the inputs and labels for the linear
probe and angle prediction modules in each layer.
Generally, these are computed by passing training
data samples xi∥ypi and xi∥yni through the model
M and record the activations at each layer and to-
ken position. However, since our method does not
update the parameters of M, its activation vectors
can be treated as constants. Thus, before training
we pre-compute all activations on the training data
to make a dataset of a(l),pi,j / a(l),ni,j pairs for each
layer. These can then be used to train the linear
probe and angle prediction modules independently
of the base model. In this way, the base LLM does
not need to be loaded into GPU RAM, saving more
space for training the HPR modules.

C Evaluating Different Numbers of
Editted Layers

Motivated by the varying linear probing accuracy
across different layers in LLMs for positive and
negative activations in Figure 2, our method HPR
choose the top k layers with highest probe accuracy
in LLMs for activation editing. Figure 6 illustrates
the performance of HPR using different values of k
for all the three base LLMs. The bars depict MC1
(blue) and MC2 (orange) accuracy. We also add
the performance of the respective base LLM and
illustrate them with horizontal lines for comparison.
It is clear from the figure that editing only the top
5 layers yields the best performance across mod-
els. As we increase the number of edited layers,
multiple choice accuracy decreases, even falling be-
low baseline in the case of Mistral-7B-Instruct.
This can be partly attributed to aggregated error
from imperfect linear probes (Figure 2).

13750



(a) First case: γ1 < γ2 (b) Second case: γ1 > γ2

Figure 5: Illustration of the two cases when rotating vector in 2-D plane.
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(a) Llama2-7B-Chat
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(b) Llama3-8B-Instruct
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(c) Mistral-7B-Instruct

Figure 6: HPR’s performance on TruthfulQA with different numbers of edited layers.
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