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Abstract

Recent advances in foundation models have em-
phasized the need to align pre-trained models
with specialized domains using small, curated
datasets. Studies on these foundation models
underscore the importance of low-data train-
ing and fine-tuning. This topic, well-known in
natural language processing (NLP), has also
gained increasing attention in the emerging
field of scientific machine learning (SciML).
To address the limitations of low-data train-
ing and fine-tuning, we draw inspiration from
Heavy-Tailed Self-Regularization (HT-SR) the-
ory, analyzing the shape of empirical spectral
densities (ESDs) and revealing an imbalance
in training quality across different model lay-
ers. To mitigate this issue, we adapt a recently
proposed layer-wise learning rate scheduler,
TempBalance, which effectively balances
training quality across layers and enhances
low-data training and fine-tuning for both NLP
and SciML tasks. Notably, TempBalance
demonstrates increasing performance gains as
the amount of available tuning data decreases.
Comparative analyses further highlight the ef-
fectiveness of TempBalance and its adapt-
ability as an “add-on” method for improving
model performance.

1 Introduction

Recent surges in foundation models (FMs) have
stimulated research on aligning pre-trained mod-
els with specialized domains using small-sized
datasets. This “pre-train and fine-tune” paradigm
is prevalent in natural language processing (NLP)
tasks (Wang et al., 2019, 2020; Rajpurkar et al.,
2016; Lu et al., 2022). It is also gaining popu-
larity in other machine learning (ML) fields, such
as scientific machine learning (SciML) (Subrama-
nian et al., 2024; Lanusse et al., 2023; McCabe
et al., 2023; Wu et al., 2023; Hao et al., 2024; Chen
et al., 2024). From a practical perspective, the

*Equal contribution. Work completed during an internship
at Dartmouth College.

challenge of fine-tuning often lies in curating high-
quality datasets (possibly with labeled examples) to
achieve alignment with the new domain. In SciML,
people often use FMs for training on different types
of partial differential equations (PDEs) (McCabe
et al., 2023; Wu et al., 2023; Hao et al., 2024)
and fine-tuning it on a certain domain when acces-
sible scientific data from that domain is limited.
As a concrete example, turbulence simulations at
extremely high Reynolds numbers are computa-
tionally intensive and time-consuming, often lead-
ing to only a few available trajectories. Therefore,
training SciML FMs on trajectories with different
Reynolds numbers and fine-tuning it on trajecto-
ries simulated at extremely high ones is beneficial
for solving the problem of poor training perfor-
mance caused by insufficient data volume. Using
SciML FMs, researchers can train these models
to generalize across a wider range of downstream
tasks, thereby enhancing their applicability and
efficiency in diverse scientific scenarios. Prior re-
search has shown that strong performance can in-
deed be achieved by fine-tuning with a few care-
fully selected examples (Zhou et al., 2023), but
training with low data can still lead to unstable per-
formance (Zhang et al., 2021). Therefore, finding
fine-tuning algorithms that improve performance
in low-data settings, especially few-shot alignment,
becomes crucial.

In this work, we draw inspiration from Heavy-
Tailed Self-Regularization (HT-SR) theory (Mar-
tin and Mahoney, 2021; Martin et al., 2021), to
improve model performance in low-data regimes.
HT-SR theory proposes that well-trained neural net-
work (NN) models exhibit strong correlations in
weights, resulting in a Heavy-Tail (HT) structure
in the Empirical Spectral Density (ESD, usually
represented by a histogram of eigenvalue distribu-
tion) of each layers’ weight matrix. To quantify
the HT structure, we can fit a power law (PL) dis-
tribution to the HT part of the ESD and extract
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Figure 1: Heavy-tail ESD analysis and TempBalance learning rate schedule. To characterize the heavy-tailed
structure of ESD, we fit a power-law exponent PL_Alpha_Hill on the tail part of the ESDs (blue histograms at top
left), shown as the red dashed line on the histogram. Given the imbalanced layer-wise PL_Alpha_Hill (bottom
left), TempBalance assigns lower learning rate to layers with lower PL_Alpha_Hill (more heavy-tailed), and
assign higher learning rate to layers with higher PL_Alpha_Hill (less heavy-tailed). TempBalance aims to
balance the PL_Alpha_Hill distribution across layers in low-data regimes (bottom right).

its exponent, namely PL_Alpha_Hill (see Fig-
ure 1). HT-SR theory suggests that a more HT
ESD (lower PL_Alpha_Hill) represents better
training quality, and vice versa. This estimation
of model and layer quality has been shown to be
effective in recent work on model selection (Mar-
tin et al., 2021; Martin and Mahoney, 2020, 2022;
Yang et al., 2023), layer-wise hyperparameter tun-
ing (Zhou et al., 2024), and pruning of large lan-
guage models (LLMs) (Lu et al., 2024).

Using HT-SR theory, we analyze the limitations
of model training in low-data regimes by measuring
the layer-wise distribution of PL_Alpha_Hill
(discussed in 4.2). Our main finding is that when
we train with sufficient data, PL_Alpha_Hill
becomes more evenly distributed across layers, re-
sulting in better layer-wise balance; in this case,
high performance can be achieved without layer-
specific manipulations. However, when we re-
duce the number of training data samples, test
performance decreases, and the standard devia-
tion (STD) of PL_Alpha_Hill across layers
tends to increase (see Figure 2), indicating that
PL_Alpha_Hill is more unevenly distributed
when training with fewer data, resulting in worse
layer-wise balance. This finding indicates that dif-
ferent layers’ training quality becomes more poorly
aligned as we reduce training data. Therefore,
layer-wise balancing is beneficial to balance under-

trained layers and over-trained layers in low data
regimes.

Motivated by this observation, we incorporate
the variance of PL_Alpha_Hill across layers
with the recently proposed layer-wise learning
rate scheduling algorithm TempBalance (Zhou
et al., 2024), to design a novel method to balance
the training quality across layers. To evaluate its
empirical performance, we use TempBalance
in curated low-data regime in LLM fine-tuning
and SciML tasks. We compare TempBalance
with commonly used baseline methods and demon-
strate that TempBalance not only achieves su-
perior performance in low-data training and fine-
tuning, but also can be used as a plug-in method
on top of existing optimization methods to achieve
even better test performance and stability, such as
SAM (Foret et al., 2021) and AdaFactor (Shazeer
and Stern, 2018). Furthermore, in our analy-
sis, we reveal that TempBalance successfully
balances training quality across all layers dur-
ing training from the HT-SR point of view. We
show that TempBalance balances the training
quality of each layer by reducing the STD of
PL_Alpha_Hill of all layers. We summarize
our contributions as follows 1:

1In order that our results can be reproduced
and extended, we have open-sourced our code.
https://github.com/ZihangHLiu/ModelBalancing.
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• We find that low-data fine-tuning is a cru-
cial training paradigm that can lead to imbal-
anced training quality across different layers
of the model, measured by the large STD of
PL_Alpha_Hill values across layers.

• We focus on low-data training scenarios
and demonstrate the effectiveness of using
TempBalance to balance layers and im-
prove the performance of both NLP and
SciML models. For example, we show that
TempBalance can improve RoBERTa-base
trained on SST2 dataset by at most 9.9% and
increase the test accuracy of LLaMA-7B on
ScienceQA dataset by at most 1.97%, and re-
duce the normalized root-mean-squared-error
(nRMSE) of FNO trained on 2D Compress-
ible Navier-Stokes(CFD)2 dataset by 14.47%.
Furthermore, we show that TempBalance
achieves gradually increased performance
gains as the number of data points decreases.

• In LM fine-tuning tasks, we demonstrate
that TempBalance can achieve better fine-
tuning performance compared to baselines (in-
cluding SAM (Foret et al., 2021) and AdaFac-
tor (Shazeer and Stern, 2018)) and can be used
as an add-on method to combine with these ex-
isting optimization methods to achieve further
improvements.

2 Related Work

Heavy-tailed Phenomenon. Recently, several
studies have observed that a well-trained deep NN
exhibits HT spectra in its weight matrices. Many
papers focus on investigating the cause of the emer-
gence of HT, and they have attributed HT spectra
(or limiting HT distributions of weights) to strong
correlation in weight elements (Martin and Ma-
honey, 2021; Martin et al., 2021), feature learn-
ing (Wang et al., 2024b; Kothapalli et al., 2024),
the Kesten–Goldie mechanism (Hodgkinson and
Mahoney, 2021; Gurbuzbalaban et al., 2021), α-
stable Lévy process (Gurbuzbalaban et al., 2021;
Simsekli et al., 2020), and the maximum-entropy
principle (Xie et al., 2024). More importantly, sev-
eral studies have shown that the heavytailness of the
weight spectra is strongly correlated with the qual-
ity of neural networks. For example, Martin and
Mahoney (2021) proposed HT-SR theory, demon-
strating that the degree of HT in the ESD of each

2CFD means compressible fluid dynamics or, equivalently,
the compressible Navier-Stokes equations.

layer can be used to predict model quality: the heav-
ier the tail of the ESD, the better the quality of the
model. In addition, Simsekli et al. (2020); Hodgkin-
son et al. (2022); Wang et al. (2024a) proved gener-
alization bounds dependent on the HT distributions
in either model weights or the ESDs of the weight
matrices, which are validated through extensive ex-
periments. Motivated by these studies, some efforts
have begun to leverage the degree of HT for model
training (Zhou et al., 2024; Li et al., 2024; Qing
et al., 2024), model selection (Agrawal et al., 2022;
Yang et al., 2023), and model compression (Bars-
bey et al., 2021; Lu et al., 2024), as well as to
enhance model robustness (Nassar et al., 2020).

Resource-constrained Fine-tuning. The pre-
training and fine-tuning paradigm has been a pri-
mary method for adapting foundation models to
downstream tasks for resource-limited users. When
adapting very large models, people often resort
to the Low-Rank Adaptation method (LoRA) (Hu
et al., 2021), which is also considered in this paper.
Our primary focus is on low-data fine-tuning, an
increasingly studied paradigm where the emphasis
is often on careful data selection (Zhou et al., 2023).
Furthermore, when training models in a few-shot
fashion, such as in-context learning (Brown et al.,
2020; Logan IV et al., 2021; Zhang et al., 2022),
data selection plays a crucial role in improving
model performance. Our paper, however, explores
layer-balancing schemes to improve model perfor-
mance.

Data-constrainted Training and Fine-tuning in
SciML. There has been an increasing interest in
the use of ML methods to solve scientific prob-
lems (Raissi et al., 2019; Li et al., 2020; Karni-
adakis et al., 2021; Wang et al., 2023). One rep-
resentative line of work is on neural operators (Li
et al., 2020; Lu et al., 2021; Hao et al., 2023; Raonic
et al., 2024). These operators have demonstrated
their effectiveness in scientific modeling. However,
they require extensive scientific datasets. Generat-
ing high-fidelity numerical datasets is computation-
ally demanding. Hence, to mitigate the costs asso-
ciated with simulation, self-supervised pretraining
has been introduced for operator learning (Chen
et al., 2024). Additionally, in low-data regimes,
researchers also propose to incorporate physical
laws into ML models to facilitate the learning of
the underlying governing equations, often through
soft regularization constraints (Raissi et al., 2019).
Nevertheless, the physics-constrained ML strategy
is limited to specific PDE scenarios (e.g., fixed
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PDE coefficients) (Ye et al., 2024), which poses
challenges to generalization.

3 Methodology

In this section, we first revisit HT-SR theory and
important HT-SR metrics related to model perfor-
mance. Then, we discuss TempBalance (Zhou
et al., 2024), which works well on different model
architectures based on “shape metrics” from HT-
SR Theory.

3.1 HT-SR Theory
HT-SR theory (Martin and Mahoney, 2021) demon-
strates the empirical fact that very well-trained
models tend to exhibit strong correlations in
weights, resulting in HT structure in the ESD of
each layer. Its underlying motivation stems from
random matrix theory and statistical physics, as
well as the observation that HT ESDs are ubiqui-
tous in well-trained NN models.

Obtaining the ESD of Weight Matrices. To
obtain the ESDs of a model, we take an NN with
L layers and the corresponding weight matrices
W1,W2, · · · ,WL. For the i-th layer, we cal-
culate the eigenvalues of its correlation matrix
Xi = W⊤

i Wi. Then, we plot the ESD for that
layer, which is the empirical distribution of these
eigenvalues. During training, the ESD will typ-
ically gradually change to have an HT structure.
There are many metrics that have been proposed to
study the properties of ESDs, among which shape
metrics (metrics that depict the shape of ESD) have
been shown to predict the training quality of each
layer (Yang et al., 2023).

Analyzing ESDs with PL Fitting. To obtain
robust shape metrics that predict layer quality, we
fit a PL distribution to the heavy-tailed part of the
ESD within an interval (λmin, λmax). The PL fit has
the following formula:

p(λ) ∝ λ−α, λmin < λ < λmax. (1)

We then extract its exponent α as an empirical met-
ric. To fit a PL distribution to the ESD, we use
the Hill Estimator (Hill, 1975; Zhou et al., 2024):
for the i-th layer, suppose the weight matrix is Wi

and the correlation matrix W⊤
i Wi has ascending

eigenvalues {λi}ni=1. The Hill estimator calculates
PL_Alpha_Hill as:

PL_Alpha_Hill = 1 +
k

(
∑k

i=1 ln
λn−i+1

λn−k
)
,

(2)

where k is an adjustable parameter.

PL_Alpha_Hill Distribution and Model
Quality. When using PL_Alpha_Hill to an-
alyze model performance, related works suggest
that a layer with smaller PL_Alpha_Hill tends
to be relatively “overtrained” (compared to other
layers in the model), while layers with higher
PL_Alpha_Hill are relatively “undertrained.”
(Zhou et al., 2024) find that in CV tasks, models
trained with optimized hyperparameter scheduling
outperform baseline methods and yield a more con-
centrated PL_Alpha_Hill distribution across
layers, suggesting that a more uniformly distributed
PL_Alpha_Hill has more balanced training
quality across layers, leading to better overall qual-
ity of the model.

3.2 TempBalance Algorithm
Prior research (Martin and Mahoney, 2021) has
shown that temperature-like parameters signifi-
cantly influence the HT structure of individual
layers’ ESDs. Therefore, to balance the shape
of ESDs across layers, we propose to adapt the
TempBalance algorithm, which dynamically
tunes the learning rate on a layer-wise basis, as
the learning rate is the most important temperature
parameter. Smaller learning rates are assigned to
layers with more heavy-tailed ESDs to slow down
the training, while larger learning rates are assigned
to those with more light-tailed ESDs to accelerate
the training. We propose a novel method to map the
PL_Alpha_Hill of each layer to the layer-wise
learning rate. We first calculate their difference
with the mean PL_Alpha_Hill value across all
layers, then rescale the difference using a sigmoid-
like function. Finally, we use the rescaled value as
the exponent to assign the new learning rate ft(i)
for the layer. We refer to this scheduling algorithm
as TB_Sigmoid. The equations are as follows:

ft(i) = ηt · 10ϕ, (3)

ϕ = s ·
(

1

1 + e−τ ·(αi−α)
− 0.5

)
, (4)

where ηt is the base learning rate at step t, αi

is the PL_Alpha_Hill of layer i, and α is
the mean PL_Alpha_Hill across all layers.
Note that s and τ are tunable hyperparameters
in experiments, and we often obtain the best
results when we set τ = 10. In TempBalance,
if a layer’s PL_Alpha_Hill is higher than
the mean, a learning rate higher than the base
learning rate is assigned, and if it is lower, a lower

1314



Test Metric STD of PL_Alpha_Hill

0.0
0050.0

01
0.0

050.0
1
0.0

5 0.1 0.2
5 0.5 1.0

Subsampling Ratio

0.078

0.08

0.082
PL

_A
lp

ha
_H

ill
 S

TD

40
50
60
70
80
90

MNLI

Fewer Training Data

Worse Performance
Higher PL_Alpha_Hill STD

0.0
0050.0

01
0.0

050.0
1
0.0

5 0.1 0.2
5 0.5 1.0

Subsampling Ratio

0.08

0.081

0.082

50

60

70

80

90

Te
st 

M
etr

ic

QNLI

Fewer Training Data

Worse Performance
Higher PL_Alpha_Hill STD

Figure 2: Test performance and STD of PL_Alpha_Hill across all layers of RoBERTa-base model trained on
MNLI (Accuracy↑) and QNLI (Accuracy↑) under different subsampling ratios.

learning rate is assigned. Furthermore, layers with
PL_Alpha_Hill significantly different from
the mean receive more substantial adjustments,
while those closer to the mean receive minimal
changes. The intuition of this scheduling function
is that it not only controls PL_Alpha_Hill by
adjusting the learning rate based on its value, but
also takes the difference of PL_Alpha_Hill
to the mean into account to reduce the variance
of PL_Alpha_Hill across layers by assigning
learning rate changes proportional to the differ-
ence, finally balancing the training quality. In
Table 4, we empirically show that TB_Sigmoid
works better than other layer-wise learning rate
scheduling methods.

Using TempBalance on Transformers. For
Transformer-based architectures, we note each
Transformer block consists of different types of
layers (such as Query, Output, and Down Projec-
tion) with different matrix sizes, resulting in dis-
tinct ESD shapes. Therefore, we explore a more fa-
vorable scheduling method to eliminate unfair com-
parison of PL_Alpha_Hill of different ESD
shapes. We reschedule each blocks’ learning rate
by averaging the PL_Alpha_Hill across all lay-
ers within the block, while in each block we use the
same learning rate across all layers. In Table 5 in
Appendix B, we show that the per-block schedul-
ing method consistently outperforms the per-layer
method in different low-data regimes. Given such
a design, we note that a “layer” used in this work
when discussing Transformer-based models refers
to a Transformer block.

4 Empirical Results

In this section, we employ HT metrics to diagnose
model performance in data-limited regimes and
demonstrate the effectiveness of TempBalance
in addressing data limitation in two fields: NLP and
SciML. In Section 4.1, we describe our experimen-
tal setup. In Section 4.2, we study the correlation
between ESD behaviors and model performance
with limited training data. Then, in Section 4.3,
we evaluate TempBalance in our experimental
setup. In Section 4.4, we compare our methods
with other optimization baselines. We analyze the
experimental results in Section 4.6. Finally, we
perform ablation studies in Section 4.7.

4.1 Experimental Setup

Models and Evaluation. For NLP, we evalu-
ate TempBalance with two widely-used fine-
tuning methods: Full fine-tuning (FT) and LoRA
fine-tuning (Hu et al., 2021) using the Hugging-
face framework (Wolf et al., 2020). We se-
lect two models with distinct sizes: RoBERTa-
base (Liu et al., 2019) and LLaMA2-7b (Tou-
vron et al., 2023). We train the models on sub-
sampled common fine-tuning datasets, including
GLUE (Wang et al., 2019), SuperGLUE (Wang
et al., 2020), SQuAD (Rajpurkar et al., 2016), and
ScienceQA (Lu et al., 2022). We train with sam-
pling ratios ranging from 0.02% to 50% to evaluate
our method. We also evaluate TempBalance on
low-resource datasets from three specialized do-
mains: BioMed, CS, and News. We choose five
datasets from these domains: RCT with 500 sam-
ples (Dernoncourt and Lee, 2017), SciCite (Co-
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Figure 3: (Main Results on LLM Fine-tuning). TempBalance (TB) achieves better test metric (↑) than baseline
Full Fine-tuning (FT) on GLUE tasks, especially if training data is small. 3a compares test performances of baseline
FT (Full Fine-tuning) and TempBalance to train RoBERTa-base model on four larger GLUE datasets (color-coded
as in 3b). 3b shows the trend of performance improvement of TempBalance.

han et al., 2019), ChemProt (Kringelum et al.,
2016), SciERC (Luan et al., 2018), and Hyper-
partisan News (Kiesel et al., 2019), and we train
the RoBERTa-base model with entire datasets. For
SciML, we evaluate TempBalance by training
or fine-tuning neural PDE solvers to learn PDEs.
We use previously studied SciML models, includ-
ing FNO (Li et al., 2020), UNet (Ronneberger
et al., 2015) and DPOT (Hao et al., 2024). We
train the models on simulated solutions of PDEs:
one time-independent PDE (DarcyFlow) and two
time-dependent PDEs (1D and 2D CFD), with a
sampling ratio from 0.6% to 100%.

Baselines. To ensure fair comparison, we use publi-
cally available pre-trained checkpoints for training,
and adopt training configurations from previous
works to reproduce their results. For NLP tasks,
we use FT and LoRA to train the RoBERTa-base
(125M) model, and we use the Adam optimizer
(Kingma and Ba, 2014) with linear learning rate
decay with warmup; for SciML tasks, we refer the
experiments settings from (Takamoto et al., 2022),
use the Adam optimizer and schedule the base
learning rate by step-wise learning rate decay. To
obtain a proper hyperparameter setup, we perform
grid searches on temperature parameters (learning
rate, batch size). For other training configurations,
we refer to existing works (Liu et al., 2019; Hu
et al., 2021; Yang and Osher, 2024), and find the
best hyperparameters. See Appendix C and D for
details on dataset subsampling and hyperparameter
configurations, respectively.

4.2 Diagnosing Layer Imbalance Using HT
Metrics when Training with Limited Data

To analyze the performance of models trained
in low-data settings, we employ HT-SR theory
and examine the distribution of PL_Alpha_Hill
across different layers. Our findings reveal
a strong correlation between the trend of
PL_Alpha_Hill distribution and test perfor-
mance. We use checkpoints of the RoBERTa-
base model trained with subsampling ratios rang-
ing from 0.05% to 100% on MNLI and QNLI
dataset, and we plot the trend of test performance
and block-wise STD of PL_Alpha_Hill, as
shown in Figure 2. As test performance de-
creases with training data samples, we observe
that the STD of PL_Alpha_Hill across layers
increases, suggesting a more unevenly distributed
PL_Alpha_Hill across different layers. Similar
trends are also present in SciML tasks (Figure 6).

Given that PL_Alpha_Hill is a robust pre-
dictor of model and layer quality (Yang et al.,
2023; Zhou et al., 2024), we propose that mod-
els trained on fewer data samples have more un-
evenly distributed layer qualities, this layer-wise
balance becomes worse as we reduce the number
of training data points. Training with more data
points, on the other hand, can make the distribution
of PL_Alpha_Hill more balanced. Therefore,
when training with limited data, layer balancing
is necessary for balancing the training quality of
different layers.
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Figure 4: (Main Results on PDE Learning). TempBalance (TB) achieves lower nRMSE(↓) than baseline
method on CFD tasks, especially if subsampling ratio is small. 4a compares test performances of baseline trained
and TempBalance trained FNO and UNet models on 1D and 2D CFD datasets (color-coded as in 4b). 4b
demonstrates the trend of performance improvement brought by TempBalance.

4.3 Improving Low-Data Training Using
TempBalance

Natural Language Understanding. In Fig-
ure 3, we report the evaluation result of fine-tuning
the RoBERTa-base model with four larger GLUE
datasets. We compare TempBalance (shown as
“TB”) with Full Fine-tuning (shown as “FT”) with
different subsampling ratios. We also show the
results on smaller GLUE tasks in Table 18. We
can see that TempBalance consistently demon-
strates performance improvement in all low-data
regimes. For example, when fine-tuning on the
larger SST2 dataset, TempBalance significantly
outperforms the baseline with 9.9% improvement
in test accuracy with 0.02% subsampling ratio. Re-
garding the smaller RTE dataset with 50% training
data, TempBalance can improve test accuracy
by 3.13%. The detailed results of all GLUE tasks
are shown in Table 17 and 18, in Appendix E.1.
Domain-specific Language Modeling. In Fig-
ure 5, we report the results of TempBalance on
five domain-specific low-resource datasets. We
show that when fine-tuned on these datasets in
low-data settings, TempBalance continues to
yield better test performance than the baseline
method. Specifically on Hyperpartisan News
dataset, TempBalance outperforms baseline FT
by 5.13%. This indicates that TempBalance
brings significant improvement when applying to
specialized language modeling domains with low
resources.
Neural PDE Solver Training. In Figure 4, we
report the results of training the FNO and UNet
model on the 1D and 2D CFD (compressible fluid

Figure 5: Domain Specific Language Modeling.
TempBalance demonstrates significant performance
gain when training the RoBERTa-base model on five
low-resource domain-specific datasets.

dynamics) dataset with a subsampling ratio ranging
from 0.6% to 100%, evaluated by Normalized
Root Mean Squared Error (nRMSE). The detailed
results are shown in Table 19, Appendix E.4. We
find that TempBalance achieves lower nRMSE
compared to the baseline on all subsampling
ratios. Specifically, TempBalance reduces the
nRMSE of the FNO model trained on 10.0%
of the 1DCFD dataset significantly by 9.73%
and improves the nRMSE of UNet on 2.5% by
7.30%. Furthermore, TempBalance can achieve
comparable performance gain to increasing the
number of training data samples. For example,
when solving 2DCFD problem using the UNet
model with 10% data, applying TempBalance
yields comparable performance gain to increasing
the subsampling ratio to 25%.

Complementary Results. To further demonstrate
the generalizability of TempBalance, we pro-
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Ratio 1% 0.5% 0.1% 0.05%

FT 84.09±0.36 82.68±0.43 73.57±0.90 71.31±1.29

SAM 85.10±0.55 83.35±0.61 73.38±1.48 71.18±1.29

TB 84.47±0.55 84.30±0.46 75.67±1.17 72.65±1.10

Ratio 1% 0.5% 0.1% 0.05%

FT 84.09±0.36 82.68± 0.43 73.57±0.90 71.31±1.29

TB 84.47±0.55 83.40±0.46 75.67±1.17 72.65±1.10

AdaFactor 84.79±0.37 83.29±0.23 76.73±0.95 74.09±1.29

AdaFactor+TB 84.81±0.25 84.00±0.46 77.75±0.38 76.04±1.10

Table 1: Comparing TempBalance with Sharpness-Aware Minimization (SAM) and AdaFactor on RoBERTa-base
model trained with QNLI dataset. For SAM, we choose hyperparameter ρ in the range of {0.5, 0.25, 0.1, 0.05}

vide supplementary results on a broader range
of settings in Appendix E. We first evaluate
TempBalance on more full fine-tuning and
LoRA fine-tuning tasks of RoBERTa-base and
LLaMA-7B, then we explore more SciML settings
by training the FNO and UNet to solve CFD PDEs.
We also provide statistical testing to verity the sig-
nificance of our results.

4.4 Comparison with Other Methods

Recent works have proposed optimization methods
that efficiently improve low-data training especially
on LLMs. For example, Sharpness-Aware Mini-
mization (SAM) (Foret et al., 2021) has been shown
to effectively improve fine-tuning performance
when training data is limited, by encouraging con-
vergence to flatter local minima (Bahri et al., 2022).
Also, AdaFactor is a memory-efficient optimizer
suitable for training large models (Shazeer and
Stern, 2018). We show that TempBalance not
only outperforms these methods in most low-data
regimes, but can be used as an “add-on” method to
further enhance model performance.

We compare TempBalance with SAM and
AdaFactor using RoBERTa-base model trained
with QNLI on four subsampling ratios, as shown in
Table 1. We can see that when we have fewer data
points, SAM achieves worse results than baseline
FT. Meanwhile, TempBalance consistently out-
performs baseline FT, and achieves better results
than SAM in almost all cases. For the AdaFactor
optimizer, we can see that it outperforms baseline
and TempBalance in most cases. Still, when we
combine TempBalance with AdaFactor, we can
achieve the best results across all low-data regimes,
with at most 1.95% test accuracy increase higher
than AdaFactor alone.

4.5 Neural PDE Fine-tuning

To explore diverse scenarios in SciML, we con-
duct experiments on low-data fine-tuning using
the 2DCFD dataset with DPOT-Tiny and DPOT-
Small models. In solving PDEs, we utilize founda-
tional models pre-trained on various fluid dynamics

datasets, which are then fine-tuned on another spe-
cific physical scenario. In Table 2, we show that
TempBalance (TB) offers better improvements
compared to the baseline FT under different sub-
sampling ratios.

The experimental settings for SciML tasks are
as follows: For TempBalance (TB) and FT, we
train the models for 500 epochs with a batch size of
160 for the Tiny model and 64 for the Small model,
and a dropout rate of 1e-6. We test initial learn-
ing rates among {0.001, 0.0005, 0.00025, 0.0001,
0.00005}. We use the Adam optimizer, and decay
the learning rate by γ = 0.5 every 50 epochs. The
mean and standard deviation of nRMSE across 3
random seeds on the test set are reported.

Subsampling
Ratio Method DPOT-Tiny DPOT-Small

5% FT 1.863e-2±1.067e-5 1.546e-2±3.346e-5

TB 1.856e-2±3.646e-5 1.539e-2±1.328e-5

10% FT 1.747e-2±1.502e-5 1.426e-2±1.157e-5

TB 1.730e-2±1.173e-5 1.415e-2±1.890e-5

25% FT 1.543e-2±4.008e-5 1.226e-2±2.094e-5

TB 1.517e-2±2.807e-5 1.203e-2±1.313e-5

50% FT 1.309e-2±2.356e-5 1.025e-2±2.063e-5

TB 1.283e-2±2.494e-5 1.005e-2±8.860e-6

100% FT 1.096e-2±3.875e-5 8.400e-3±1.030e-5

TB 1.078e-2±4.527e-5 8.193e-3±1.509e-5

Table 2: TempBalance achieves lower nRMSE(↓)
than baseline method on SciML fine-tuning task.

4.6 Analysis
Following section 4.2, we study the effectiveness
of TempBalance in overcoming low-data limi-
tations. First, we look into the trend of improve-
ment brought by TempBalance, and demonstrate
that layer-wise tuning like TempBalance brings
more significant improvement as we train with
fewer data. Second, we investigate the distribu-
tion of PL_Alpha_Hill across layers, and show
that TempBalance successfully balances layer-
wise training quality, resulting in a more uniform
PL_Alpha_Hill distribution compared to the
baseline method.
Analyzing Performance Gain of TempBalance.
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As we have shown in our main results, we note
that TempBalance achieves greater performance
gain as the subsampling ratio becomes lower. This
trend suggests that TempBalance is more effec-
tive as we train the model with fewer data. This
trend suggests that when training data is large,
model training quality is high without specific ma-
nipulations. However, if we only have a few sam-
ples, the layer-wise balancing method becomes in-
creasingly beneficial and can significantly improve
model performance.
Analyzing PL_Alpha_Hill Distribution. We
compare the distribution of PL_Alpha_Hill
between baseline FT and TempBalance. As
observed in Figure 7, TempBalance consis-
tently shows lower PL_Alpha_Hill variance on
RoBERTa-base trained on QNLI under various sub-
sampling ratios. Furthermore, in SciML tasks, we
can see a similar trend that is more significant when
we train the model from scratch (Figure 8).

Following the trend shown previously in Fig-
ure 2, this finding suggests that as layer-wise train-
ing quality becomes more unevenly distributed
as we train with fewer data, TempBalance
effectively balances training quality across dif-
ferent layers (estimated by the variance of
PL_Alpha_Hill).

4.7 Ablation study
Temperature Balancing with Different ESD Met-
rics. Recent theoretical works have proposed
several metrics that measure the shape of the
ESD (Martin and Mahoney, 2021; Martin et al.,
2021; Yang et al., 2023), and we compare their
performance with PL_Alpha_Hill in assign-
ing layer-wise learning rates. We mainly con-
sider two shape metrics: Spectral_Norm and
Stable_Rank. Results are presented in Ta-
ble 3. We can see that in all subsampling ra-
tios, PL_Alpha_Hill continues to outperform
other metrics, while other metrics may perform
worse than baseline Full FT. We can conclude that
PL_Alpha_Hill have more robust performance
than other shape metrics in assigning layer-wise
learning rates.
Different Learning Rate Scheduling functions.
In the TempBalance algorithm, we choose
TB_Sigmoid equation as our layer-wise schedul-
ing function. To verify the superiority of
TB_Sigmoid function, we evaluate another
scheduling function TB_Linear_Map, which is
proven to have great performance on image classi-
fication tasks (Zhou et al., 2024). The results are

Ratio 1% 0.5% 0.1% 0.05%

FT 84.09±0.36 82.68± 0.43 73.57±0.90 71.31±1.29

Spectral_Norm 83.18±0.41 81.68±0.23 70.52±5.18 65.79±0.85

Stable_Rank 83.22±0.15 82.29±0.36 71.87±1.57 67.18±3.71

PL_Alpha_Hill 84.47±0.55 84.30±0.46 75.78±0.47 72.83±1.65

Table 3: Comparing different ESD metrics used
to schedule layer-wise learning rate trained with
RoBERTa-base model on QNLI task. We choose
Spectral_Norm and Stable_Rank to com-
pare with PL_Alpha_Hill that we use in the
TempBalance algorithm.

shown in Table 4. We can see that TB_Sigmoid
function outperforms TB_Linear_Map in almost
all subsampling ratios.

Ratio 1% 0.5% 0.1% 0.05%

FT 84.09±0.36 82.68±0.43 73.57±0.90 71.31±1.29

TB_Linear_Map 84.60±0.07 83.87±0.61 73.49±2.92 72.76±1.54

TB_Sigmoid 84.47±0.55 84.30±0.46 75.78±0.47 72.83±1.65

Table 4: Comparing different Temperature Balancing
scheduling algorithm on RoBERTa-base model trained
with QNLI dataset.

For more ablation study results on SciML tasks,
please refer to Appendix G.1.

5 Conclusions

In this work, we leverage HT-SR theory to di-
agnose the limitations of low-data training and
improve the learning rate scheduling algorithm
TempBalance to balance the training quality of
different layers in low-data regimes. Our exten-
sive experiments demonstrate that TempBalance
effectively balances layer-wise training quality
and improves performance in NLP fine-tuning
and SciML training. Our analysis reveals that
TempBalance achieves greater performance
gain as we train with fewer data. Furthermore, the
compatibility of TempBalance makes it possible
to add TempBalance to existing optimization
methods, bringing further performance improve-
ments. We show that HT-SR theory brings useful
guidance in low-data training and fine-tuning, and
we expect it to be a more generalized toolbox for
diagnosing model performance in more training
scenarios.
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Limitations

Despite achieving improvements in NLP and
SciML tasks, TempBalance has some potential
limitations.

For computational costs, since TempBalance
dynamically reschedules learning rates during train-
ing, frequent calculations of ESD of weight matri-
ces are required. In our work, the computation
overhead of TempBalance during training the
RoBERTa-base model can take up to 25% of the
total training time: when training on 0.02% SST2
dataset, the total training time is 265.73 seconds,
in which TempBalance takes up 65.40 seconds.
This computational cost could scale up as the model
size becomes larger. Since the calculation of ESD
contributes to most of the computation cost (the
SVD process), we will focus on improving the ef-
ficiency of measuring the Heavy-Tail structure of
the ESD.

In addition, we only discuss the scheduling
of the learning rate in this work, whereas other
temperature-like parameters can also influence the
structure of ESD during training, such as batch size
or weight decay. Therefore it would be of interest
to explore how HT-SR theory can assist in acquir-
ing a comprehensive set of hyperparameter tuning
tools.

Ethics Statement

This paper leverages HT-SR theory to design
a layer-wise fine-tuning scheme for LLMs and
SciML models. Our study in itself does not pose
any negative societal risks or ethical concerns. On
the contrary, it improves our understanding of the
inner mechanisms of training NNs which can po-
tentially aid in optimizing the amount of compute
resources spent on training large NNs for wide so-
cietal use.
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Appendix

A Potential Risks

Our work leverages HT-SR theory as a model di-
agnosis tool to analyze the limitations of low-data
training and fine-tuning, and help the design of an
improved learning rate scheduling algorithm. We
do not see any immediate negative societal impacts
or ethics issues stemming from the algorithm it-
self. In addition, our analysis could inspire future
research on diagnosing performance limitations in
different scenarios, securing the safe use of LLMs.

B Ablation study on granularity of
Learning Rate Scheduling: Per-block
vs. Per-layer.

Following the discussion on scheduling method for
Transformer-based models in Section 3.2, here we
compare the performance of block-wise and layer-
wise scheduling in RoBERTa-base model trained
on QNLI dataset. Table 5 shows that the block-
wise method generally outperforms the per-layer
method in different subsampling ratios. The results
suggest that block-wise learning rate scheduling is
a more favorable method than layer-wise schedul-
ing when we use TempBalance on Transformer-
based models.

Ratio 5% 1% 0.5% 0.1% 0.05%

baseline 87.54±0.20 84.09±0.36 82.68± 0.43 73.57±0.90 71.31±1.29

Layer-wise 87.83±0.23 84.81±0.07 83.78±0.17 75.30±1.72 70.99±1.86

Block-wise 88.24±0.08 84.47±0.55 84.30±0.46 75.78±0.47 72.83±1.65

Table 5: Comparing layer-wise and block-wise learning
rate schedule trained with RoBERTa-base model on
QNLI task. We choose.

C Data Subsampling

To create low-data regimes, we design sets of sub-
sampling ratios based on the size of different train-
ing datasets (see Table 6 and 7). For GLUE fine-
tuning, we partition the datasets in GLUE into two
groups: larger datasets (SST-2, MNLI, QNLI and
QQP), and smaller datasets (CoLA, MRPC, STS-B
and RTE). For larger datasets, we choose subsam-
pling ratio from {0.02% 0.05%, 0.1%, 0.5%, 1%,
5%}, and for smaller datasets, we choose subsam-
pling ratios from {10% 20%, 50%}. For PDE
solving tasks, we use the datasets from PDEBench
(Takamoto et al., 2022) and choose different data
ratios considering the training difficulty in differ-
ent datasets. For DarcyFlow dataset, the range of
subsampling ratio is {0.6%, 2.5%, 5.0%, 10.0%,

100.0%}. For training the FNO and UNet on 1D
and 2D CFD dataset, the range of subsampling ratio
is {0.6%, 2.5%, 10.0%, 25.0%, 50.0%, 100.0%}.

Dataset SST-2 MNLI QNLI QQP CoLA MRPC STS-B RTE

# of Data 67K 393K 105K 364K 8.5K 3.7K 7K 2.5K

Table 6: Number of training data samples of each GLUE
tasks

Dataset DarcyFlow 1D CFD 2D CFD

# of Data 9K 9K 9K

Parameter β = 100 η = ζ = 0.01, Rand periodic M = 0.1, η = ζ = 0.01, Rand periodic

Table 7: Number of training data samples and parameter
of PDE Datasets.

D Hyperparameter Settings

In this section, we provide detailed hyperparameter
settings to reproduce the experimental results.

D.1 Full Fine-tuning on GLUE and
SuperGLUE Datasets

For full-finetuning, we choose to fine-tune
RoBERTa-base model on GLUE and SuperGLUE
datasets. For each subsampling ratio, we train us-
ing the Adam optimizer with a linear learning rate
decay schedule for 10 epochs. We choose the se-
quence length of 128, and grid search learning rate
and batch size to obtain the best results. When
training on four smaller GLUE datasets (CoLA,
MRPC, STSB, RTE) and SuperGLUE datasets, we
search learning rate across {1e-5, 2e-5, 3e-5} and
batch size across{16, 32}; when training on four
larger GLUE datasets (SST2, MNLI, QNLI, QQP),
the search range of learning rate and batch size
are shown in Table 8 and 9 respectfully. For other
hyperparameters and model configurations, we use
the same settings following Liu et al. (Liu et al.,
2019). We report the mean over 3 random seeds
for each setting, where the results for each run are
taken from the best epoch.

Dataset SST-2 MNLI QNLI QQP

5% {1e-5, 2e-5, 3e-5}

1% {1e-5, 2e-5, 3e-5}

0.5% {1e-5, 2e-5, 3e-5}

0.1% {1e-5, 2e-5, 3e-5}

0.05% {1e-5, 2e-5, 3e-5}

0.02% {1e-5, 2e-5, 3e-5, 5e-5} {1e-5, 2e-5, 3e-5}

Table 8: Learning rate range of training RoBERTa-base
model on subsets of SST2, MNLI, QNLI and QQP
datasets.
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Dataset SST-2 MNLI QNLI QQP

5% {16, 32}

1% {16, 32}

0.5% {16, 32}

0.1% {4, 8, 16, 32} {16, 32}

0.05% {4, 8, 16, 32} {16, 32}

0.02% {4, 8, 16, 32}

Table 9: Batch size range of training RoBERTa-base
model on subsets of SST2, MNLI, QNLI and QQP
datasets.

In addition to standard training configurations,
we report the hyperparameters of TempBalance
corresponding to the best results. Specifically, we
report hyperparameters s. Note that during hyper-
parameter search, we find that assigning different s
values to layers with PL_Alpha_Hill higher or
lower than the mean PL_Alpha_Hill across all
layers can achieve better results, and in the tables,
we show them as a pair (s1, s2), often (2, 1).

Dataset SST2 MNLI QNLI QQP

5% (2, 1) 1.25 (2, 1) 1.25

1% 1.25 1.25 1 1

0.5% 1 1.25 1 1.25

0.1% (2, 1) 1 1.25 1.25

0.05% 1.25 0.5 1.25 1

0.02% 1.25 1.25 0.25 1.25

Table 10: Best hyperparameter s for TempBalance
of training RoBERTa-base model on subsets of SST2,
MNLI, QNLI and QQP datasets.

Dataset CoLA MRPC STSB RTE

50% 1.25 1.25 0.75 1.25

20% 1 1.25 0.5 0.5

10% 1 1 1 1.25

Table 11: Best hyperparameter s for TempBalance
of training RoBERTa-base model on subsets of CoLA,
MRPC, STSB and RTE datasets.

Domain-specific Fine-tuning. For fine-tuning on
domain-specific datasets, we train the RoBERTa-
base models for 10 epochs with a batch size of
16 and an initial learning rate of 3e-5. We use
the AdamW optimizer and apply linear learning

rate decay with a 0.06 warmup ratio. The mean
and standard deviation of test accuracy across 3
random seeds on the test set are reported.

D.2 LoRA Fine-tuning
For LoRA fine-tuning, we adopt the training con-
figurations from previous works and perform a line
search around the base learning rate. For training
RoBERTa-base model on GLUE datasets, we fol-
low Hu et al (Hu et al., 2021). and evaluate learning
rate at 2e-4 and 6e-4 around the base learning rate
(4e-4 or 5e-5). For LLaMA-7B on ScienceQA, we
trained with AdamW optimizer for 50 epochs, and
search the best learning rate in the range of {2e-4,
3e-4, 4e-4}. We set the cutoff length as 256 and
batch size as 128. For LoRA adapters, we set the
rank to 8, LoRA alpha to 16, and LoRA dropout to
0.05.

D.3 Neural PDE Solving
For SciML, we referred to PDEBench(Takamoto
et al., 2022) for the hyperparameter settings and
selected the appropriate learning rate, weight decay
and batch size using a grid search method to make
baseline models achieve good performances. For
each subsampling ratio, we train the models with
the Adam optimizer, scheduling the base learning
rate by decaying the learning rate by γ = 0.5 ev-
ery 100 epochs. We chose to train the models for
enough epochs to ensure that the trained models
were close to a convergent state. For the hyperpa-
rameter s in TempBalance, we choose from the
range {0.125, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5}.

For training the FNO and UNet on DarcyFlow
(β = 100), the search range of leanring rate and
the selected weight decay are displayed in Table 12
and the batch size is 50.

Model FNO UNet

Hyperparameters Learning Rate Weight Decay Learning Rate Weight Decay

100% {5e-3, 1e-2, 1.5e-2} 1e-6 {2.5e-4, 5e-4, 1e-3} 1e-7

10.0% {1.5e-2, 2.5e-2, 5e-2} 1e-4 {5e-3, 1e-2, 2.5e-2} 1e-4

5.0% {1.5e-2, 2.5e-2, 5e-2} 1e-3 {5e-3, 1e-2, 2.5e-2} 1e-3

2.5% {1.5e-2, 2.5e-2, 5e-2} 1e-3 {1.5e-2, 2.5e-2, 5e-2} 1e-3

0.6% {1.5e-2, 2.5e-2, 5e-2} 1e-2 {2.5e-2, 5e-2, 1e-1} 1e-3

Table 12: Learning rate range and the selected weight
decay of training FNO and UNet model on subsets of
DarcyFlow(β = 100.0) dataset.

When training the FNO on 1D and 2D CFD
datasets, the search range of learning rate and the
selected weight decay is shown in Table 13. The
batch size for the subsampling ratio {100%, 50.0%,
25.0%, 10.0%} in training on 1DCFD is 25 and 10
for {2.5%, 0.6%}, while on the 2DCFD dataset the
batch size is 20.
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Dataset 1DCFD 2DCFD

Hyperparameters Learning Rate Weight Decay Learning Rate Weight Decay

100% {2.5e-3, 5e-3, 1e-2} 1e-2 {1e-3, 2.5e-3, 5e-3} 1e-4

50.0% {2.5e-3, 5e-3, 1e-2} 1e-2 {1e-3, 2.5e-3, 5e-3} 1e-4

25.0% {2.5e-3, 5e-3, 1e-2} 1e-2 {1e-3, 2.5e-3, 5e-3} 1e-4

10.0% {2.5e-3, 5e-3, 1e-2} 1e-2 {1e-3, 2.5e-3, 5e-3} 1e-4

2.5% {2.5e-3, 5e-3, 1e-2} 1e-1 {1e-3, 2.5e-3, 5e-3} 1e-4

0.6% {1e-3, 2.5e-3, 5e-3} 1e-1 {2.5e-3, 5e-3, 1e-2} 1e-4

Table 13: Learning rate range and the selected weight
decay of training FNO model on subsets of 1D and 2D
CFD datasets.

Table 14 demonstrates the properly chosen
weight decay and the learning rate range of training
UNet on 1D and 2D CFD datasets. The batch size
for the subsampling ratio {100%, 50.0%, 25.0%}
in training on 1DCFD is 100, for {10.0%, 2.5%}
is 50, and for{0.6%} is 25, while on the 2DCFD
dataset the batch size is 20.

Dataset 1DCFD 2DCFD

Hyperparameters Learning Rate Weight Decay Learning Rate Weight Decay

100% {5e-3, 1e-2, 2.5e-2} 1e-5 {1e-2, 2.5e-2, 5e-2} 1e-3

50.0% {5e-3, 1e-2, 2.5e-2} 1e-1 {2.5e-3, 5e-3, 1e-2} 1e-1

25.0% {5e-3, 1e-2, 2.5e-2} 1e-1 {2.5e-3, 5e-3, 1e-2} 1e-1

10.0% {5e-3, 1e-2, 2.5e-2} 1e-1 {2.5e-3, 5e-3, 1e-2} 1e-1

2.5% {2.5e-2, 5e-2, 1e-1} 1e-1 {5e-3, 1e-2, 2.5e-2} 1e-1

0.6% {2.5e-2, 5e-2, 1e-1} 1e-1 {2.5e-2, 5e-2, 1e-1} 1e-1

Table 14: Learning rate range and the selected weight
decay of training UNet model on subsets of 1D and 2D
CFD datasets.

E Complementary Results

In this section, we first provide detailed results dis-
cussed in Section 4.3 in the paper, then further eval-
uate TempBalance on NLP and SciML training
tasks. Also in Section E.2, we provide statistical
testing results to demonstrate the significance of
improvement brought by TempBalance. First,
in E.1 and E.4 we show detailed results of GLUE
full fine-tuning and two time-dependent PDEs dis-
cussed in Section 4.3. Second, we present comple-
mentary results of TempBalance on fine-tuning
RoBERTa-base model on SuperGLUE and SQuAD
datasets in E.3. Then, we apply TempBalance
to LoRA fine-tuning, and show the results of LoRA
fine-tuning of RoBERTa-base model on GLUE
tasks in E.5, and LLaMA-7B model on ScienceQA
in E.6. Afterwards, we evaluate TempBalance
on solving DarcyFlow PDEs with FNO and UNet
model in E.7.

E.1 Detailed Fine-tuning Results on GLUE
Datasets

In Table 17 and 18, we show the full results of fine-
tuning RoBERTa-base model on GLUE datasets,

corresponding to Figure 3 and the discussions in
Section 4.3.

E.2 Statistical Testing on the Significance of
Improvement

We perform statistical testing to verify the effective-
ness of our algorithm compared to baseline meth-
ods. We define the Null Hypothesis (H0) as “There
is no significant difference in performance between
our algorithm and the baseline”, and the Alternative
Hypothesis (H1) as “Our algorithm performs sig-
nificantly better than the baseline”. We run exper-
iments of training RoBERTa-base on SST-2 with
different subsampling ratios for 10 random seeds
and perform t-tests on the results. We present the
results in the table below:

Ratio 0.02% 0.1% 0.5% 1% 5%

P-value 3.85e−9 0.13 0.003 0.003 4.06e−5

Table 15: Statistical testing results on RoBERTa-base
model trained with different subsampling ratios of the
SST-2 dataset.

Subsampling
Ratio 1% 5% 10% 20% 50%

FT 45.84±2.26 79.49±0.22 86.88±0.12 88.56±0.14 90.97±0.15

TB 48.91±1.27 81.18±0.07 88.08±0.05 89.49±0.20 91.16±0.03

Table 16: Test accuracy (%) on SQuAD v1.1 dataset of
ROBERTa-base model trained with different subsam-
pled training sets.

E.3 Full Fine-tuning on SuperGLUE and
SQuAD

SuperGLUE. In Table 20, we present the results
of applying TempBalance on training RoBERTa-
base model on SuperGLUE tasks. The tasks and
their corresponding evaluation metrics are: BoolQ
(Accuracy), RTE (Accuracy), CB (Accuracy and
F1), WiC (Accuracy), MultiRC (F1 and Exact
Match (EM)), COPA (Accuracy). We can see that
TempBalance effectively increases test perfor-
mance in most cases, and archives significant over-
all improvement. Specifically, TempBalance
achieves 7.14% performance gain when training
on 50% CB dataset. TempBalance can also
improve the overall mean performance by 1.65%
when trained with 50% data.
SQuAD. In Table 16, we present the results of ap-
plying TempBalance on training RoBERTa-base
model on SQuAD (v1.1) dataset across five subsam-
pling ratios: 1%, 5%, 10%, 20%, 50%. We train
the model for 10 epochs with learning rate 2e-5
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Subsampling
Ratio Method SST-2 MNLI QNLI QQP Avg.

0.02% FT 58.49±10.96 45.28±0.62 53.69±0.44 69.04±0.19 56.63
TB 68.39±3.21 45.32±1.31 58.11±6.29 69.72±0.70 60.39(↑3.76)

0.05% FT 83.07±0.66 57.87±1.14 71.31±1.29 71.55±1.25 70.95
TB 84.17±0.25 59.42±1.90 72.83±1.65 73.35±1.43 72.44(↑1.49)

0.1% FT 84.13±1.97 64.99±2.39 73.57±0.90 74.05±0.94 74.19
TB 87.16±0.81 66.57±2.51 75.78±0.47 74.20±0.61 75.93(↑1.74)

0.5% FT 90.44±0.46 76.88±0.33 82.68±0.43 79.61±0.24 82.40
TB 91.44±0.42 77.73±0.47 84.30±0.46 80.00±0.21 83.37(↑0.97)

1% FT 91.06±0.16 79.45±0.22 84.09±0.36 80.93±0.31 83.88
TB 91.97±0.48 80.10±0.25 84.47±0.55 81.18±0.22 84.43(↑0.55)

5% FT 92.85±0.24 83.10±0.02 87.94±0.08 83.98±0.04 86.97
TB 93.69±0.16 83.36±0.15 88.24±0.08 84.00±0.15 87.32(↑0.35)

Table 17: Evaluation results of RoBERTa-base model trained on larger GLUE tasks. We compare TempBalance
(TB) with Full Fine-tuning (FT) trained with Adam optimizer and linear learning rate decay. The tasks and their
corresponding evaluation metrics are: SST-2 (accuracy, ↑), MNLI (accuracy, ↑), QNLI (accuracy, ↑) and QQP
(combined score of F1 score and accuracy, ↑)

Subsampling
Ratio Method CoLA MRPC STSB RTE Avg.

10% FT 49.01±1.63 81.29±1.61 84.36±1.03 59.69±0.45 68.59
TB 50.34±0.91 81.70±1.61 86.04±0.80 60.53±1.78 69.65(↑1.06)

20% FT 49.50±2.08 84.64±0.50 87.45±0.25 66.07±0.88 71.92
TB 51.28±0.73 85.86±0.61 88.39±0.55 67.27±0.34 73.13(↑1.21)

50% FT 56.78±1.96 87.66±0.42 90.12±0.20 71.48±1.35 76.51
TB 58.60±0.74 88.40±0.42 90.24±0.06 74.85±1.78 78.02(↑1.51)

Table 18: Evaluation results of RoBERTa-base trained on smaller GLUE tasks using full fine-tuning. We compare
TempBalance with baseline FT (Full Fine-tuning) on: CoLA (Matthews Correlation, ↑), MRPC (combined score
of F1 score and accuracy, ↑), STS-B (combined score of Pearson and Spearman Rank, ↑), and RTE (Accuracy, ↑)

and a batch size of 24 using the AdamW optimizer
with a warmup rate of 0.06 and linear learning
rate decay. We follow the detailed hyperparameter
settings from (Liu et al., 2019). The mean and stan-
dard deviation of test accuracy across 3 random
seeds on the test set are reported. We observe that
TempBalance continues to achieve better test
performance than baseline FT, and significantly out-
performs baseline FT in low-data regimes: when
trained on 1% data of SQuAD, TempBalance
increases the test accuracy by 3.07%.

E.4 Detailed Results on 1D and 2D CFD
Datasets

In Table 19, we present the detailed results of train-
ing FNO and UNet model on 1D and 2D CFD
datasets, corresponding to Figure 4 and the discus-
sions in Section 4.3.

E.5 LoRA Fine-tuning on GLUE

Measuring the ESD of LoRA Adapters. Some
models are too large to fine-tune fully, so one often
needs to use LoRA. In this case, LoRA adapters
are added to selected layers in the model, and only
these adapters are trained during fine-tuning, while
the original weight matrix remains fixed. For a
layer with weight matrix W ∈ Rd×k and LoRA
adapters B ∈ Rd×r and A ∈ Rr×k, we can-
not simply calculate ESD of the product between
adapters B × A, since the rank of the adapters
r ≤ min(d, k) are low-rank matrices, which would
result in a poor ESD landscape. Therefore, for
layers with LoRA adapters, we calculate the sum
of the product of LoRA adapters and the weight
matrix W′ = W +B×A, and then calculate the
ESD of its correlation matrix X = W′⊤W′.

We present the results of applying
TempBalance on LoRA Adapters in Table 21.
We can see that TempBalance consistently
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Subsampling Model FNO UNet

Ratio Dataset 1DCFD 2DCFD 1DCFD 2DCFD

Baseline 5.02e-02±4.43e-03 1.23e-01±7.44e-03 2.08e-01±1.71e-02 2.96e-01±7.05e-03

100% TB 4.74e-02±6.57e-04 1.16e-01±4.29e-03 1.91e-01±1.59e-02 2.90e-01±1.94e-03

Error Reduced 5.58% 5.69% 8.17% 2.03%

Baseline 6.04e-02±3.17e-03 1.40e-01±4.68e-03 2.25e-01±2.24e-03 2.87e-01±6.49e-03

50.0% TB 5.68e-02±2.28e-03 1.37e-01±3.53e-03 2.23e-01±1.24e-03 2.85e-01±5.64e-04

Error Reduced 5.96% 2.14% 0.89% 0.70%

Baseline 7.81e-02±3.79e-03 2.11e-01±3.27e-03 2.28e-01±1.79e-03 3.06e-01±1.77e-03

25.0% TB 7.42e-02±1.87e-03 2.03e-01±5.54e-03 2.26e-01±1.52e-03 3.01e-01±1.63e-03

Error Reduced 4.99% 3.79% 0.88% 1.97%

Baseline 1.13e-01±4.79e-03 2.35e-01±1.61e-03 2.40e-01±2.42e-03 3.09e-01±1.92e-03

10.0% TB 1.02e-01±1.88e-03 2.29e-01±1.41e-03 2.38e-01±2.00e-04 3.06e-01±2.96e-03

Error Reduced 9.73% 2.55% 0.83% 0.97%

Baseline 2.11e-01±2.79e-03 3.22e-01±5.37e-03 2.74e-01±2.88e-02 3.89e-01±3.77e-02

2.5% TB 2.08e-01±5.25e-03 3.06e-01±1.15e-02 2.54e-01±4.61e-03 3.80e-01±1.76e-02

Error Reduced 1.42% 4.97% 7.30% 2.31%

Baseline 2.48e-01±3.35e-03 5.46e-01±2.20e-02 3.46e-01±4.15e-03 3.88e-01±2.15e-02

0.6% TB 2.38e-01±2.84e-03 4.67e-01±2.85e-02 3.29e-01±1.87e-02 3.78e-01±2.78e-02

Error Reduced 4.03% 14.47% 4.91% 2.58%

Table 19: Evaluation results of FNO and UNet model trained on 1D and 2D CFD datasets. We compare our method
(TB) with the baseline. The evaluation metric is nRMSE (↓).

Subsampling
Ratio Method BoolQ RTE CB WiC MultiRC COPA Avg.

10% FT 64.97±2.58 62.57±1.68 68.45±2.23 62.80±3.00 32.95±0.33 54.67±0.47 57.73
TB 65.95±2.17 62.69±1.19 69.64±1.46 63.43±1.90 33.22±0.47 58.33±2.62 58.88(↑1.15)

20% FT 69.93±2.01 67.87±1.64 72.61±0.84 67.14±0.98 34.92±0.88 57.00±2.16 61.58
TB 71.80±1.92 70.04±1.35 72.61±0.84 66.67±1.74 35.00±0.16 59.33±6.13 62.58(↑1.00)

50% FT 76.73±0.49 74.84±0.90 77.38±2.23 68.44±2.50 35.77±0.92 58.67±1.25 65.29
TB 76.85±0.13 74.84±1.62 84.52±0.03 70.32±1.10 36.44±0.59 58.67±2.87 66.94(↑1.65)

Table 20: Evaluation results of RoBERTa-base model trained on SuperGLUE tasks using full fine-tuning.

achieves higher test results than LoRA alone. We
note that our method can at most improve the test
accuracy of 3.29% on 0.02% SST2 dataset, indi-
cating a significant improvement. From average
improvement increases across different tasks, we
can see that as we reduce the subsampling ratio,
the average improvement of TempBalance on
all tasks continues to increase. This observation
aligns with the discussion in Section 4.6, that
TempBalance achieves gradually increased
gains in fine-tuning performance as the number
of tuning data points decreases, further proving
the effectiveness of TempBalance in achieving
model alignment in low-data regimes.

E.6 Question Answering

To draw more robust conclusions, we evaluate
the empirical performance of TempBalance on
LLM fine-tuning. We choose to fine-tune LLaMA-
7B model with LoRA adapters on the ScienceQA
dataset (Lu et al., 2022). In Table 22 we report the
test accuracy of LoRA and TempBalance under
different subsampling ratios on ScienceQA dataset.

We can see that TempBalance continues to yield
better test performance on low-data regimes.

E.7 Training FNO and UNet Model on
DarcyFlow Dataset

In Table 23 we show the test results of training
the FNO and UNet model on the DarcyFLow
dataset with a subsampling ratio ranging from
0.6% to 100%, evaluated by Normalized Root
Mean Squared Error (nRMSE). We show that
TempBalance achieves lower nRMSE compared
to the baseline on all subsampling ratios. Specifi-
cally, TempBalance reduces the nRMSE of the
UNet model trained on 2.5% of the DarcyFlow
dataset by a significant 10.89%, and improve the
nRMSE of FNO on 0.6% by 9.71%.

F Compute Resources

We conduct our experiments on Quadro RTX 6000,
NVIDIA L40(40GB), and NVIDIA RTX A6000
GPU clusters. Specifically, we run every full fine-
tuning of RoBERTa-base on GLUE and Super-
GLUE datasets using one Quadro RTX 6000 GPU
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Subsampling
Ratio Method SST-2 MNLI QNLI QQP Avg.

0.02% LoRA 66.82±0.81 37.93±0.89 51.58±0.29 61.18±2.72 54.38
LoRA+TB 70.11±0.84 39.39±1.84 51.93±0.41 63.77±0.99 56.3(↑1.92)

0.05% LoRA 82.03±1.33 54.74±0.57 54.91±0.41 67.80±0.62 64.87
LoRA+TB 81.77±1.97 55.19±0.97 59.93±1.07 68.75±0.30 66.41(↑1.54)

0.1% LoRA 87.42±1.08 66.43±0.41 69.05±4.27 70.83±0.97 73.43
LoRA+TB 88.34±0.52 66.79±0.73 69.72±3.36 71.21±0.94 74.02(↑0.59)

0.5% LoRA 90.82±0.09 76.77±0.31 81.79±0.82 78.69±0.54 82.02
LoRA+TB 91.09±0.54 77.09±0.46 82.02±0.41 78.45±0.25 82.16(↑0.14)

1% LoRA 92.69±0.14 79.26±0.29 84.29±0.13 80.34±0.13 84.14
LoRA+TB 93.04±0.10 79.43±0.07 84.34±0.44 80.51±0.16 84.33(↑0.19)

Table 21: Evaluation results of RoBERTa-base model trained on four larger GLUE tasks. We compare our method
(TB) with Low-Rank Adaptation training (LoRA) fine-tuning. The tasks and their corresponding evaluation metrics
are: SST-2 (accuracy), MNLI (accuracy), QNLI (accuracy) and QQP (combined score of F1 score and accuracy)

Subsampling
Ratio 1% 5% 10%

LoRA 51.12±0.87 65.24±1.04 73.40±0.39

LoRA+TB 53.09±1.64 65.96±1.21 73.70±0.80

Table 22: Test accuracy (%) on ScienceQA dataset of
LLaMA-7B model trained with different subsampled
training set.

per job. For each of the LoRA fine-tuning of
RoBERTa-base on GLUE tasks, we utilize a single
NVIDIA RTX A6000 GPU to train the model. For
LLaMA-7B LoRA fine-tuning experiments, we use
4 NVIDIA RTX A6000 GPUs for one job. For all
Neural PDE experiments, we use a single NVIDIA
L40(40GB) GPU for each job.

G More Ablation Study Results

G.1 Different ESD metrics and scheduling
functions in using TempBalance in
SciML.

We compare the performance of using different
ESD measuring metrics and scheduling functions
of TempBalance on SciML tasks. Table 24 re-
ports the results of different TempBalance set-
tings in training the FNO model on solving the
1DCFD task. We can see that TempBalance
outperforms the baseline method at every sub-
sampling ratio, and our proposed scaling function
TB_Sigmoid achieves more stable performance
than TB_Linear_Map. At most subsampling ra-
tios, using PL_Alpha_Hill we can achieve re-
sults that are comparable to or even better than
those obtained with other metrics.

Subsampling
Ratio Method FNO UNet

Baseline 2.58e-03±2.69e-05 5.27e-03±3.27e-05

100% TB 2.52e-03±5.68e-05 5.07e-03±1.41e-05

Error Reduced 2.33% 3.80%

Baseline 1.04e-02±4.11e-04 1.43e-02±1.21e-03

10.0% TB 1.01e-02±1.30e-04 1.34e-02±9.50e-04

Error Reduced 2.88% 6.29%

Baseline 1.76e-02±5.17e-04 1.98e-02±1.79e-03

5.0% TB 1.62e-02±2.19e-04 1.81e-02±1.35e-03

Error Reduced 7.95% 8.59%

Baseline 2.88e-02±9.79e-04 2.57e-02±9.89e-04

2.5% TB 2.64e-02±5.72e-04 2.29e-02±1.94e-03

Error Reduced 8.33% 10.89%

Baseline 6.28e-02±1.78e-03 4.59e-02±3.10e-03

0.6% TB 5.67e-02±1.62e-03 4.45e-02±1.48e-03

Error Reduced 9.71% 3.05%

Table 23: Evaluation results of FNO and UNet model
trained on DarcyFlow (β = 100) dataset. We compare
our method (TB) with the baseline. The evaluation
metric is nRMSE (↓).

H More Analysis Results

H.1 Diagnosing the Data Limitation Using HT
Metrics

Following Section 4.2, here we further analyzed
FNO model’s test performance using Alpha-related
metrics as the training data size decreases. Fig-
ure 6 demonstrates that the change of the STD
of PL_Alpha_Hill corresponds very closely
with the variations in the model’s performance.
We observe that as the subsampling ratio de-
creases, the nRMSE on the 1D and 2D CFD
PDEs solving increases, indicating a deteriora-
tion in model’s performance. Simultaneously, the
STD of PL_Alpha_Hill becomes larger, sug-
gesting that the training across the model layers
is becoming increasingly uneven. Therefore, the
STD of PL_Alpha_Hill effectively captures
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Ratio 100% 50.0% 25.0% 10.0% 2.5% 0.6%

Baseline 5.02e-02±4.43e-03 6.04e-02±3.17e-03 7.81e-02±3.79e-03 1.13e-01±4.79e-03 2.11e-01±2.79e-03 2.48e-01±3.35e-03

TB_Linear_Map 4.95e-02±3.49e-03 5.70e-02±5.52e-04 7.26e-02±1.02e-03 1.02e-01±3.00e-03 2.05e-01±4.77e-03 2.40e-01±7.47e-03

TB_Sigmoid (PL_Alpha_Hill) 4.74e-02±6.57e-04 5.68e-02±2.28e-03 7.42e-02±1.87e-03 1.02e-01±1.88e-03 2.08e-01±5.25e-03 2.38e-01±2.84e-03

TB_Sigmoid (Stable_Rank) 4.89e-02±2.03e-03 6.03e-02±7.47e-04 7.32e-02±1.73e-03 1.06e-01±4.85e-03 2.07e-01±1.36e-03 2.45e-01±6.11e-03

TB_Sigmoid (Spectral_Norm) 4.84e-02±2.86e-03 5.77e-02±1.48e-03 7.50e-02±5.70e-03 1.03e-01±4.66e-03 1.91e-01±1.05e-02 2.34e-01±1.12e-03

Table 24: Comparing different Temperature Balancing scheduling algorithm and ESD metrics on FNO model
trained with 1DCFD dataset. The TempBalance series functions can help models achieve lower test nRMSE
among all subsampling ratios, and the TB_Sigmoid outperform the original TB_Linear_Map function.
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Figure 6: Predicting model performance under different training data using the variance of layer-wise
PL_Alpha_Hill. 6a shows the trend of test performance of FNO model on 1D and 2D CFD datasets. 6b shows
the trend of standard deviation of PL_Alpha_Hill across different FNO layers in different training data.

the model’s performance variations in response
to changes in the amount of training data, which
aligns closely with the results obtained in our pre-
vious experiments in Figure 7.

H.2 More Analysis Study Results in the STD
of PL_Alpha_Hill

In Figure 7 and 8, we compare the STD of
the PL_Alpha_Hill between the baseline and
TempBalance on fine-tuned LLM and trained
FNO models at different subsampling ratios. When
the subsampling ratio is relatively large, the STD
of PL_Alpha_Hill of models is smaller, and
the impact of the TempBalance method on this
metric is also minimal. However, when the sub-
sampling ratio is relatively small, the opposite is
true: the TempBalance method makes the distri-
bution of PL_Alpha_Hill across each layer of
the model more uniform.
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Figure 7: Analyzing the distribution of
PL_Alpha_Hill of baseline FT and
TempBalance on RoBERTa-base model trained
on QNLI across different subsampling ratios. We
observe that TempBalance continues to show lower
STD of PL_Alpha_Hill, suggesting a more evenly
distributed PL_Alpha_Hill.
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Figure 8: Comparing the STD of layer-wise PL_Alpha_Hill measured in using baseline method and
TempBalance training FNO model on 1D and 2D CFD datasets. The results demonstrate that TempBalance
can reduce the STD, and this effect is more significant when the subsampling ratio is smaller, indicating that our
approach helps ensure more uniform training across each layer of the model.
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