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Abstract
Modeling lexical semantics is a challenging
task, often suffering from interpretability pit-
falls. In this paper, we delve into the generation
of dictionary-like sense definitions and explore
their utility for modeling word meaning. We
fine-tuned two Llama models and include an ex-
isting T5-based model in our evaluation. Firstly,
we evaluate the quality of the generated defini-
tions on existing English benchmarks, setting
new state-of-the-art results for the Definition
Generation task. Next, we explore the use of
definitions generated by our models as inter-
mediate representations subsequently encoded
as sentence embeddings. We evaluate this ap-
proach on lexical semantics tasks such as the
Word-in-Context, Word Sense Induction, and
Lexical Semantic Change, setting new state-of-
the-art results in all three tasks when compared
to unsupervised baselines.

1 Introduction

Modeling lexical semantics using unstructured text
has a longstanding history in Natural Language
Processing due to its crucial role in both Natural
Language Understanding and Natural Language
Generation (Karanikolas et al., 2024; Pustejovsky
and Boguraev, 1993). Over the past decades, there
have been many relevant technological develop-
ments: from count-based (Naseem et al., 2021) to
static (Mikolov et al., 2013) and contextualized (Pe-
ters et al., 2018) language models, and most re-
cently, generative models (Hadi et al., 2023). Each
of these advancements has contributed significantly
to the goal of modeling the meaning of words.

Modern language models are based on the Trans-
former (Vaswani et al., 2017) architecture. Given
a word, these models generate semantic represen-
tations for each occurrence of the word based on
its surrounding context (Apidianaki, 2023). Ideally,
these representations should be similar for seman-
tically related word usages and different for se-
mantically distinct ones. Typically, contextualized

vectors (i.e., embeddings, Pilehvar and Camacho-
Collados, 2021) or lexical substitutes (i.e., bag-of-
words, Arefyev and Zhikov, 2020) are employed to
represent word usages. However, recent advance-
ments in text generation are shifting the attention
towards representing word usages through gener-
ated sense definitions (Giulianelli et al., 2023).

Automatically generated sense definitions pro-
vide a dual advantage. Firstly, they distill the
information stored in a sentence by abstracting
away from the context. Their use potentially con-
denses various word usage representations pertain-
ing to the same underlying meaning. Secondly,
generated definitions provide a means to directly
interpret word meaning from unstructured text,
thereby enabling language models to serve as surro-
gate for dictionaries when encountering unfamiliar
words (Malkin et al., 2021), or known words in
unfamiliar settings (Weiland et al., 2023).

In this work, we automatically generate def-
initions for words in-context by relying on two
fine-tuned variants of the Llama chat models (Tou-
vron et al., 2023) refined through instruction tun-
ing (Zhang et al., 2024) on lexicographic resources.
We call the models LlamaDictionary and assess
their performance in Definition Generation, achiev-
ing new state-of-the-art results on multiple datasets.

We further extend our evaluation by using
LlamaDictionary and the Flan-T5-Definition
model fine-tuned by Giulianelli et al. (2023) for
large scale modeling of word meaning. Specifi-
cally, we employ the generated sense definitions
as intermediate sense representations. These repre-
sentations are encoded using a pretrained sequence
embedding model rather than using standard to-
ken embeddings. We evaluate our approach on
three popular Natural Language Processing tasks,
namely Word-in-Context, Word Sense Induction,
and Lexical Semantic Change, achieving new state-
of-the-art results on all three tasks.
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Our original contribution:

• We introduce LlamaDictionary, a novel fine-
tuned large language model designed to gen-
erate sense definitions for words in-context.

• We evaluate the use of LlamaDictionary and
existing Flan-T5-Definition with thirteen
SBERT models, achieving new state-of-the-art
results in the Definition Generation task.

• We demonstrate the effectiveness of
LlamaDictionary and Flan-T5-Defini-
tion as a preprocessing tool for large-scale
word meaning analysis and achieve state-
of-the-art results in the Word-in-Context,
Word Sense Induction, and Lexical Semantic
Change task.

2 Background and related work

2.1 Word usage representations
With the advent of Transformers, we have wit-
nessed the emergence of large language models
capable of contextualizing words within diverse
contexts. Unlike static models (Pennington et al.,
2014), we now rely on a multitude of contextu-
alized embeddings per word. On one hand, this
capability represents an invaluable tool for model-
ing lexical semantics (Petersen and Potts, 2023), as
distances between embeddings have proven to be
excellent discriminators of word meaning. On the
other hand, it poses interpretability challenges, as
embeddings tend to represent contextual variance
rather than lexicographic senses (Kutuzov et al.,
2022). Further challenges arise from the broad and
heterogeneous distribution of semantic structure
across embedding dimensions (Senel et al., 2018).

Lexical substitutes are often employed as alter-
native representations to raw embeddings (Alagic
et al., 2018). These representations consist of
sets of automatically generated replacements for
specific occurrences of words in-context. Unlike
embeddings, lexical substitutes can be directly in-
spected to infer word meaning. However, the in-
terpretation process requires more time and effort
compared to the conventional practice of consult-
ing a dictionary for satisfying meaning definitions.
Additionally, interpreting the meaning of a word
remains challenging, as generated substitutes can
include stopwords and partial word pieces (Card,
2023), equally plausible alternatives with different
meanings (Chiang and Lee, 2023), and even con-
tradictory replacements (Justeson and Katz, 1991).

With the recent advancements in text generation,
automatically generated sense definitions become
a viable approach for word usage representation,
as these definitions offer descriptive interpretations
of words in-context, providing a valuable tool with
a level of interpretability comparable to manually
curated vocabularies (Gardner et al., 2022).

2.2 Generating word sense definitions

Generating word sense definitions has initially
gained attention to enhance the interpretability of
static embeddings (Mickus et al., 2022; Gadetsky
et al., 2018). Originally, the task involved gener-
ating a natural language definition given a single
embedding of a target word (Noraset et al., 2017).
However, since words can carry multiple mean-
ings, advancements in contextualized modeling
have shifted the focus to the generation of appropri-
ate sense definitions for words in context (Zhang
et al., 2022; Huang et al., 2021; Mickus et al., 2019;
Ishiwatari et al., 2019).

Generated definitions are useful in a multitude
of applications such as the generation of lexico-
graphic resources for low-resource languages (Bear
and Cook, 2021), explaining register- or domain-
specific vocabulary (Ni and Wang, 2017; August
et al., 2022), or language learning scenarios (Zhang
et al., 2023; Kong et al., 2022; Yuan et al., 2022).

Early works use sequence-to-sequence models
for definition modeling (Ni and Wang, 2017; Gadet-
sky et al., 2018; Mickus et al., 2019), followed by
more recent studies utilizing pretrained language
models such as BART (Bevilacqua et al., 2020;
Segonne and Mickus, 2023; Lewis et al., 2020) and
T5 (Huang et al., 2021; Tseng et al., 2023; Raffel
et al., 2020).

More recently, Giulianelli et al. (2023) has pro-
posed using generated definitions as interpretable
word usage representation for the analysis of lexical
semantic change and fine-tuned a new model called
Flan-T5-Definition based on Flan-T5 (Chung
et al., 2024). Inspired by this work, we follow the
idea that definitions can be used as interpretable
representations and also position our work with
a focus on modeling word meaning and meaning
change. Inspired by Bevilacqua et al. (2020), we
encode definitions as sentence embeddings. How-
ever, we model the meaning of words in-context
with a single sense definition rather than a set.
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Figure 1: LlamaDictionary is a Llama chat model fine-tuned with lexicographic resources to generate a sense
definition from an input word usage.

3 Automatic definition generation

In this work, we fine-tuned two popular open-
source generative models through instruction tun-
ing, namely Llama2chat1 and Llama3instruct2.
We specifically chose to fine-tune chat models
because they were already optimized to gen-
erate responses adhering to specific instruction
prompts. We call the models resulting from fine-
tuning LlamaDictionary. In the following, we re-
fer to Llama2Dictionary and Llama3Dictionary
for the fine-tuned versions of Llama2chat and
Llama3instruct, respectively.

Using Llama2Dictionary and Llama3-
Dictionary, we complement the existing
Flan-T5-Definition 3B model by Giulianelli
et al. (2023) with two larger Llama 7B and 8B,
chat-based versions.

3.1 Data

We fine-tune Llama2chat and Llama3instruct on
the same English data used by Giulianelli et al.
(2023). The data consists of word usages ⟨w, e, d⟩,
where w represents a target word, e denotes an
example context where w occurs, and d is a human-
curated definition for the lexicographic sense of the
word w in the example e. The considered word
usages span three benchmarks previously extracted
from the Oxford English Dictionary (Gadetsky
et al., 2018), WordNet (Ishiwatari et al., 2019),
and Wiktionary (Mickus et al., 2022), respectively.

1meta-llama/Llama-2-7b-chat-hf
2meta-llama/Meta-Llama-3-8B-Instruct

However, while Giulianelli et al. (2023) use all the
Train-Dev-Test partitions during fine-tuning, we
use only Train and Dev and reserve Test for evalua-
tion purposes. Table 1 reports the main statistics of
these benchmarks.

Oxford WordNet Wiktionary Tot.
Train # words

# definitions
# def. per word

33,128
97,802

2.95

7,935
13,854

1.75

18,030
31,142

1.73

45,070
142,798

3.17
Dev # words

# definitions
# def. per word

8,863
12,222

1.38

998
1,748
1.75

2,561
4,525
1.77

11,666
18,495

1.59
Test # words

# definitions
# def. per word

8,848
12,228

1.38

1,001
1,774
1.77

2,361
4,436
1.69

11,718
18,438

1.57

Table 1: Train-Dev-Test partitions of the considered
benchmarks. For each partition, we report the number
of unique words, the number of unique definitions, and
the average number of definitions per target word.

3.2 Fine-tuning
Llama2chat and Llama3instruct with 7 and 8 bil-
lion parameters, respectively, are large, decoder-
only architectures trained on extensive amounts of
data, followed by supervised fine-tuning through
instruction tuning (Zhang et al., 2024) and iterative
refinement using reinforcement learning from hu-
man feedback (Kaufmann et al., 2024). We further
fine-tuned these models through instruction tuning
for sense definition generations.

Given the high costs associated with fine-tuning
large language models, we employed a parameter-
efficient fine-tuning (Han et al., 2024) that enables
efficient adaptation by only fine-tuning a small
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number of additional model parameters instead
of the entire model. This approach significantly
reduces computational and storage costs. Specifi-
cally, we fine-tuned using Low-Rank Adaptation
(LoRA, Hu et al., 2021). 3 Experimented hyper-
parameters are reported in Table 10 and 11.

For fine-tuning, we used cross-entropy loss cal-
culated on all tokens over 4 epochs, with a batch
size of 32, a maximum sequence length of 512,
and packing to train efficiently on multiple samples
simultaneously (Kosec et al., 2021).

In line with Huerta-Enochian (2024), who
demonstrated that prompt loss can be safely ig-
nored for many datasets, we observed lower prelim-
inary results in the evaluation tasks for models cho-
sen based on validation performance. Therefore,
we selected the final model based on the checkpoint
at the last training epoch.

3.3 Instruction-tuning

We fine-tuned Llama2chat and Llama3instruct us-
ing the prompt shown in Figure 1. For each word
usage ⟨w, e, d⟩, we substituted TARGET with the ac-
tual target w, and EXAMPLE and DEFINITION with
the example e and the definition d, respectively.

For our prompt, we drew inspiration from
prompts used in previous work, specifically, we
employed a prompt similar to those used by Giu-
lianelli et al. (2023). In line with Li et al. (2023),
we incorporated an emotional stimulus (in Fig-
ure 1, Please) to enhance the performance. Addi-
tionally, similarly to Kocoń et al. (2023); Laskar
et al. (2023); Periti et al. (2024b), we structured
our prompt in a format that facilitates parsing and
comprehension.

4 Evaluation setup

Our evaluation is structured into two parts. First,
we assess the quality of definitions generated
by LlamaDictionary and Flan-T5-Definition
through the Definition Generation (DG) task. For
this evaluation, we directly utilize the generated
sense definitions.

Next, we explore their utility in three popu-
lar Natural Language Processing tasks, namely

3We have also experimented with Quantization com-
bined with LoRA (QLORA, Dettmers et al., 2023) obtain-
ing very similar evaluation results (see Figure 4). These
are omitted due to space restriction but are available in our
Github repository together with all our code, data, and re-
sults. Our final Llama2Dictionary and Llama3Dictionary
models are available on Hugging Face at FrancescoPer-
iti/Llama2Dictionary and FrancescoPeriti/Llama3Dictionary.

Word-in-Context (WiC), Lexical Semantic Change
(LSC), and Word Sense Induction (WSI). Specifi-
cally, instead of using standard token embeddings,
we view sense definitions as intermediate sense
representations and encode these as embeddings
through a pretrained sequence embedding model.
Formally, this means that: given an occurrence
of a word w, we employ a generative model g
(i.e., LlamaDictionary or Flan-T5-Definition)
to generate a definition d, which we subsequently
encode as a vector v using a sentence embedding
model m, i.e., v = m(d) = m(g(w)).

Following Giulianelli et al. (2023), we used
the all-distilroberta-v1 sentence SBERT
model (Reimers and Gurevych, 2019) to encode
definitions as contextualized sentence embeddings4.
To validate our results, we also evaluate twelve
other SBERT models which show comparable
results. We present these results for the base
WiC tasks and proceed with a single model (i.e.,
all-distilroberta-v1) for further evaluation on
WSI and LSC. Full results for WSI and LSC are
available online and are summarized in Figure 5 in
the Appendix. Furthermore, we extend our eval-
uation by also considering generated definitions
by the Flan-T5-Definition model recently fine-
tuned by Giulianelli et al. (2023)5 as this model
has not been evaluated on the WiC, WSI, and LSC
tasks previously.

4.1 Definition generation (DG)

Given a target word w and an example usage
e, the task is to generate a natural language
definition d that is grammatical, fluent, and
faithful to the meaning of the target word w
as used in the example usage e (Giulianelli
et al., 2023).

We assess the models in generating sense defini-
tions for both familiar (Seen during training) and
unfamiliar (Unseen) domains and styles.

For Seen evaluation, we use the WordNet, Ox-
ford, and Wiktionary Test sets (see Table 1).

For Unseen evaluation, we consider the Test sets
of two additional benchmarks comprising word
usages from The Urban Dictionary (the largest on-
line slang dictionary) (Ni and Wang, 2017) and

4A closely related work was published after the completion
of our study (Fedorova et al., 2024). Future work should
consider comparing our findings with their recent contribution.

5ltg/flan-t5-definition-en-xl
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Target w Example e Definition d LlamaDictionary
revitalize This food revitalized the patient Restore strength Give new life or energy to

glove
Maxwell gloved his hand so that he
would n’t leave fingerprints ,
then pulled the trigger

To put a glove or gloves on .
Wear a glove to protect the hand
when performing an activity

Table 2: Examples of pertinent definitions generated by LlamaDictionary for two word usages. The generated
definitions are unfairly penalized by standard evaluation metrics.

Wikipedia (with rare words and phrases) (Ishi-
watari et al., 2019). The Train set of these bench-
marks were not considered during training.

Urban Wikipedia
Test # words

# definitions
# def. per word

25,909
34,974

1.35

56,008
8,193
6.84

Table 3: Test partitions of Unseen DG benchmarks with
the number of unique words and definitions, and the
average number of definitions per target word.

The decision to exclude Urban and Wikipedia
from training was threefold. Firstly, their exclusion
broadens the scope of our evaluation by consider-
ing familiar and unfamiliar usages. Secondly, it
enabled a direct comparison with Flan-T5-Def-
inition, a T5-based (Raffel et al., 2020) model.
Finally, we refrained from fine-tuning the model
with bad, slang, or offensive words, and with nu-
merous erroneous entries (e.g., definitions compris-
ing single Arabic numerals or part-of-speech tags)
in Urban (Huang et al., 2021). Table 3 reports the
main statistics of these benchmarks.

For comparison with previous work, we eval-
uated LlamaDictionary and Flan-T5-Defini-
tion by considering standard Natural Language
Generation metrics such as BLEU (Papineni
et al., 2002), NIST (Doddington, 2002), Sacre-
BLEU (Post, 2018), ROUGE-L (Lin, 2004), ME-
TEOR (Banerjee and Lavie, 2005), and EXACT
MATCH. Since some pertinent definitions may be
unfairly penalized due to missing lexical overlap
(see Table 2), we follow Giulianelli et al. (2023)
and consider BERT-F1 Score (Zhang et al., 2020),
which represents a semantic and thus valuable met-
ric for this task.

4.2 Word-in-Context (WiC)

Given a target word w and two contexts c1
and c2 where w occurs, the task is to identify
whether the occurrences of w in c1 and c2
correspond to the same meaning or not (Pile-
hvar and Camacho-Collados, 2019).

We evaluate the utility of sense definitions us-
ing sequence embeddings v = m(g(w)) on the
original WiC benchmark (Pilehvar and Camacho-
Collados, 2019). We refrain from using the Train
set and instead generate two embeddings, v, for
each context pair (one for c1 and one for c2) within
the Dev and Test partitions (see Table 4). To ad-
dress the WiC task, we then train a threshold-based
classifier, for each tested model, using the cosine
distance between the two embeddings of each pair
in the Dev set. The training process involves select-
ing the threshold that maximizes the performance
on the Dev set. Finally, we apply this classifier
to conduct our evaluation over the Test set. We
utilize accuracy as the assessment metric for com-
parison with previous work (Pilehvar and Camacho-
Collados, 2019).

WiC
Partition
# pairs
# words

Dev
638
599

Test
1,400
1,184

Table 4: Test-Dev partitions for Word-in-Context.

4.3 Lexical Semantic Change (LSC)

Given a set of target words w and two cor-
pora C1 and C2 of different time periods,
the task is to rank the targets according to
their degree of lexical semantic changea be-
tween C1 and C2 (Schlechtweg et al., 2020).

a “Innovations which change the lexical mean-
ing rather than the grammatical function of a
form” (Bloomfield, 1933)
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We evaluate our approach on the original
SemEval-English LSC benchmark (Schlechtweg
et al., 2020). The dataset consists of two corpora
and a test set of 46 target words (see Table 5). Train
and Dev sets are not available as the task is set in
an unsupervised scenario. To address the LSC task,
we leverage popular methods generally applied us-
ing word embeddings rather than sentence embed-
dings (Periti and Tahmasebi, 2024). In particular,
we evaluate two different approaches:

Average Pairwise Distance (APD) is defined
as form-based method, meaning that it quantifies
change without modeling the underlying meanings
of the words. Given a word w, APD computes the
degree of change as the average pairwise distance
between the embeddings of w generated for C1 and
C2 (Giulianelli et al., 2020).

Average Pairwise Distance Between Sense Pro-
totypes (APDP) is defined as sense-based method,
meaning that it quantifies change after modeling the
underlying meanings of the words via clustering.
Following previous work (Rother et al., 2020) and
the recent BERTopic pipeline (Grootendorst, 2022),
we consider the HDBSCAN algorithm (McInnes
et al., 2017). Given a word w, APDP computes
the degree of change as the average pairwise dis-
tances between the sense prototypes of w in the
time periods C1 and C2, where sense prototypes
are the set of embeddings obtained by averaging
the embeddings of C1 and C2 in each cluster, re-
spectively (Kashleva et al., 2022).

For comparison with previous work, we utilize
the Spearman rank correlation between gold scores
and predictions as the assessment metric.

Test LSC - WSI
# words
# clusters per word
max # of clusters
min # of clusters

46
9.4
55
1

Table 5: Test set for Lexical Semantic Change and Word
Sense Induction, EN portion of SemEval-2020 Task 1.

4.4 Word Sense Induction (WSI)

Given a set of occurrences for a target word
w, the task is to automatically determine
the different senses of w without relying
on predefined sense inventories (Agirre and
Soroa, 2007).

For simplicity, we follow the recent compari-

son by Periti and Tahmasebi (2024) and perform a
WSI evaluation on the same benchmark used for
the LSC evaluation, as it also includes gold scores
for WSI. Thus, we evaluate the clustering result ob-
tained by using HDBSCAN against labels provided
for clusters in the LSC data.

As assessment metrics, we utilize Rand In-
dex (RI) (Rand, 1971) and its Adjusted version
(ARI) (Hubert and Arabie, 1985) as well as Pu-
rity (Manning, 2009). RI/ARI evaluate the similar-
ity among two clustering results. ARI can yield low
scores when a clustering result contains numerous
small, yet coherent clusters. This does not necessar-
ily indicate poor clustering quality, especially when
the clusters are semantically meaningful. PUR as-
signs each cluster to the class that is most frequent
in the cluster, measuring the accuracy of this assign-
ment by counting the relative number of correctly
assigned elements.

5 Evaluation results

In our evaluation, we used Llama2Dictionary and
Llama3Dictionary with the parameters reported
in Table 11 and Flan-T5-Definition. See Ta-
ble 14 for specific parameters for each task.

5.1 Definition Generation (DG)

For the Seen benchmark evaluation, we consider
the average performance over WordNet and Ox-
ford (see Table 6). Note that, for Wiktionary,
we do not compare with Flan-T5-Definition as
the entire benchmark (i.e., Train-Dev-Test) has
been used for training. Further details and compar-
isons with state-of-the-art methods across multiple
benchmarks are reported in Table 15.

For Flan-T5-Definition, we report the orig-
inal score presented by Giulianelli et al. (2023)
(reported) and the score we obtain in our evaluation
(observed). We believe that slight differences, where
the observed results consistently under-perform com-
pared to the reported results, are likely due to differ-
ent parameter setting (e.g., temperature or greedy
decoding). Nonetheless, the results are very simi-
lar.

Compared to Flan-T5-Definition observed,
LlamaDictionary obtains higher results in all con-
sidered metrics. In addition, for reported, we achieve
higher results for all metrics except BERT-F1,
where our result is comparable (0.889 compared
to 0.909). This is a interesting result considering
that Flan-T5-Definition has been fine-tuned on
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more data than LlamaDictionary, i.e., all Train-
Dev-Test sets of Wiktionary.

For the Unseen benchmarks, previous works
have typically also used the data during training
and thus are not fairly comparable. We report these
results in Table 11. Therefore we can only eval-
uate Llama2Dictionary and Llama3Dictionary
and find that the latter consistently outperforms the
former, unlike for the Seen benchmarks where the
models were more even. This can be attributed to
the fact that the Llama3-based model is larger than
Llama2 in terms of parameters and training data.

For the Unseen benchmarks, the BERT-F1
scores, that rely on semantic similarity, are compa-
rable to the Seen benchmarks. For the remaining
scores that rely on lexical overlap, the results for
the Unseen benchmark are consistently and sig-
nificantly lower. We believe that this drop stems
both from the issues discussed in Table 2 as well
as the fact that the base Llama chat models, which
have undergone safety tuning, are likely restricted
from generating foul language, malicious and toxic
content that can be found in the Urban dictionary.
Compared to the Seen benchmarks, the Unseen
benchmarks also contain multi-word phrases for
which the models have not been trained.

WordNet - Oxford Seen Urban - Wikipedia Unseen
Llama2Dict.
Llama3Dict.

Flan-T5-D. rep.

Flan-T5-D. obs.

Llama2Dict.
Llama3Dict.

-
Flan-T5-D. obs.

ROUGE-L
.481
.400

.454

.364
.161
.184

-
.173

BLEU
.402
.283

.257

.266
.089
.100

-
.095

BERT-F1
.880
.889

.909

.885
.764
.849

-
.849

NIST
.938
.956

-
.828

.346

.405
-

.339

SACREBLEU
22.356
21.975

-
18.851

4.823
5.484

-
5.186

METEOR
.370
.426

-
.333

.151

.184
-

.165

EX. MATCH
50.161
50.093

-
.110

.000

.000
-

.000

Table 6: Average results for the Definition Generation
task. The best results are highlighted in bold.

5.2 Word-in-Context (WiC)
Our results are reported in Table 7. Result using
different SBERT models are summarized in Fig-
ure 2. Notably, we achieve a new state-of-the-art
performance of .731 for the WiC task leveraging
the definitions generated by Flan-T5-Definition
+ SBERT. The result by Bevilacqua et al. (2020)
is particularly interesting for comparison, as it has
also been obtained by relying on generated defini-
tions. However, unlike our approach, they use mul-
tiple definitions per word usage. In contrast, we use

Figure 2: Left: Accuracy distribution on the base WiC
task, using thirteen SBERT models. Right: ARI, PUR,
and RI distribution on the WSI task, by considering our
settings for the LSC task.

a single definition per word usage, achieving higher
results by employing both LlamaDictionary and
Flan-T5-Definition.

As the WiC task requires distinguishing un-
derlying meaning of word occurrences, the high
performance of both Flan-T5-Definition and
LlamaDictionary indicates that the use of defi-
nitions is a reasonable approach to capturing the
intended sense while offering interpretability.

WiC Accuracy
Levine et al. (2020) .721

Bevilacqua et al. (2020) .711
Peters et al. (2019) .709

Chang and Chen (2019) .692
Flan-T5-Definition + SBERT .731
Llama2Dictionary + SBERT .729
Llama3Dictionary + SBERT .705

Table 7: Evaluation results for the Word-in-Context
task. The best result is highlighted in bold.

5.3 Lexical Semantic Change (LSC)

During our evaluation, we noticed that some of the
annotated sentences present in the LSC benchmark
were too long to be processed by our generative
models (e.g., long word usages containing multi-
ple sentences). This prompted us to evaluate the
results by considering different sentence lengths,
specifically 50, 100, 150 and 200 characters as well
as the full sentences length. Our results are re-
ported in Figure 3 and are consistently statistically
significant. However, since we needed to discard
up to 30% of sentences for LlamaDictionary, we
proceeded with our experiments using up to 200
characters from each sentence.

Recent findings show that form-based ap-

14014



Figure 3: Avg. Spearman correlation by addressing LSC
on different settings: different sentence length (left) and
short word removal (rigth).

proaches typically outperform sense-based ap-
proaches for the LSC task (Periti et al., 2024a)
and that training models on WiC tasks enhances
the modeling of lexical semantics (Arefyev et al.,
2021). Similarly, we obtain higher performance for
the form-based approach (APD, i.e., .662 – .682)
than the sense-based one (APDP, i.e., .575 – .667),
see Table 8. Although our results are lower than
the established WiC-trained baselines, they are,
on average, higher than those obtained using pre-
trained models (see Periti and Montanelli (2024)
for an extensive overview). Additionally, we also
note that processing the generated definitions by
removing short words with fewer than 2, 3 or 4
characters, in addition to punctuation, consistently
boosts the performance of Flan-T5-Definition,
reaching correlations of .755, .762 and .827, re-
spectively (see Figure 3). However, we did not
observe the same boost for definitions generated
by LlamaDictionary. After reviewing a small set
of generated definitions, we hypothesize that this
is due to the length of definitions generated by the
models, with LlamaDictionary trained to provide
concise definitions (See Figure 1).

When compared to state-of-the-art form-based
approaches, our approach achieves medium-strong
correlation results but does not outperform the con-
sidered baselines. When we consider APDP, the
Llama2Dictionary model obtains the highest re-
sult, achieving a new state-of-the-art of .667 for
interpretable LSC. This aligns with Giulianelli et al.
(2023), who observe that the clusters of definitions
have a lower intra-cluster dispersion compared to
clusters using token and sentence embeddings.

5.4 Word Sense Induction (WSI)

Our WSI evaluation relies on a recently devel-
oped benchmark originally designed for LSC. This
benchmark contains cluster labels derived from
manually annotated judgments of words in-context.
These can therefore be considered as silver label
data, rather than gold label data, as the clusters

LSC method Spearman
WiC-trained Aida and Bollegala (2024) form-based .774

WiC-trained Periti and Tahmasebi (2024) form-based .886
Keidar et al. (2022) form-based .489

Giulianelli et al. (2022) form-based .514
Flan-T5-Definition + SBERT form-based .682
Llama2Dictionary + SBERT form-based .667
Llama3Dictionary + SBERT form-based .662

WiC-trained Periti and Tahmasebi (2024) sense-based .652
Rother et al. (2020) sense-based .512

Montariol et al. (2021) sense-based .456
Flan-T5-Definition + SBERT sense-based .575
Llama2Dictionary + SBERT sense-based .667
Llama3Dictionary + SBERT sense-based .587

Table 8: Evaluation results for the Lexical Semantic
Change task. The best result is highlighted in bold.
Results are reported using both form-based and sense-
based methods.

themselves have not been manually labeled.
Our results are reported in Table 9. We ob-

serve the highest results for the WiC-trained XL-
LEXEME model (Cassotti et al., 2023), and GPT-4,
were the training data is unknown and thus could in-
clude both WiC data and the WSI data used in this
evaluation (Balloccu et al., 2024). When compared
to standard pretrained models (i.e., BERT, mBERT,
XLM-R), our results are consistently higher.

In line with Periti and Tahmasebi (2024), we
observe low results in terms of ARI. We believe
this stems from the quality of the original clusters
to which we are comparing. The more flexible RI
metric in Table 9 shows results comparable to the
PUR scores.

In terms of the resulting clusters, we obtain an
average number of clusters of 3.91 compared to the
9.61 of the original benchmark. This is in line with
our intuition that definitions can be considered as
prototypes of multiple word usages.

model ARI PUR RI

Results from
Periti and Tahmasebi (2024)

BERT
mBERT
XLM-R

XL-LEXEME
GPT-4

.136

.067

.068

.273

.340

.700

.644

.737

.834

.877

.629

.526

.582

.757

.802
Flan-T5-Definition
Llama2Dictionary
Llama3Dictionary

.088

.144

.073

.832

.835

.832

.713

.702

.699

Table 9: Evaluation results for the Word Sense Induc-
tion task. The best result is highlighted in bold.

6 Conclusion

Inspired by recent advancements in text genera-
tion, in this work, we investigated the potential
of fine-tuned large language models to generate

14015



sense definitions for words in-context. Specifically,
we fine-tuned two new Llama chat based models,
called LlamaDictionary, and assessed their per-
formance along with an existing Flan-T5-Defini-
tion model on the Definition Generation task. Next,
we explored their utility for modeling word mean-
ing by addressing lexical semantic tasks such as
Word-In-Context, Word Sense Induction, and Lex-
ical Semantic Change. In our experiments, we
considered the generated definitions as interme-
diate representations, passed through a sentence
embedding model.

Our results consistently show that we can use
generated definitions to explicitly model the mean-
ing of word usages through interpretable defini-
tions. In all tasks, the use of sentence embed-
dings for generated definitions outperformed the
use of standard token embeddings for word occur-
rences, setting new state-of-the-art results. Across
tasks, we find that the use of the larger 7B and 8B
LlamaDictionary models compared to the smaller
3B T5-based model leads to slightly higher re-
sults in the Definition Generation task, while being
equally strong on the lexical semantics tasks. An
extension of the LlamaDictionary models is to
fine-tune them on all the benchmarks that have
been used for the Flan-T5-Definition model, as
well to fine-tune the models further on generated
usage sentences (Malkin et al., 2021; Ma et al.,
2024).

Our evaluation using automatically generated
sense definitions in this paper paves the way for
future advancements in modeling lexical semantics.
For example, by offering an automatic labeling
of senses, we can support the creation of lexico-
graphic resources for all languages, including low-
resource languages (Kong et al., 2022), providing
a way to better know what change our words have
experienced over time.
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Limitations

In our work, we consider only English data as there
are few available benchmarks, neither for training
nor comparison on other languages. Given the
necessary resources, we believe our approach to be
language-agnostic and readily applicable to other
languages.

We limited our experiments to
LlamaDictionary and Flan-T5-Definition due
to the cost and required computational resources
for fine-tuning other large language models. We
indeed exceeded the allocated resources on our
National Super-computing during our experiments.
Such large-scale models and experimental data
must be approached cautiously as they will
otherwise generate enormous computational costs
(both in terms of monetary and environmental
costs).

A further limitation of our models arises from
the fact that existing Definition Generation bench-
marks occasionally include multiple definitions for
the same word meanings (e.g., Table 13). While
this may serve as a form of regularization for train-
ing models, we believe that it may have influenced
the uniformity in style and wording of our mod-
els. Unfortunately, statistics for these issues are
non-existent. We thus advocate for further refine-
ment to ensure consistency and coherence across
definitions. We believe that, ideally, maximizing
uniformity in definitions is desirable to develop
models that offer consistent responses for similar
word usages.
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A Fine-tuning

In our experiments, we conducted multiple rounds
of fine-tuning, systematically testing various pa-
rameters. Specifically, we detail these configura-
tions in Table 10. In line with Huerta-Enochian
(2024), who recently demonstrated that prompt
loss can be safely ignored for many datasets, we
observed lower preliminary results in the evalua-
tion tasks for models chosen based on validation
performance. Therefore, we selected the final mod-
els (see Table 11) based on the checkpoint from the
last training epoch that had the best performance
on the Definition Generation task.

Parameter Experimented values

Model
meta-llama/Meta-Llama-3-8B-Instruct,
meta-llama/Llama-2-7b-chat-hf

GPU A100:fat (80 GB)
Hours 7-8
PEFT LoRA, QLoRA

Dropout 0.05, 0.1, 0.2

Weight decay 0.001, 0.0001

Learning rate 1e-4, 1e-5

Lora ranks 8, 32, 64, 128, 256, 512, 1024
Lora alpha 16, 64, 256, 512, 1024, 2048

Warmup ratio 0.03, 0.05
Eval steps 250

Train epochs 4, 5, 10

Max seq. length 512
Batch size 32
Optimizer Adam

LoRA target modules
q_proj, k_proj, v_proj,
o_proj, gate_proj, up_proj,
down_proj, lm_head

Table 10: Settings and parameters used during training.
Parameters shown in small font represent preliminary
experiments that were not further evaluated.

Final setting Llama2Dictionary Llama3Dictionary
GPU A100:fat (80 GB) A100:fat (80 GB)

Hours 7-8 8-9
PEFT LoRA LoRA

Dropout 0.1 0.05
Weight decay 0.001 0.001
Learning rate 1e-4 1e-4

Lora ranks 1024 512
Lora alpha 2048 1024

Warmup ratio 0.05 0.05
Eval steps epochs epochs

Train epochs 4 4
Max seq. length 512 512

Batch size 32 32
Optimizer Adam Adam

LoRA target modules
q_proj, k_proj, v_proj,
o_proj, gate_proj, up_proj,
down_proj, lm_head

q_proj, k_proj, v_proj,
o_proj, gate_proj, up_proj,
down_proj, lm_head

Table 11: Parameters of our final models. Our code will
be publicly available for further details. For finetuning,
we rely on the transformers library (Wolf et al., 2020).

A.1 Lora rank-alpha

We conduct fine-tuning using LoRA, (Hu et al.,
2021) and QLORA, (Dettmers et al., 2023) obtain-
ing very similar evaluation results. Drawing from
insights from prior research (Munoz et al., 2024)
as well recent online discussions, we adopted a
strategy where the LoRA alpha α was set to dou-
ble the LoRA rank r. In our experiments for the
Definition Generation task, larger ranks resulted
in higher performance on WordNet and slightly
higher performance on Oxford benchmarks. How-
ever, no improvement was noted for Wiktionary
(see Figure 4).

B SBERT models

In our experiments, we made an effort to evalu-
ate all the Bi-Encoder SBERT models available at
https://sbert.net/ (see Table 12). This thor-
ough assessment ensures that our findings are ro-
bust and accurate. While we acknowledge that
other models may exist, the evaluation results we
present remain valuable and consistent across the
models tested, contributing to the broader perspec-
tive presented in the paper.

Further parameters are related to our procedure
for addressing the Word-in-Context, Word Sense
Induction, and Lexical Semantic Change tasks. We
report these parameters in Table 14.

SBERT models
all-mpnet-base-v2

multi-qa-mpnet-base-dot-v1

all-distilroberta-v1
all-MiniLM-L12-v2

multi-qa-distilbert-cos-v1

all-MiniLM-L6-v2

multi-qa-MiniLM-L6-cos-v1

paraphrase-multilingual-mpnet-base-v2

paraphrase-albert-small-v2

paraphrase-multilingual-MiniLM-L12-v2

paraphrase-MiniLM-L3-v2

distiluse-base-multilingual-cased-v1

distiluse-base-multilingual-cased-v2

Table 12: Experimented SBERT models. We report in
bold the model used for the results obtained in the main
paper. We use this model as it was used in previous
experiments by Giulianelli et al. (2023).

C Definition Generation

In our work, we extensively evaluated our
LlamaDictionary models along with the
Flan-T5-Definition models by Giulianelli et al.
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(2023), setting new state-of-the-art results on
the Definition Generation tasks across multiple
benchmarks. In Table 15, we provide a full
comparison, including individual scores for each
benchmark and the measures considered.
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Figure 4: Average performance of trained models using LoRA (Hu et al., 2021) and QLoRA (Dettmers et al.,
2023) with parameters from Table 10. We conducted experiments with LoRA alpha α set to double the rank r and
observed that larger ranks resulted in higher performance on WordNet and slightly higher performance on Oxford
benchmarks. However, no improvement was noted for Wiktionary. We report BERT-F1 and BLEU as examples.
Similar trends were observed for other performance metrics.
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Benchmark Target w Example e Definition e

WordNet accuracy He was beginning to doubt the accuracy of his compass The quality of being near
to the true value

Oxford accuracy However, these studies have not generally had enough
participants to provide precise estimates of accuracy.

The quality or state of be-
ing correct or precise

Wiktionary accuracy The efficiency of the instrument will also depend upon the
accuracy with which the piston fits the bottom and sides
of the barrel. When the piston is depressed to the bottom,
it is considered in theory to be in absolute contact, so as to
exclude every particle of air from the space between it and
the bottom.

The state of being accu-
rate; being free from mis-
takes, this exemption aris-
ing from carefulness; ex-
actness; correctness

Oxford yesterday Yesterday the weather was beautiful On the day preceding to-
day

Oxford yesterday It was in yesterday ’s newspapers The day immediately be-
fore today

Oxford yesterday I am doing a research paper on women ’s voting rights ;
yesterday and today

On the day before today

Oxford yesterday On a day like today after yesterday , i tend to reflect ,
internalize , and re-address the balance

The day before today

Table 13: Example of correct but inconsistent definitions from the considered benchmarks. It is unnecessary to
train the model to provide different answers. Ideally, a single definition should be used for different examples of the
considered target.

Evaluation tasks
DG WiC WSI LSC

gen. model
LlamaDictionary,

Flan-T5-Definition
LlamaDictionary,

Flan-T5-Definition
LlamaDictionary,

Flan-T5-Definition
LlamaDictionary,

Flan-T5-Definition
temperature 0.0 0.0 0.0 0.0
enc. model roberta-large all-distilroberta-v1 all-distilroberta-v1 all-distilroberta-v1

metric BERTScore cosine cosine
cosine (APD)

canberra (APDP) following
Periti et al.; Periti and Tahmasebi

clustering - - HDBSCAN HDBSCAN
HDBSCAN-allow_single_cluster - - True True

HDBSCAN-min_cluster_size - - 2 2
HDBSCAN-cluster_selection_method - - leaf leaf

Table 14: Models and parameters used for addressing the DG, WIC, WSI, and LSC tasks. We rely on the HDBSCAN
implementation of the scikit-learn library (Pedregosa et al., 2011).

Figure 5: Boxplots reporting the distribution of Word
Sense Induction (WSI) and Lexical Semantic Change
(LSC) values, using thirteen SBERT models across all
settings considered in Section 5.3 and 5.4.
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ROUGE-L BLEU BERT-F1 NIST SACREBLEU METEOR EXACT MATCH
WordNet - seen

Noraset et al. (2017) - .236∗ - .497∗ - - -
Ni and Wang (2017) - .248∗ - .403∗ - - -

Gadetsky et al. (2018) - .237∗ - .443∗ - - -
Ishiwatari et al. (2019) - .248 - .435∗ - - -

Huang et al. (2021) - .327 - .646 - - -
Zhang et al. (2022) - .320 - .747 - - -

Giulianelli et al. (2023) Reported .522 .328 .921 - - - -
Giulianelli et al. (2023) Observed .405 .320 .893 .907 23.302 .374 .164

Llama2chat .564 .513 .920 1.391 41.096 .536 .373
Llama3Instruct .435 .339 .893 1.012 27.400 .480 .131

Oxford - seen

Noraset et al. (2017) - .149∗ - .327∗ - - -
Ni and Wang (2017) - .176∗ - .313∗ - - -

Gadetsky et al. (2018) - .120 - .358∗ - - -
Ishiwatari et al. (2019) - .185 - .382∗ - - -

Huang et al. (2021) - .265 - .742 - - -
Bevilacqua et al. (2020) .294 .088 .768 - - .135 -

Zhang et al. (2022) - .271 - .794 - - -
Giulianelli et al. (2023) Reported .387 .186 .897 - - - -
Giulianelli et al. (2023) Observed .324 .213 .878 .749 14.400 .292 .057

Llama2chat .398 .291 .840 .969 21.410 .367 .158
Llama3Instruct .365 .228 .885 .900 16.550 .373 .055

Wiktionary - seen

Llama2chat .222 .131 .666 .408 6.963 .183 .025
Llama3Instruct .267 .156 .863 .517 8.100 .232 .034

Urban - unseen

Noraset et al. (2017) - seen - .515∗ - .104∗ - - -
Ni and Wang (2017) - seen - .899∗ - .174∗ - - -

Gadetsky et al. (2018) - seen - .088∗ - .194∗ - - -
Ishiwatari et al. (2019) - seen - .105 - .192∗ - - -

Huang et al. (2021) - seen - .177 - .355 - - -
Zhang et al. (2022) - seen - .194 - .410 - - -

Giulianelli et al. (2023) - unseen Observed .106 .053 .835 .167 2.160 .068 .001
Llama2chat - unseen .110 .055 .812 .170 2.247 .071 .001

Llama3instruct - unseen .115 .057 .836 .197 2.331 .079 .001

Wikipedia - unseen

Noraset et al. (2017) - seen - .446∗ - .334∗ - - -
Ni and Wang (2017) - seen - .527∗ - .552∗ - - -
Gadetsky et al. (2018)- seen - .450∗ - .331∗ - - -
Ishiwatari et al. (2019)- seen - .538 - .567∗ - - -

Huang et al. (2021)- seen - .556 - .640 - - -
Giulianelli et al. (2023) - unseen Observed .240 .138 .863 .511 8.212 .263 .000

Llama2chat - unseen .213 .123 .716 .523 7.399 .232 .000
Llama3Instruct - unseen .253 .144 .863 .614 8.638 .290 .000

Table 15: Evaluation results for the Definition Generation task. The best result is highlighted in bold. Our model is
trained exclusively on the training set of the WordNet, Oxford, and Wiktionary datasets. Results marked with ∗ are
reported from experiments in Huang et al. (2021).
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