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Abstract

The rise of foundation models (FMs), coupled
with regulatory efforts addressing their risks
and impacts, has sparked significant interest in
open-source models. However, existing speech
FMs (SFMs) fall short of full compliance with
the open-source principles, even if claimed oth-
erwise, as no existing SFM has model weights,
code, and training data publicly available un-
der open-source terms. In this work, we take
the first step toward filling this gap by focus-
ing on the 24 official languages of the Euro-
pean Union (EU). We collect suitable training
data by surveying automatic speech recognition
datasets and unlabeled speech corpora under
open-source compliant licenses, for a total of
950k hours. Additionally, we release automatic
transcripts for 441k hours of unlabeled data
under the permissive CC-BY license, thereby
facilitating the creation of open-source SFMs
for the EU languages.

github.com/hlt-mt/mosel

hf.co/datasets/FBK-MT/mosel

1 Introduction

The introduction of foundation models trained on
large datasets is revolutionizing the landscape of
many NLP fields (Bommasani et al., 2021), partic-
ularly with the release of Large Language Models
(LLMs) that demonstrated impressive abilities on
various tasks (Radford et al., 2019). The interest
attracted by such models has come together with
concerns about their risks and impact, as well as
requests for a better understanding of their inner
workings. On the one hand, this has led to regula-
tory efforts (European Parliament, 2023; Roberts
et al., 2024), while on the other hand, it has sparked
a growing interest in open-source models (Work-
shop et al., 2023; Groeneveld et al., 2024) that can
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be accessed and studied by anyone. However, it
has been acknowledged that the term “open source”
has been abused (Eiras et al., 2024; Liesenfeld
and Dingemanse, 2024), being associated with any
model whose weights are free to access (e.g., Tou-
vron et al., 2023; Chiang et al., 2023), which is not
sufficient to define a model as open source (OS).

In line with the Open Source Definition and its
principles,1 the Open Source Initiative defines as
Open Source AI a “system made available under
terms that grant the freedoms to: use the system
for any purpose without having to ask for permis-
sion”, “study”, “modify [...] for any purpose”, and
“share [...] with or without modifications, for any
purpose”.2 Specifically, it requires that the model
and the code “used to train and run the system”
are available under an OS license,3 and that the
training data is available under an OS-compliant
license (White et al., 2024). This means that an
OS model should not be trained on data released
under licenses that restrict any of the four essential
rights – use, study, modify, and share – for any
purpose, including commercial use. Examples of
OS-compliant licenses include CDLA-Permissive-
2.0 and CC-BY-4.0, which only requires attribution
(i.e., acknowledging the source or resource used).
Instead, data released under licenses like CC-NC-
4.0, which prohibits commercial use, or CC-SA-
4.0, which mandates that derivative works have
to be distributed under the same terms (thereby
limiting the freedom to modify and share for any
purpose), are not OS compliant.

Focusing on speech foundation models (SFMs),
none of the existing ones complies with this defi-
nition. For instance, SeamlessM4T’s model (Com-
munication et al., 2023) is released under a license
that is not OS compliant, while Whisper’s model

1https://opensource.org/osd
2https://opensource.org/deepdive/drafts/the-o

pen-source-ai-definition-draft-v-0-0-8
3https://opensource.org/licenses
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and inference code (Radford et al., 2023) are, but
the training code and data are not public. Lastly,
OWSM (Peng et al., 2023), although fulfilling most
of the requirements, has been trained using datasets
such as MuST-C (Di Gangi et al., 2019) and SPGIS-
peech (O’Neill et al., 2021), which have licenses
that do not permit derivative works or commercial
use. As a consequence, to the best of our knowl-
edge, no current SFM satisfies the Open Source
AI definition and can hence claim to be an Open
Source SFM (OSSFM).

Considering the 24 official languages of the
European Union (EU),4 we take the first step to-
wards filling this gap and, in particular, toward the
creation of an EU-OSSFM: the collection of OS-
compliant training data. With this aim, we survey
the automatic speech recognition (ASR) datasets
and the unlabeled speech corpora available for EU
languages and list those that can be used to train an
EU-OSSFM, for a total of 950k hours. This inven-
tory of OS-compliant data, which will be continu-
ously updated, is called MOSEL (Massive Open-
source compliant Speech data for the European
Languages) and is publicly available as a GitHub
repository at: github.com/hlt-mt/mosel. In
addition, to further ease the development of an
EU-OSSFM, we automatically generated tran-
scripts (i.e., pseudo-labels) for 441k hours of un-
labeled data, which we release under the OS-
compliant CC-BY 4.0 license on HuggingFace
at: hf.co/datasets/FBK-MT/mosel. We con-
clude our work with an experiment on Maltese, one
of the lowest-resourced languages, showing that
the data can effectively be used for training ASR
models.

2 Open Source Compliant Speech Data

This section surveys the available corpora that are
admissible for developing an OSSFM for all 24
official EU languages. Accordingly, we include
datasets that are freely accessible (i.e., excluding
paid datasets) and whose data is released under
an OS-compliant license (i.e., without restrictions
on creating and redistributing derivative artifacts,
including AI models).5 This means that, in the
case of the widespread Creative Commons (CC)
licenses, we cannot include data released with non-
derivative (ND), non-commercial (NC), or share-

4https://european-union.europa.eu/principle
s-countries-history/languages_en

5https://creativecommons.org/faq/#artificia
l-intelligence-and-cc-licenses

alike (SA)6 restrictions. We also exclude datasets
whose license is OS compliant but containing data
released under a non-OS-compliant license. In fact,
CC licenses “allow licensed material to be included
in collections [...], however this does not change
the license applicable to the original material”.7

In line with this indication, in cases where the
transcripts are OS compliant (e.g., CC-BY where
only attribution is required) but the correspond-
ing speech (or part of it) is not, we document the
dataset under the most restrictive license. For in-
stance, GigaSpeech (Chen et al., 2021), which is
released under Apache 2.0,8 is categorized as non-
OS compliant since it contains YouTube videos
under restrictive CC licenses.9 Similarly, MaSS
(Zanon Boito et al., 2020) and CMU Wilderness
(Black, 2019) are regarded as non-OS compliant
since they are derived from the Bible.is data of the
Faith Comes By Hearing organization with NC and
ND terms of use.10

Table 1 lists the OS-compliant datasets with
their license, number of hours, supported lan-
guages,11 and whether they also contain tran-
scripts.12 The resulting MOSEL collection com-
prises 18 datasets, 7 of which are either in the
Public Domain – i.e., without copyright terms
(Fishman, 2006) – or licensed under CC-0, the
most permissive CC license.13 Overall, there are
505,7k hours of labeled data (i.e., including the
transcripts). However, 87% of it comes from the
YouTube-Commons dataset (PleIAs, 2024), for
which manual inspection revealed some issues, as
i) it includes videos without speech (e.g., with only
music), ii) the language identification (LID) tag
and the transcripts are often inaccurate, and iii)
sentence-level segmentation of the speech is not
provided (it contains unsegmented transcripts for

6As the license of the resulting model “must be a Creative
Commons license with the same License Elements [...] or a
BY-SA Compatible License” (https://creativecommons.
org/licenses/by-sa/4.0/legalcode#s3b), which is not
compliant with open source terms.

7https://creativecommons.org/faq/#if-i-creat
e-a-collection-that-includes-a-work-offered-und
er-a-cc-license-which-licenses-may-i-choose-for
-the-collection

8https://apache.org/licenses/LICENSE-2.0
9https://www.youtube.com/static?template=terms

10https://www.faithcomesbyhearing.com/terms
11Represented as two-letter ISO 639 codes: https://en.w

ikipedia.org/wiki/List_of_ISO_639_language_codes.
12For completeness, in Appendix C, we list the most popular

non-OS-compliant datasets, divided into those licensed under
SA (Table 8), and under NC, ND, and other licenses (Table 9).

13https://creativecommons.org/share-your-work/
cclicenses/
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Name License Hours Languages Label

CommonVoice (Ardila et al., 2020) CC-0 6,732 bg, cs, da, nl, en, et, fi, fr, de, el, hu,
ga, it, lv, lt, mt, pl, pt, ro, sk, sl, es, sv

CoVoST2 (Wang et al., 2021b) CC-0 687 en, fr, it, es, pt, et, nl, sv, lv, sl

CSS10 (Park and Mulc, 2019) Public Domain 99 nl, fi, fr, de, el, hu, es

EMU (Marasek et al., 2015) CC-BY 3.0 56 pl

EU Parliament (Chmiel et al., 2021) CC-BY 4.0 32 pl

FLEURS (Conneau et al., 2023) CC-BY 4.0 215 bg, cs, da, nl, en, et, fi, fr, de, el, hu,
ga, it, lv, lt, mt, pl, pt, ro, sk, sl, es, sv

Large Corpus of Czech Parliament Ple-
nary Hearings (Kratochvil et al., 2020)

CC-BY 4.0 444 cs

LibriLight (Kahn et al., 2020) Public Domain 57,706 en

LibriTTS (Zen et al., 2019) CC-BY 4.0 585 en

LibriSpeech (Panayotov et al., 2015) CC-BY 4.0 360 en

LibriVoxDeEn (Beilharz et al., 2020) Public Domain 547 de

MC Speech (Czyżnikiewicz, 2022) CC-0 22 pl

MLS (Multilingual LibriSpeech) (Pratap
et al., 2020)

CC-BY 4.0 50,687 nl, en, fr, de, it, pl, pt, es

SIWIS (Honnet et al., 2017) CC-BY 4.0 11 fr

Speech Commands (Warden, 2018) CC-BY 4.0 18 en

VCTK (Yamagishi et al., 2019) CC-BY 4.0 44 en

VoxPopuli (Wang et al., 2021a) CC-0

383,500 bg, hr, cs, da, nl, en, et, fi, fr, de, el,
hu, it, lv, lt, mt, pl, pt, ro, sk, sl, es, sv

1,791 hr, cs, nl, en, et, fu, fr, de, hu, it, lt, pl,
ro, sk, sl, es

YouTube-Commons (PleIAs, 2024) CC-BY 4.0

3,261 bg, cs, nl, en, et, fr, de, el, hu, it, pl,
pt, ro, es

443,396 bg, cs, nl, en, et, fi, fr, de, el, hu, it, lv,
lt, pl, pt, ro, es, sv

Table 1: MOSEL speech datasets with OS-compliant license. We also report the total number of hours (Hours),
languages supported (Languages), and whether they include reference transcripts (Label).

the entire YouTube videos). Therefore, further
checks and processing work would be needed to
effectively exploit the dataset for OSSFM training.

The total speech content (both labeled and un-
labeled) amounts to 950,2k hours, which signifi-
cantly exceeds the total data used to train most of
the current SFMs (e.g., 680k hours for Whisper v2,
180k for OWSM), with the only exception of Whis-
per v3 whose training data comprises 5 million of
hours. Even excluding the 446k hours of YouTube-
Commons, the amount of data remains comparable,
especially since Whisper v2 and OWSM target 99
and 151 languages respectively, instead of the 24
required for an EU-OSSFM.

Looking at language coverage, Table 2 shows
that labeled data distribution is highly skewed to-
wards English (see also Figure 1a in Appendix A.1).

Indeed, only 6 other languages (de, es, fr it, nl, pt)
can be considered as high-resource, with more than
3k hours. Instead, the unlabeled data is more evenly
distributed (see also Figure 1b in Appendix A.1)
and includes at least 8k hours for all EU languages
but Irish, for which, unfortunately, we did not find
unlabeled OS-compliant data.

3 Pseudo-labeling Process

The statistics reported in §2 highlight the impor-
tance of leveraging unlabeled data for training an
OSSFM, given the scarcity of labeled material for
most languages. When unlabeled data is avail-
able for model training, a common strategy con-
sists of creating weak supervision (Zhou, 2017;
Jia et al., 2019; Oramas et al., 2021; Zhang et al.,
2022; Ren et al., 2023), which, in the context
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Language Label. Unlabel. Total
Bulgarian (bg) 111 17,609 17,720
Croatian (hr) 55 8,106 8,161
Czech (cs) 591 18,705 19,296
Danish (da) 20 13,600 13,620
Dutch (nl) 3,395 19,014 22,409

English (en) 437,239 84,704 521,943
Estonian (et) 60 10,604 10,664
Finnish (fi) 64 14,200 14,264
French (fr) 26,984 22,896 49,880

German (de) 9,236 23,228 32,464
Greek (el) 35 17,703 17,738

Hungarian (hu) 189 17,701 17,890
Irish (ga) 17 0 17
Italian (it) 3,756 21,933 25,689

Latvian (lv) 173 13,100 13,273
Lithuanian (lt) 36 14,400 14,436
Maltese (mt) 19 9,100 9,119
Polish (pl) 510 21,207 21,717

Portuguese (pt) 5,492 17,526 23,018
Romanian (ro) 121 17,906 18,021

Slovak (sk) 61 12,100 12,161
Slovenian (sl) 32 11,300 11,332
Spanish (es) 17,471 21,526 38,997
Swedish (sv) 58 16,300 16,358

Total 505,725 444,467 950,192

Table 2: MOSEL number of hours of labeled and
unlabeled speech data for each official EU language.

of ASR, entails generating automatic transcripts.
In light of the high computational resources de-
manded by this process for large-scale SFM train-
ing data, avoiding duplicated efforts across differ-
ent institutions can significantly reduce the over-
all environmental impact and costs (Strubell et al.,
2019), in line with Green AI principles (Schwartz
et al., 2019). For this reason, we complement
our inventory by providing practitioners with au-
tomatic transcripts for 441k hours of unlabeled
speech coming from VoxPopuli and LibriLight.14

The resulting pseudo-labeled data, whose statistics
per language are presented in §A.2, covers nearly
half of the total data available for training an EU-
OSSFM and 23 of the 24 EU languages. In line
with the spirit of this work, the transcripts are re-
leased under the OS-compliant CC-BY license at
hf.co/datasets/FBK-MT/mosel.

The data is transcribed using Whisper large v315,
which is released under the OS Apache 2.0 Li-
cense that allows the generated content to be re-
leased under any license. In Appendix D, we re-
port the ASR quality of Whisper across the EU
languages. The inference is realized by feeding
Whisper with the corresponding language ID and

14YouTube-Commons was excluded due to the issues de-
scribed in §2.

15https://huggingface.co/openai/whisper-large
-v3 with HuggingFace v4.38.2.

Model CommonVoice FLEURS
Whisper large v3 80.8 73.8
label. + pseudo-lab. 39.4 38.9
label. + filtered pseudo-lab. 23.8 24.5

Table 3: ASR results (WER↓) for Maltese. We compare
Whisper and our models trained respectively i) on la-
beled and pseudo-labeled MOSEL data and ii) on the
same data with filters applied to pseudo-labeled data.

the <|notimestamp|> token, with 5 as beam size.
As LibriLight, differently from VoxPopuli, con-
tains segments longer than Whisper’s maximum
duration limit of 30s, we split them into chunks of
up to 30s each. To ensure reproducibility, we will
release the code under the Apache 2.0 Licence.

Costs. We executed all the inferences on
NVIDIA A100 64GB GPUs, on which we managed
to fit 16 samples per batch and enabled FlashAtten-
tion (Dao et al., 2022) to speed up the generation
process. In this way, we reached a throughput of
∼1.5-2k samples per GPU hour. As a result, the
transcription process required a total of ∼25,500
GPU hours. On popular cloud services such as
AWS, this would translate to >100k USD16 and
35,625 kgCO2eq estimated emissions.17

4 Proof of Concept on Maltese

To showcase that the datasets collected in our sur-
vey (§2) and the generated transcripts (§3) con-
stitute suitable training data for an EU-OSSFM,
we conduct a proof-of-concept experiment on Mal-
tese. Maltese was chosen because it is i) one of
the lowest-resourced languages, and ii) the one for
which Whisper achieves the worst results, as shown
in Appendix D.18

For our experiments, we first attempted to train
an ASR model using only supervised data, but it
failed to converge due to its limited size (16 hours).
Therefore, we trained a model using the few la-
beled data together with the pseudo-labeled data.19

As an additional investigation, we also applied to
the pseudo-labeled data simple filtering methods
to remove audios containing other languages and
automatic transcripts containing hallucinations (see
Appendix B.2). Results presented in Table 3 show

16As of June 10th 2024, 8 A100 GPUs cost >32 USD. See
https://aws.amazon.com/it/ec2/instance-types/p4/.

17Estimations were conducted using the MachineLearning
Impact calculator presented in (Lacoste et al., 2019).

18With the only exception of Irish, which has only 17 col-
lected hours and is not even supported by Whisper.

19For full experimental details see Appendix B.
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that the model trained with all data doubles the per-
formance of Whisper (∼39 vs. ∼80 WER). Consid-
ering the very low performance of Whisper, which
was used to create the automatic transcripts, the
contribution of the pseudo-labeled data is notice-
able. Also interesting is the further improvement
obtained when unlabeled data are filtered (∼24
WER). These experiments support the conclusion
that the collected and transcribed data represent a
promising bedrock for developing an EU-OSSFM.

5 Conclusions

In response to the urgent need for truly open-source
foundation models, this work takes the first step to-
ward an EU open-source speech foundation model,
which is the collection of suitable training data
called MOSEL . To this end, we first surveyed
the labeled and unlabeled speech datasets for auto-
matic speech recognition that feature at least one
of the 24 official EU languages and are available
under a license compliant with the open-source
terms. We then complemented this effort with the
creation and release of automatic transcripts for
the available unlabeled data. Overall, we collected
more than 950k hours of speech content suitable
for the training of an EU open-source speech foun-
dation model, also demonstrating its usefulness in
Maltese, one of the lowest-resourced languages.
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7 Limitations

Collecting Open Irish Data. An important fu-
ture direction to expand this work is represented
by collecting and releasing new material – possibly
with human-generated transcripts – under permis-
sive licenses for the least-resourced language. This
is especially critical for Irish, for which we were
able to collect only 17 hours of (labeled) speech.

Data Curation of Available Resources. As
noted in §2, the quality of the supervision of the sur-
veyed dataset cannot always be taken for granted,
advocating for dedicated inspections before using
it to train an OSSFM. This is particularly true for
the metadata and transcripts of YouTube videos
under OS-compliant licenses as those collected in
YouTube-Commons.

Quality of Pseudo-labels and Filtering Tech-
niques. The quality of Whisper outputs greatly
varies across the 24 languages. In particular, the
WER of Whisper for Maltese is high (80.8 on the
CommonVoice test set and 73.8 on the FLEURS
test set). As such, filtering strategies aiming at iden-
tifying unreliable transcriptions may be required
for the successful training of OSSFM, especially
for low-resource languages. Indeed, as already seen
in §4, even simple filtering techniques proved to be
effective in greatly improving ASR performance.
More advanced filtering techniques can provide fur-
ther benefits for the quality of the resulting model.
However, data cleaning and normalization are com-
mon steps in training pipelines, going beyond the
scope of this work.

Beyond EU languages. This paper has focused
only on the 24 EU languages. An obvious next
step for this work is its extension to many other
spoken languages, with the final goal of covering
hundreds of languages and leading to the creation
of a universal OSSFM.
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A Data Statistics

A.1 Labeled and Unlabeled Data Distribution
Data distributions for both labeled and unlabeled
data discussed in §2 and referred to Table 1 are
presented in, respectively, Figure 1a and 1b.

(a) Labeled

(b) Unlabeled

Figure 1: Labeled and unlabeled data distribution of the
OS-compliant collected speech for each EU language.

A.2 Pseudo-labeled Data Statistics
The total number of hours of pseudo-labeled data
described in §3 are shown in Table 4. The data
distribution is similar to those of unlabeled data
presented in §A.2 due to the nearly complete over-
lap with the retrieved unlabeled data, as already
discussed in §3.

B Experimental Settings

B.1 Model and Training Settings
We train a sequence-to-sequence model whose
encoder is a 12-layer Conformer (Gulati et al.,
2020) and whose decoder is a 6-layer Transformer
(Vaswani et al., 2017). The Conformer encoder
is preceded by two 1D convolutional layers with
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Language Pseudo-labeled (hours)
Bulgarian (bg) 17,600
Croatian (hr) 8,100
Czech (cs) 18,700
Danish (da) 13,600
Dutch (nl) 19,000

English (en) 81,806
Estonian (et) 10,600
Finnish (fi) 14,200
French (fr) 22,800

German (de) 23,200
Greek (el) 17,700

Hungarian (hu) 17,700
Italian (it) 21,900

Latvian (lv) 13,100
Lithuanian (lt) 14,400
Maltese (mt) 9,100
Polish (pl) 21,200

Portuguese (pt) 17,500
Romanian (ro) 17,900

Slovak (sk) 12,100
Slovenian (sl) 11,300
Spanish (es) 21,400
Swedish (sv) 16,300

Total 441,206

Table 4: Number of hours for the pseudo-labeled data
that we make available for each official EU language.

stride 2 and kernel size 5. We use an embedding
size of 512 and an internal feed-forward dimen-
sion of 2048. The convolutional modules of the
Conformer layers have a 31-feature kernel. The
target vocabulary is built with size 8,000 using Sen-
tencePiece (Kudo, 2018), while the input audio
is represented with 80 Mel-filterbank features ex-
tracted every 10 ms with a window of 25 ms. As a
result, the model has 116M parameters in total.

We use label-smoothed cross-entropy loss on
the decoder output (with 0.1 as label-smoothing
factor), complemented with a CTC (Graves et al.,
2006) loss (summed with 0.5 weight) trained on the
output of the 8th encoder layers to facilitate the con-
vergence of the model. The model was optimized
with Adam (β1, β2 = 0.9, 0.98) using Noam learn-
ing rate scheduler (Vaswani et al., 2017) with 2e-3
as peak learning rate and 25,000 warmup steps. To
avoid overfitting, we set dropout to 0.1 and weight
decay to 0.001 and apply SpecAugment (Park et al.,
2019) during training. To further ease the conver-
gence of the model, we initialize the Conformer
encoder weights with those of a similar ASR model
trained on 4k hours of labeled English data, com-
prising CommonVoice, Librispeech, CoVoST, and
VoxPopuli. We train the models with mini-batches
of 40,0000 tokens and 2 as update frequency on 4
NVIDIA Ampere A100 GPUs (64GB RAM) for
150k updates and average the last 7 checkpoints.

Our experiments are conducted with the open-
source repository available at https://github.c
om/hlt-mt/FBK-fairseq/ using the padding-
safe implementation of the Conformer encoder
(Papi et al., 2024). Results in Word Error Rate
(WER) are computed using the Whisper Normal-
izer20 and, then, JiWER21 for computing the met-
ric.

B.2 Data Filtering

B.2.1 LID
To check for possible inconsistencies between the
metadata released in VoxPopuli and the actual con-
tent of speech segments, we check the actual spo-
ken language with an automatic language identifier
(LID). In fact, as in the transcription process de-
scribed in §3 we force the language to the one
provided in the metadata, these segments may be
paired with noisy transcripts. The LID was car-
ried out using the Whisper large v3 model, as done
for the transcription process, and it was performed
by letting the model predict the language tag and
taking the language with the highest probability.

LID Portion (%)
mt 77.1
en 9.9
it 3.5
fr 2.2
ar 1.9

other 5.4

Table 5: Identified languages on the Maltese section of
VoxPopuli (reported as %).

Table 5 shows the results. Upon a manual in-
spection, we noticed that the samples predicted as
Maltese are indeed all correct. Similarly, the LID
appeared mostly correct when predicting languages
different from Maltese, except for the samples iden-
tified as Italian or Arabic which are sometimes
Maltese speech. However, given the not-so-high
amount of mislabeled data and to be on the safe
side, in our experiments with “simple filters” we
opted for filtering all the data recognized with a
language different from Maltese, removing ∼23%
of the 9k VoxPopuli hours.

To ensure the reproducibility of our experiments
and to let practitioners leverage this information for
their filtering strategies while creating OSSFM, we
will release the LID output for all the transcribed
unlabeled data under the CC-BY license.

20https://pypi.org/project/whisper-normalizer/
21https://pypi.org/project/jiwer/
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id Reference Automatic Transcript
1 Where is the victim? Yes, where’s the victim?
2 Here Hey, hey, hey, here, hey. No, no, no, no, no, no, no, no.
3 Good, and now to get hold of little Henny. Shop for a moment, give Hennie a hand.

Table 6: Examples of hallucinations in Whisper outputs.

B.2.2 Textual Hallucinations

In the context of LLMs, hallucinations refer to
“the generation of content that deviates from the
real facts, resulting in unfaithful outputs” (Maynez
et al., 2020; Rawte et al., 2023). In our context of
ASR, they have been analogously defined as “non-
sensical, or unfaithful to the provided source input”
(Ji et al., 2023). Specifically, here we focus on the
detection of nonsensical hallucinations, in which
“the generated text fails to convey any relevant or
comprehensible information”,22 while those related
to semantic aspects are ignored.

Table 6 shows examples of hallucinated texts
generated by Whisper in English. It can be noted
that, in line 2, the word here is surrounded by many
spurious “hey,” and that the successive sentence
consists of a sequence of equally spurious “no,”.
This typically happens when background noise or
music is present in the audio content, making the
transcription task more difficult.

Another issue that can affect, although less
frequently, the text generated by LLMs in
general and by Whisper in particular, is the
presence of very long and noisy strings like
“T-J-N-D-F-Z-3-2-8-W-M-L-G-0-Z-P-[. . .]” and
“Amen.Amen.Amen.Amen.Amen.Amen.[. . .]”.
Moreover, we noted that, for some languages,
the decoding of entire audio segments sometimes
generates one single, very common word, like
“Děkuji” for Czech and “Ačiū” for Lithuanian, both
corresponding to “Thank you”. Although being
correct in some cases, since for the most reliable
languages (e.g., English and German) transcripts
with a single word are relatively rare, we chose to
consider this phenomenon as hallucination.

In conclusion, we decided to flag the segments
containing all the above-described hallucinations,
with the option of filtering them out during training.
Also in this case, for the sake of reproducibility and
to enable the adoption of similar approaches, we
released the hallucination-detection metadata.

22
https://masterofcode.com/blog/hallucinations-in-llms-wha

t-you-need-to-know-before-integration

Language CommonVoice FLEURS
bg 14.3 12.5
hr - 10.8
cs 9.0 10.1
da 18.1 12.0
nl 4.3 5.2
en 9.3 4.1
et 29.9 18.1
fi 24.6 7.7
fr 10.8 5.3
de 5.7 4.9
el 13.7 10.9
hu 13.4 12.9
ga - -
it 5.5 3.0
lv 16.7 19.4
lt 27.6 23.7

mt 80.8 73.8
pl 6.0 4.6
pt 5.9 4.1
ro 10.8 8.2
sk 23.4 9.2
sl 16.8 18.3
es 4.7 2.8
sv 8.3 7.6

Table 7: WER (↓) reported for Whisper large v3 (Rad-
ford et al., 2019) across the 24 European languages on
CommonVoice and FLEURS.

C Non-open Datasets

C.1 CC-BY-SA

The collection of datasets with the SA license,
which is not compliant with open-source criteria,
is presented in Table 8.

C.2 CC-NC, -ND, and others

The collection of the most well-known datasets
with a license that is not compliant with open-
source criteria is presented in Table 9.

D Whisper Performance on EU
Languages

Table 7 reports the WER scores obtained using
Whisper on the 24 European languages. Maltese
stands out as the worst language by a wide mar-
gin, with a very high WER (73.8 on FLEURS)
indicating a limited ability to address the Maltese
ASR task. All other languages display much lower
WER, as only Estonian, Latvian, Lithuanian, and
Slovenian exceed 15 WER, while high-resource
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Name License hours Languages Label

ARTHUR 1.0 (Verdonik et al., 2023) CC-BY-SA 4.0 884 sl

Vystadial (Korvas et al., 2014) CC-BY-SA 3.0 63 en, cs

ParlaSpeech-HR (Ljubešić et al., 2022) CC-BY-SA 1,816 hr

People’s Speech (Galvez et al., 2021) CC-BY-SA 4.0 30,000 en

SWC (Köhn et al., 2016) CC-BY-SA 4.0 996 de, en, nl

SWC-ASR (Köhn et al., 2016) CC-BY-SA 4.0 510 de, en, nl

UK and Ireland English Dialect (Demirsahin
et al., 2020)

CC-BY-SA 4.0 31 ga

Table 8: Speech datasets with Share-Alike (SA) license. If more languages are included, the sum is presented.

Name License hours (k) Languages Label

AMI (Carletta et al., 2006) CC-BY-NC 4.0 100 en

AudioCite.net (Felice et al., 2024) CC-BY-NC 6,682 fr

BEA-Base (Mihajlik et al., 2022) NC 71 hu

CMU Wilderness (Black, 2019) NC, ND 236 en, fi, fr, pl, pt, to, es, sv

Europarl-ST (Iranzo-Sánchez et al., 2020) CC-BY-NC 4.0 201 en, fr, de, it, es, pt, pl, ro, nl

FT Speech (Kirkedal et al., 2020) NC 1,800 da

GigaSpeech (Chen et al., 2021) YouTube License 33,000 en

GigaSpeech-ASR (Chen et al., 2021) YouTube License 10,000 en

GOS (Verdonik et al., 2013) CC-BY-SA-NC 2.5 120 sl

How-2 (Sanabria et al., 2018) YouTube License 2,000 en

How-2 ASR (Sanabria et al., 2018) YouTube License 300 en

M-AILABS (Solak, 2019) Project Gutenberg
License

867 en, fr, de, it, pl, es

MASRI (Hernandez Mena et al., 2020) NC 8 mt

MaSS (Zanon Boito et al., 2020) NC, ND 126 en, fi, fr, hu, ro, es

MediaSpeech (Kolobov et al., 2021) YouTube License 20 fr

mTEDx (Salesky et al., 2021) CC-BY-NC-ND 4.0 679 fr, el, it, pt, es

MuAViC (Anwar et al., 2023) CC-BY-NC 4.0 1,079 en, el, es, fr, it, pt

MuST-C (Di Gangi et al., 2019) CC-BY-NC-ND 4.0 504 en

PDTSC1.0 (Hajič et al., 2017) CC-BY-NC-SA 4.0 122 cs

PELCRA (Pęzik, 2018) CC-BY-NC 100 pl

SpokesBiz (Pęzik et al., 2023) CC-BY-NC-ND 650 pl

SPGISpeech (O’Neill et al., 2021) NC 5,000 en

SWARA (Stan et al., 2017) CC-BY-NC 4.0 21 ro

Tatoeba ENG (Tatoeba, 2017) CC-BY-NC-ND 200 en

TEDLIUM v3 (Hernandez et al., 2018) CC-BY-NC-ND 3.0 452 en

TEDx Spanish (Hernandez-Mena, 2019) CC-BY-NC-ND 4.0 24 es

VoxLingua107 (Valk and Alumäe, 2021) YouTube License 1,352 bg, hr, cs, da, nl, en, et, fi,
fr, de, el, hu, it, lv, lt, mt, pl,

pt, ro, sk, sl, es, sv

Table 9: Non-open speech datasets. If more languages are included, the sum is presented.
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languages such as Dutch, English, Italian, German,
and Spanish consistently achieve WER close or
lower than 5.
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