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Abstract

Flashcard schedulers rely on 1) student models
to predict the flashcards a student knows; and 2)
teaching policies to pick which cards to show
next via these predictions. Prior student models,
however, just use study data like the student’s
past responses, ignoring the text on cards. We
propose content-aware scheduling, the first
schedulers exploiting flashcard content. To give
the first evidence that such schedulers enhance
student learning, we build KAR3L, a simple but
effective content-aware student model employ-
ing deep knowledge tracing (DKT), retrieval,
and BERT to predict student recall. We train
KAR3L by collecting a new dataset of 123,143
study logs on diverse trivia questions. KAR3L
bests existing student models in AUC and cali-
bration error. To ensure our improved predic-
tions lead to better student learning, we create
a novel delta-based teaching policy to deploy
KAR3L online. Based on 32 study paths from
27 users, KAR3L improves learning efficiency
over SOTA, showing KAR3L’s strength and en-
couraging researchers to look beyond historical
study data to fully capture student abilities.1

1 Introduction

Flashcards help students learn answers to ques-
tions across subjects like trivia, vocabulary, and
law (Wissman et al., 2012). In education, a flash-
card scheduler dictates when students review old
flashcards and when they learn new ones (Reddy
et al., 2016). Many schedulers use student models
to predict the probability a student can recall a flash-
card (Mozer et al., 2019). A teaching policy then
chooses the flashcards to show next based on recall
predictions (Reddy et al., 2017). Teaching poli-
cies ensure personalized learning experiences by
understanding a student’s learning progress. Thus,
every student model must use informative features

*Equal contribution.
1Our data and code are available at https://github.

com/Pinafore/fact-repetition.

to capture a student’s knowledge state (Brusilovsky
et al., 2015; Chrysafiadi et al., 2015).

To predict recall, existing student models (Settles
and Meeder, 2016; Tabibian et al., 2019) just use
data from the student’s study history, like their past
answers and time since last review. This data mod-
els student behavior, but it ignores a key aspect of
the card: its textual content. Modeling the relations
across flashcard content can enable student models
to predict recall even on cards with no study data.
For instance, if a student studies the question “Who
was the first U.S. president” for the first time, exist-
ing student models cannot discriminatively predict
if the student knows the answer, as the card lacks
study data. However, if the student already studied
“Who was the second U.S. president” and always
answered it correctly, we can infer that the student
knows U.S. presidents and likely can recall the first
U.S. president. Existing schedulers cannot make
these semantic inferences, limiting their ability to
predict and schedule flashcards with no study data.

We propose content-aware flashcard sched-
ulers—the first schedulers that exploit flashcard
content. We connect this paradigm to Deep Knowl-
edge Tracing (Piech et al., 2015, DKT), which em-
beds student study histories (Shin et al., 2021) to
predict study correctness. Some DKT models, like
LM-KT (Srivastava and Goodman, 2021), enhance
these embeddings with language models, providing
a strong basis for semantic inferences. While DKT
models show promise on offline benchmarks, their
adoption in real-world flashcard scheduling sys-
tems is absent, as there lacks concrete evidence that
such models can improve learning (§3). Thus, our
goal is to design a baseline content-aware scheduler
using DKT and be the first to show that this model
can successfully enhance student learning, motivat-
ing the benefits and potential of the paradigm.

Towards content-aware scheduling, we develop
KAR3L, a DKT student model using Knowledge-
Aware Retrieval and Representations for Retention
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Figure 1: Overview of KAR3L. Given a current flashcard and the student’s study history as inputs, KAR3L first uses
a BERT retriever to obtain the most semantically similar cards from the study history. Next, the BERT embeddings
of these retrieved flashcards, the embedding of the current flashcard, and flashcard-level features (e.g. time since
last review), are fed through a classifier (CLF) to predict if the student knows the answer to the current flashcard.

and Learning (Figure 1). While DKT models usu-
ally embed the student’s full study history, KAR3L
uses a BERT retriever (Lee et al., 2019) to find a
subset of semantically similar cards in the study
history, making KAR3L the first retrieval-based stu-
dent model (§4.1). Retrieval yields just study his-
tory with similar content to the current card, allow-
ing KAR3L to jointly improve efficiency and omit
noisy parts of the history that distract the represen-
tation of the student’s knowledge (§6.4). KAR3L
then encodes the retrieved history and current flash-
card with the student’s study data and BERT. This
lets KAR3L accurately predict recall even on un-
seen cards, as KAR3L can infer student knowledge
via study data from semantically related flashcards.

A general student model like KAR3L cannot be
trained on existing datasets, as they do not release
flashcard text or have narrow domains (Settles and
Meeder, 2016; Selent et al., 2016). Thus, we cu-
rate flashcards using content-rich trivia questions
on diverse topics like fine arts, history, and pop
culture. We develop a flashcard app and deploy our
cards to 543 learners (§5)—forming a new dataset
of 123,143 study logs to train content-aware mod-
els. Compared to baselines (Settles and Meeder,
2016; Srivastava and Goodman, 2021; Ye et al.,
2022), KAR3L gives the most accurate and well-
calibrated recall predictions, demonstrating the of-
fline strength of content-aware student models (§6).

Researchers typically stop at offline evaluation to
claim scheduler superiority, but this does not assess
a scheduler’s main goal: enhancing student learn-
ing. To ensure the improved predictions in KAR3L
translate to better learning outcomes for students,
we design the first online user study comparison
with FSRS, the SOTA scheduler (§7). To do so,
we create a novel delta-based teaching policy that
picks flashcards predicted to enhance learning after

a specified time delta (§7.1). We equip the KAR3L
student model with this policy to form KAR3L+∆,
the first content-aware scheduler to aid learning.

We have 27 new users study in our app and test
their medium-term learning on two facets: learn-
ing accuracy, the number of new facts learned, and
recall time, the time taken to recall answers. In 32
six-day studies, KAR3L + ∆ maintains learning
accuracy while reducing recall time, showing learn-
ing efficiency gains over FSRS (§7.3). KAR3L+∆,
a baseline content-aware scheduler, bests SOTA, re-
vealing the strength of KAR3L, motivating future
works to build better content-aware schedulers, and
encouraging researchers to look beyond study data
to capture student abilities. Our contributions are:
1) We introduce content-aware scheduling, the first
flashcard schedulers that exploit flashcard content.
2) We implement KAR3L, a simple but effective
content-aware student model that uses DKT, BERT,
and retrieval. KAR3L employs a novel delta-based
teaching policy to facilitate online scheduling.
3) We collect and release a dataset of 123,143 study
logs from 543 users on diverse trivia flashcards.
4) We design an online evaluation on two facets of
medium-term learning to prove that content-aware
models like KAR3L can effectively aid learning.

2 Related Work

Flashcard Scheduling: Flashcards help students
recall answers to questions, ranging from vocabu-
lary (Komachali and Khodareza, 2012; Sitompul,
2013) to medicine (Schmidmaier et al., 2011; Lu
et al., 2021). The order and spacing of flashcards
when studying strongly affect the student’s ability
to recall information in the future (e.g. exam time)
(Kornell, 2009), leading to research in systems that
optimally schedule flashcards. Early models like
Leitner (Leitner, 1974) and SuperMemo-2 (Woz-
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niak, 1990) use rule-based heuristics to pick review
dates. Subsequent schedulers draw from cogni-
tive theory, deploying teaching policies with stu-
dent model predictions. Settles and Meeder (2016)
design half-life regression (HLR) student models
as trained power-law and exponential forgetting
curves (Ebbinghaus, 1913), theoretical memory de-
cay models derived from empirical research.

Later works extend HLR and build teaching poli-
cies to schedule flashcards based on learned param-
eters and predictions from forgetting curve student
models. Reddy et al. (2017) optimize their teaching
policy with reinforcement learning, while MEMO-
RIZE (Tabibian et al., 2019) and SELECT (Upad-
hyay et al., 2020) minimize cost values to optimize
review times. Recent models like FSRS and DHP
enhance these methods by optimizing spaced rep-
etition via stochastic shortest path algorithms and
time series data (Ye et al., 2022; Su et al., 2023).

Notably, the student models in these schedulers
cannot discriminate between unseen flashcards and
must arbitrarily show new cards, such as ordering
by cards’ creation dates (Elmes, 2021). Content-
aware scheduling—predicting student recall using
the content on cards—addresses this limitation.

Deep Knowledge Tracing: KAR3L uses deep
knowledge tracing (DKT) (Shin et al., 2021; Ab-
delrahman et al., 2023): neural models that predict
if a student has knowledge of a specified concept,
subject, or study item (e.g. flashcard). The first
DKT model used an RNN to capture the temporal
dynamics of a student’s study history (Piech et al.,
2015). Later works refine this model by incorporat-
ing graph representations (Yang et al., 2021; Song
et al., 2022), forgetting features (Chen et al., 2017;
Nagatani et al., 2019), and memory structures (Ab-
delrahman and Wang, 2019; Gu et al., 2022).

Recent DKT models embed question content to
improve study history encodings (Su et al., 2018;
Yin et al., 2019; Lee et al., 2024). However, these
models cannot be directly adapted for scheduling.
LM-KT (Srivastava and Goodman, 2021) is based
on GPT-2 so it can embed diverse questions, but
its causal language modeling objective impedes the
use of flashcard features, as next-token prediction
models struggle to reason over numerical inputs
(McLeish et al., 2024). Other text-aware models
can use flashcard features but are designed for the
math domain (Liu et al., 2019) and need content an-
notations of study items to discern relevant items in
the study history. Conversely, KAR3L is a classifier

that can better encode numerical inputs via a fea-
ture embedding layer, and uses retrieval which can
find relevant content without content annotations,
combining the strengths of existing DKT models.

DKT models show promise when trained on of-
fline benchmarks that assess if models can predict
student study correctness, often the top-performing
models (Abdelrahman et al., 2023). However, there
is no concrete evidence that DKT models can or
should be adopted to facilitate student learning in
online applications like flashcard learning software.
We bridge this gap by solving practical issues of
DKT models to motivate their adoption, via: 1) the
first retrieval-augmented DKT model to mitigate in-
efficiency and study history noise; 2) a new dataset
of study logs on diverse questions to train content-
aware models; and 3) a delta-based teaching policy
and user study to prove DKT can enhance learning.

NLP in Education: Flashcard scheduling is just
one educational task that benefits from NLP (Lit-
man, 2016). Recent research in this area includes
writing education content (Cui and Sachan, 2023),
designing educational chatbots (Tyen et al., 2022;
Liang et al., 2023; Siyan et al., 2024), exploring
test-taking strategies like process of elimination
(Ma and Du, 2023; Balepur et al., 2024), under-
standing student misunderstandings (Wang et al.,
2024), and creating mnemonic devices (Lee and
Lan, 2023). Our contributions, such as the intro-
duction of content-aware scheduling and release of
a new diverse study history dataset, will facilitate
further research in NLP-powered educational tools.

3 Where Are Content-Aware Schedulers?

Our core method for content-aware scheduling (§4)
uses BERT, DKT, and retrieval—techniques with
proven benefits—so why have they not yet been
adopted for scheduling? Our work identifies and ad-
dresses three key criteria needed to inspire broader
adoption: 1) an effective DKT student model that
does not need content annotations on study items
and can efficiently be deployed (§4); 2) a large,
diverse dataset to train content-aware models (§5);
and 3) a user study to confirm content-aware sched-
ulers benefit learning (§7). As a whole, these chal-
lenges indicate that the absence of content-aware
schedulers stems from a lack of evidence showing
that they meaningfully improve student learning.

We reveal that with the right modeling choices
(§4), content-rich datasets (§5), and thorough user
studies (§7), we can adeptly combine the strengths
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of language models, DKT, and retrieval to show
that content-aware schedulers aid student learning.

4 KAR3L Student Model Design

Our student model KAR3L builds on Deep Knowl-
edge Tracing (Naeini et al., 2015, DKT) and uses
as inputs: 1) the flashcard ft shown to the student
at time t; and 2) a history of all past flashcards stud-
ied by the student F = {f1, f2, ..., ft−1}. We also
assume a flashcard f can be mapped to study data
X (f), like the student’s total correct responses to
f and its time since last review. Using these inputs,
KAR3L predicts correctness at ∈ {0, 1} denoting
whether the student will answer card ft correctly.

KAR3L predicts at in two steps (Figure 1). First,
KAR3L uses a BERT retriever p(ft | fi) to find the
top-k flashcards F ′ ⊆ F most semantically rele-
vant to ft. Next, KAR3L feeds ft and F ′ as inputs
to a classifier p(at | f,F ′), which represents the
current flashcard f and each retrieved flashcard in
F ′ with BERT embeddings and the features from
X (z). We describe both of these steps next.

4.1 Flashcard Retrieval

A student’s study history F is often long and di-
verse. DKT models encode all of F , degrading
efficiency, and their ft predictions may also be
worse if they use study data in F that is unlike
ft (§6.4). For example, if a student studies both
math and history, embedding all of F may worsen
predictions on history cards, as the study data on
math is irrelevant. DKT datasets have predefined
subject or knowledge component labels on study
items to help models discern relevance (Koedinger
et al., 2012). However, flashcard apps support user-
created cards that may not fall into these categories,
so we assume no access to study item labels.

To solve these issues, we design the first retrieval-
augmented student model. In generation, retrievers
limit noise in large corpora and improve efficiency
by picking a subset of relevant items (Lewis et al.,
2020; Balepur et al., 2023). We retrieve the flash-
cards F ′ from the student’s study history F with
the most similar semantic representations to the cur-
rent flashcard ft. This ensures KAR3L makes pre-
dictions using the study history most similar to the
card ft, reducing the total cards to embed and study
history noise (§6.4) without study item annotations.
Further, §6.6 shows that retrieval has the additional
benefit of uncovering concepts in flashcards.

We obtain the semantic similarity between each

study history card fi ∈ F and the current flashcard
ft via the dot product of fi and ft, represented by
pretrained BERT (Devlin et al., 2019) embeddings:

d(fi) = BERT(fi), (1)

q(ft) = BERT(ft), (2)

p(ft | fi) ∼ d(fi)Tq(ft). (3)

Maximum Inner-Product Search (Shrivastava and
Li, 2014) finds the k-highest values for p(ft | fi),
forming the top-k relevant cards F ′ ⊆ F to ft.

4.2 Feature Representation

After finding the semantically relevant flashcards
F ′, we represent the flashcards in the history fi ∈
F ′ and the current flashcard ft with features for
predicting student recall. Along with BERT em-
beddings from §4.1, we also use the flashcard-level
heuristics from prior student models (Settles and
Meeder, 2016; Tabibian et al., 2019). We define
X (f) as a set of features that represent the study
data on flashcard f , such as the distribution of the
student’s past responses to f and the time since its
last review. We detail all features in Appendix A.2.

Using BERT embeddings and study data as fea-
tures, we train a classifier p(at | ft,F ′) that uses the
current card ft and retrieved history F ′ to predict
correctness at, which is 0/1 if the student recalls
ft incorrectly/correctly. We feed study data X (f)
and BERT embeddings for study history flashcards
fi ∈ F ′ and the current flashcard ft to a linear
layer to compute a hidden state h ∈ R768. We
then feed h to a final linear layer to predict at. We
train p(at | ft,F ′) to minimize the cross-entropy
loss λ of predicting at, using input representations
of cards f and F ′, via mini-batch gradient descent.

5 Training KAR3L

We now train the KAR3L student model. We de-
scribe our data collection platform (§5.1), create
flashcards (§5.2), collect student study data (§5.3),
and outline our training procedure (§5.4).

5.1 Data Collection Platform

If we want KAR3L to cater to users studying varied
topics, we must train on flashcards with diverse con-
tent. However, existing KT and flashcard datasets
are domain-specific and include no flashcard text or
just a single vocab word, making them unfit for our
study. ASSISTments (Selent et al., 2016), the most
widely-used KT dataset (Abdelrahman et al., 2023),

14164



Category: American—Identify this character
What icon of American literature is friend to Jim and Tom Sawyer? 

Huck Finn
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Huckleberry Finn
You typed: ‘Huck Finn’
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Figure 2: Screenshot from our web-based flashcard app
after a user submits their answer to a literature flashcard.

is restricted to arithmetic; Duolingo’s spaced rep-
etition dataset (Settles and Meeder, 2016) and Ed-
Net (Choi et al., 2020) focus on English language
learning. Hence, to assess how KAR3L captures se-
mantic ties across diverse topics, we build our own
platform to collect data from real learners, based
on a web and mobile flashcard app (Figure 2).

5.2 Flashcard Creation

With diversity in mind, we turn to trivia questions
from the QANTA dataset (Rodriguez et al., 2019)
to make flashcards. QANTA questions are multi-
sentence, where each subsequent sentence in the
question points to the same answer with decreasing
difficulty. The questions span eleven topics, includ-
ing literature, history, fine arts, pop culture, and
mythology. To create cards from these questions,
we sample a subset of the dataset and use a sentence
from the question as the front of the flashcard and
its answer as the back of the card. In total, we cu-
rate 23,918 unique flashcards spanning 11 diverse
topics (details and examples in Appendix A.1).

5.3 Study Data Collection

We recruit users to study cards (§5.2) in our app
from English trivia forums. Users study with three
schedulers; two are Leitner (Leitner, 1974) and
SM-2 (Wozniak, 1990), popular heuristic sched-
ulers. The third is a DKT model (Appendix A.3)
trained on the Protobowl dataset (Boyd-Graber
et al., 2012). Over four months, 543 users gave
123,143 study logs. Each log has the card ft stud-
ied by the user at time t, past study data X (ft) on
ft, and label at denoting if the student answered ft
correctly. Tables 6 and 7 show all dataset columns.
Users are referenced by ID and we award $200 to
the fifteen users who study the most flashcards.

5.4 Training Setup

We sort study records chronologically and use a
75/25 train/evaluation split for KAR3L. We re-
trieve k = 5 items from the student’s study history
for all experiments using FAISS (Johnson et al.,
2019). Tables 6, 7, and 8 list all study data features
collected. We train KAR3L using all features for
ablations (§6.4) and the online evaluation (§7), and
use just a subset of all features for the other offline
experiments (§6), detailed in Appendix A.8.

6 Offline Evaluation

We evaluate KAR3L on our dataset to highlight the
offline strength of content-aware student models.
This result motivates our design of a content-aware
scheduler (§7), eventually allowing us to prove that
such schedulers improve student learning (§7.3).

6.1 Baselines

We compare KAR3L with popular student models:
1) Half Life Regression (HLR) models at with an
exponential forgetting curve (Settles and Meeder,
2016). This curve is fit using the student’s past
study responses and time since the last study of ft.
2) Leitner moves a flashcard ft up or down num-
bered slots based on student responses to f (Leitner,
1974). We use five slots and calculate at as the slot
position of ft divided by the total number of slots.
3) Super Memo (SM)-2 predicts at like Leitner
does, adjusting its value based on the student’s pro-
portion of successful recalls of ft (Wozniak, 1990).
4) FSRS computes intermediate difficulty, stabil-
ity, and retrievability scores to schedule flashcards
(Ye et al., 2022). We take the retrievability score,
defined as recall probability, as a prediction for at.
5) LM-KT is a representative DKT model using
language models (GPT-2 Med), like KAR3L (Sri-
vastava and Goodman, 2021). Via causal language
modeling, it predicts at with the input sequence F .
5) GPT-3.5 (Ouyang et al., 2022) is five-shot
prompted to predict at based on the five most re-
cent study items in the student’s study history F .
We use gpt-3.5-turbo and 0 temperature.

6.2 Evaluation Metrics

A student model’s training objective is to give bi-
nary predictions for whether a student can recall a
flashcard, but a student’s familiarity with flashcards
is not binary but on a continuous spectrum. Thus, a
strong student model must be able to discern cards
that are familiar or unfamiliar to students across a
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Seen Cards Unseen Cards
Model AUC (↑) ECE (↓) Acc Correct (↑) Acc Incorrect (↑) AUC (↑) ECE (↓) Acc Correct (↑) Acc Incorrect (↑)

HLR 0.370 0.387 0.738 0.144 - - - -
Leitner 0.752 0.234 0.833 0.380 - - - -
SM-2 0.660 0.200 0.826 0.419 - - - -
FSRS 0.752 0.111 0.921 0.524 - - - -
LM-KT 0.658 0.285 0.805 0.327 0.684 0.234 0.667 0.590
GPT-3.5 0.427 0.544 0.613 0.241 0.519 0.481 0.467 0.571
KAR3L 0.864 0.091 0.980 0.250 0.786 0.085 0.680 0.740

Table 1: Student model ability to predict which flashcards students know (Accuracy when Correct/Incorrect, AUC)
and how well they know them (ECE). ↑ (and ↓) denote if higher (or lower) scores are better. Best scores are in bold.
KAR3L outperforms baselines in 7/8 metrics, showcasing the offline strength of content-aware scheduling.

range of thresholds, rather than one binary predic-
tion. We employ two metrics to capture this nuance:
area under the ROC curve (AUC) and expected
calibration error (Naeini et al., 2015, ECE); the for-
mer measures how well the model predicts across
all thresholds, and the latter measures if predictions
are well-calibrated. We also show accuracy when
the student answered correctly (at = 1) and incor-
rectly (at = 0)—the models’ training objective.

One benefit of content-aware models is that they
can make semantic inferences and predict recall on
cards without study data. To test this for KAR3L,
LM-KT, and GPT-3.5, we group our metrics by if
the student has seen the current flashcard ft or not.

6.3 Quantitative Comparison

We study KAR3L’s ability to model student recall
(Table 1). On seen cards, KAR3L surpasses models
in all metrics except for accuracy on incorrect flash-
cards. In fact, all models struggle to predict when
a student will incorrectly answer a flashcard they
have already studied, with the best model (FSRS)
barely exceeding random guessing (0.524). Thus,
there is a clear opportunity to close this accuracy
gap, which could be achieved by focusing on tem-
poral dynamics of student memory (Ye et al., 2022).
On unseen cards, KAR3L bests LM-KT and GPT-
3.5, the only other models able to predict recall on
unseen cards, in all metrics. Further, for KAR3L,
there is an AUC gap between unseen and seen cards.
Thus, student modeling on cards with no study data
is still a challenge and may benefit from even larger
LLMs to capture semantics (Appendix A.6).

KAR3L underperforms in Acc Incorrect on seen
cards, but we argue AUC and ECE are better indi-
cators of a student model’s abilities. Accuracy uses
one cutoff (0.5) to decide if a student can recall a
flashcard, but other cutoffs like 0.71 (Pavlik Jr et al.,
2020) and 0.94 (Eglington and Pavlik Jr, 2020) are
also valid. Thus, a robust student model must cater

Seen Cards Unseen Cards
Model AUC (↑) ECE (↓) AUC (↑) ECE (↓)

KAR3L BERT 0.780 0.108 0.740 0.124
No BERT 0.692 0.127 0.612 0.205
No X (z) 0.680 0.135 0.620 0.191

Table 2: KAR3L versus ablations that discard BERT
embeddings and discard flashcard-level features X (z).
Both are useful for accurate and calibrated predictions.

Metric k = 0 k = 5 k = 10 k = 15 k = 20

AUC (Seen) 0.864 0.864 0.861 0.851 0.851
ECE (Seen) 0.098 0.091 0.091 0.106 0.105

AUC (Unseen) 0.776 0.786 0.777 0.757 0.768
ECE (Unseen) 0.111 0.085 0.086 0.171 0.155

Table 3: Top-k AUC/ECE for new KAR3L training
runs (AUC same trend). k = 20 is max without OOM.
Retrieval improves AUC and ECE on unseen cards, but
retrieving too many cards can distract recall predictions.

to varied cutoffs, an ability better assessed by AUC
and ECE. Overall, KAR3L is the strongest student
model, with the best ability to discern which flash-
cards students know and how well they know them.

6.4 Ablation Study
To attribute the performance gains in KAR3L, we
ablate its components. Adding BERT embeddings
and flashcard-level study data both improve ECE
and AUC (Table 2), showing that content and his-
torical study data both enhance student modeling.
Further, on unseen cards, where capturing seman-
tic relations should be most useful, No BERT has
the worst AUC and ECE. Thus, making semantic
inferences across flashcards is a valuable strategy
for student modeling on unseen flashcards.

We also assess how retrieval affects KAR3L (Ta-
ble 3). On seen cards, KAR3L has similar ECE and
AUC with (k > 0) and without (k = 0) retrieval,
meaning that when study data exists, using just the
current flashcard is sufficient to predict recall. On
unseen cards, where study data is absent, retrieval
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Figure 3: Forgetting curve for US history cards. When
Card 1 is studied, KAR3L’s prediction of the semanti-
cally related Card 2 increases, despite not being studied.

boosts metrics from k = 0 to k = 5 and k = 10.
However, retrieving too many flashcards (k ≥ 15)
on seen and unseen cards harms all metrics versus
k = 0, likely because the excess flashcards are ir-
relevant, distracting KAR3L. Thus, retrieval helps
content-aware schedulers focus on short, relevant
contexts for improved recall predictions without
needing human annotations to represent relevance.

6.5 Forgetting Curve Analysis

Forgetting curves describe how a student’s famil-
iarity with a flashcard changes over time, measured
through predicted recall probability (Ebbinghaus,
1913; Murre and Dros, 2015). While many student
models explicitly fit to exponential or power-law
forgetting curves (Upadhyay et al., 2020; Settles
and Meeder, 2016), KAR3L does not in exchange
for more flexible memory representations. To sim-
ulate a forgetting curve in KAR3L, we first define
a set of times T (zero to twenty days, in one-day
increments). Then, for each time t ∈ T , KAR3L
predicts the recall of a flashcard f as if we were at
time t, updating the features in X (f) accordingly.

To see how BERT enables KAR3L to make se-
mantic inferences across flashcards, we show sim-
ulated forgetting curves for two related flashcards.
In Figure 3, Card 1 (James Garfield, 20th U.S. pres-
ident) is studied once on day 0 and again on day 10.
When Card 1 is recalled correctly on day 10, the
recall prediction of Card 2 (Abraham Lincoln, 16th
U.S. president) increases despite not being studied.
This highlights the benefit of making semantic in-
ferences across flashcards: KAR3L intelligently ad-
justs recall predictions across semantically-related
flashcards based on the learner’s study of just one.

Japanese First Russian to 
take the title of 

Tsar, who brutally 
treated Novgorod

Italian banking 
family which 

controlled 
Florentine politics

Name this 17th and 
18th Century Tsar 

who tried to 
modernize Russia

What Shinto sun 
goddess is brother 

to Susanoo and 
Tsukiyomi

Novel about 
Mikage Sakurai's 

love of cooking, by 
Banana Yoshimoto

Lady Murasaki 
Shikibu wrote what 

novel featuring 
Princess Aoi 

Top-3 Retrieved Flashcards

Past-3 Studied Flashcards

New, Unstudied 
Flashcard

Native language of 
Kobo Abe, Yukio 

Mishima, and 
Haruki Murakami

Amaterasu Kitchen Tale of Genji

Ivan the Terrible Medici Family Peter the Great

Figure 4: Top-3 retrieved vs past-3 studied flashcards
when the user studies a new card on Japanese literature.

6.6 KAR3L Retrieval Case Study

When using a subset of study history, some work
uses the past-k cards instead of retrieving k cards
(Pavlik et al., 2021). Using the past-k cards low-
ers AUC (Appendix A.5), but the following case
study where the user sees a new card on Japanese
authors also reveals the strength of retrieval (Fig-
ure 4). The top-3 cards retrieved by KAR3L are
topically related to the current card (Japanese nov-
els and Shinto), but the past-3 cards seen by the user
are on European history. Despite the topic shift,
KAR3L can still predict student recall, as the re-
trieved cards’ study data reveal the student’s knowl-
edge of Japanese literature. As KAR3L groups sim-
ilar cards with retrieval, KAR3L can also propose
new concepts in the current flashcard that the stu-
dent may know, like a concept of Japanese culture.
Thus, KAR3L recovers concepts without the con-
tent annotations used in DKT datasets (Shen et al.,
2024), further showing the benefits of retrieval.

7 Online Evaluation

Our offline evaluation (§6) shows KAR3L predicts
recall accurately, but this does not capture the main
goal of any educational tool: enhancing learning.
Thus, while researchers often stop at offline eval-
uation to claim scheduler superiority, we now pro-
vide evidence that content-aware schedulers can im-
prove student learning over FSRS, the SOTA sched-
uler. We propose a teaching policy that equips DKT
student models like KAR3L for scheduling (§7.1),
design a test mode user study in our app to measure
two facets of medium-term learning (§7.2), and
assess student learning outcomes to compare the
learning benefits of KAR3L versus FSRS (§7.3).

7.1 A Delta-Based Teaching Policy for KAR3L

After KAR3L predicts if the student can recall a
given flashcard, a teaching policy decides when to
show this card next (Hunziker et al., 2019). DKT
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models directly predict recall, so the only existing
compatible policy for DKT models like KAR3L is
threshold-based, which picks flashcards near spec-
ified retention levels like 0.9 (Ye et al., 2022) or
0.94 (Eglington and Pavlik Jr, 2020). A threshold-
based policy for KAR3L could run the classifier
p(at | ft,F ′) on every flashcard and pick those with
predicted recall near a specified retention level. But
without extra heuristics, this method will not sched-
ule flashcards that KAR3L predicts a student can-
not recall or forgot (i.e. predicted recall of 0), even
if studying such cards would aid subject mastery.

To solve this, we design a delta-based teaching
policy that calculates how a student’s recall im-
proves over a given time interval ∆ after studying a
flashcard. Concretely, given a candidate flashcard f
at time t, the policy uses KAR3L to simulate what
the student’s recall will be after ∆ time, t′ = t+∆,
based on if the student does or does not study f at t.
By selecting cards with the highest differences in
the recall predictions at t′, which can include cards
with initially low predicted recall, the policy aligns
with our core goal of maximizing student recall.

When KAR3L predicts a user can recall f cor-
rectly at time t with probability pt(f), we aim to
compute by how much their future recall pt′(f) will
increase if f is studied at t, called the delta score:

pt′(f | study f at t)− pt′(f | no study at t). (4)

To get pt′(f | no study f at t), future recall prob-
ability when the user does not study, we obtain a
prediction from KAR3L as if we were at time t′.

For pt′(f | study f at t), future recall when the
user studies, we consider two possible outcomes of
studying the card f at time t: the student’s answer
could be correct or incorrect. We weigh these two
outcomes by the model’s initial prediction pt(f):

pt′(f | study f at t) :=

pt′(f | correct at t) · pt(f)
+ pt′(f | incorrect at t) · (1− pt(f)).

(5)

To find the two pt′ values, we update the study data
X (f) to query KAR3L as if we are at time t′ and if
the student answered correctly/incorrectly at time t.

The cards with the n-highest delta scores (Eq. 4)
are the next n cards scheduled. With a delta-based
teaching policy, we ensure flashcards are picked for
maximizing learning, preventing cards from being
neglected solely due to having low predicted recall.

7.2 Test Mode Setup

We deploy FSRS and KAR3L with our delta teach-
ing policy (i.e. KAR3L+∆), with ∆ equal to 1 day.
We recruit users with the same procedure as §5.3
and award all users who complete our study $50.
Studying how schedulers impact learning is diffi-
cult, as: (1) users want to study diverse subjects; (2)
users have varying background knowledge; and (3)
learning, a multifaceted process, is hard to quantify.

For (1), we create two test sets fixed across users,
both with 20 manually-written cards from seven
diverse QANTA bonus questions (Elgohary et al.,
2018); bonus questions in QANTA are grouped as
three distinct subquestions that test the same con-
cepts, forming a testbed for evaluating the ability
of content-aware schedulers to make semantic in-
ferences. Users are tested on the same cards, which
likely have some facts of interest to the user. For
(2), we use a within-subject design (Lindsey et al.,
2014), where users study with KAR3L for one test
set, and FSRS for the other. Hence, users try both
schedulers, preserving background knowledge.

For (3), we focus on medium-term learning,
which we define as the ability to learn flashcards
over several days. This goal reflects the time span
students report preparing for exams; students often
study flashcards for five days or less and study no
more than half their flashcards at a time (Wissman
et al., 2012). Mirroring this, our users review ten
cards from the test set of 20, scheduled by FSRS or
KAR3L +∆, daily for five days. On day six, users
complete a post-test and study all 20 test set cards.

Medium-term learning has not been deeply stud-
ied, so we test two facets of medium-term learning.
First, we define learning accuracy (Alshammari,
2019) as the gain in accuracy on the post-test from
when users first see cards (pre-test). Higher learn-
ing accuracy means the user learned more facts.

Learning accuracy measures how many facts a
user has learned, but not how well or quickly they
learned them. Thus, we define recall time (Eric-
sson, 1985) as the mean time needed for users to
recall answers—the time between when the card
is viewed until when the answer is submitted. We
compute recall time on two splits: cards answered
correctly; and all cards. Lower recall time on cards
answered correctly means the student is more fa-
miliar with cards they know, as they recall correct
answers faster, while lower recall time on all cards
means that the student spends less time studying.

Combining these, we adapt learning efficiency
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Model Pre/Post-Test Acc Recall Corr/All LE
FSRS 0.41 / 0.88 6.58 sec / 6.82 sec 2.58

KAR3L +∆ 0.42 / 0.86 6.15 sec / 6.27* sec 2.74

Table 4: Post-test metrics for KAR3L+∆ vs FSRS users.
Best in bold. * means t-test significance (p < 0.05).
KAR3L+∆ users have similar pre-test and post-test ac-
curacies compared to FSRS users but much lower recall
time, leading to learning efficiency (LE) improvements.

(LE) from Rasch and Schnotz (2009) as the total
correct answers (20∗ post-test accuracy) divided by
recall time on all cards—cards learned per second.
Higher LE means the student is studying more effi-
ciently, as they learn more cards in the same time.

7.3 User Study Results

We collect 32 six-day study sessions from 27 stu-
dents with FSRS and KAR3L +∆ (Table 4). Both
schedulers help users achieve similar mastery in
test mode, more than doubling pre-test to post-test
accuracy (0.42 to 0.86). While learning accuracy
is similar, KAR3L + ∆ has lower post-test recall
time on cards answered correctly, suggesting that
KAR3L users are more familiar with the cards an-
swered correctly. Finally, KAR3L +∆ users main-
tain post-test accuracy while reducing recall time
on all cards studied. As a result, KAR3L+∆ users
obtain higher learning efficiency (LE) than FSRS
users, as users studying with KAR3L learn a similar
number of facts with less time taken while studying
(2.74 vs 2.58 flashcards learned per second).

Combining offline (Table 1) and online (Table 4)
results, KAR3L + ∆: 1) produces more accurate
and calibrated recall predictions than FSRS on seen
cards; 2) can predict recall on unseen cards, unlike
FSRS; 3) matches FSRS in enhancing learning ac-
curacy; and 4) enables users to recall answers faster
than FSRS, increasing learning efficiency. Holisti-
cally, KAR3L+∆ bests FSRS. Since KAR3L+∆
is a baseline content-aware scheduler and it already
rivals SOTA, content-aware scheduling is a promis-
ing paradigm, which we hope will motivate works
to build better content-aware schedulers and look
beyond study data to fully capture student abilities.

8 Conclusion

We introduce and successfully implement the first
content-aware scheduler with KAR3L +∆, a sim-
ple but effective model using DKT, BERT, retrieval,
and a novel delta-based teaching policy. Our of-
fline evaluation on a newly-collected dataset shows

KAR3L provides accurate and well-calibrated re-
call predictions, while our online evaluation reveals
KAR3L improves learning efficiency over SOTA.
Thus, we give the first evidence that content-aware
schedulers can be used to improve student learning.

Content-aware scheduling enhances personal-
ization in learning tools, as models can infer stu-
dent knowledge gaps through semantic inferences.
Given this strength, we hope future works extend
content to modalities beyond text, such as images
or audio. In online evaluation, KAR3L surpasses
FSRS in learning efficiency, but there are still many
facets of learning that can be measured with online
studies; these learning metrics could not only be
used for evaluation but also training signals. In all,
we show the strength of content-aware scheduling,
which we hope will motivate works to look beyond
single study items and also model relations between
study items to fully capture student abilities.

9 Limitations

One limitation of KAR3L, which is shared with
all DKT models, is that our model uses BERT rep-
resentations and a neural classifier, resulting in a
slower inference time compared to student mod-
els which only use flashcard-level features. To
minimize this limitation, we consider two design
choices. First, rather than embedding the entire stu-
dent history like existing DKT models, we perform
top-k retrieval, enabling KAR3L to have a consis-
tent inference time that does not scale with the size
of the student’s study history. Second, we imple-
ment our retriever operations with FAISS (Johnson
et al., 2019), an efficient vector database. This al-
lows us to quickly look up the representation of
each flashcard derived from QANTA, eliminating
the time needed to tokenize and feed each flashcard
through BERT, and efficiently perform Maximum
Inner-Product Search. During our test mode user
study, we did not receive complaints about the in-
ference time or efficiency of KAR3L.

Further, while KAR3L is an effective framework
for student modeling on our diverse dataset on
trivia questions, we have not analyzed the perfor-
mance of KAR3L on domain-specific DKT bench-
marks that do not have easily accessible textual
content, such as EdNet (Choi et al., 2020) or AS-
SISTments2 (Selent et al., 2016). Since the primary

2To obtain the textual content of ASSIStments, you must
send an additional email for verification and agree to a Terms
of Use before your request can even be processed. In contrast,
our dataset will release the flashcard content for public use.
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goal of this work was to design a general-purpose
content-aware scheduler, we require a diverse and
content-focused dataset to evaluate our model. In
future works, when more datasets provide textual
content, it would be interesting to study if the ac-
curacy and calibration of KAR3L is still strong,
or how transfer learning techniques (Weiss et al.,
2016) can help KAR3L adapt to specific domains.

Finally, exploring more advanced retrievers and
language models could improve the predictions of
KAR3L even further. As this was the first demon-
stration of content-aware scheduling and using re-
trieval for flashcard learning, we focused on the
most basic language model and retriever: an off-
the-shelf BERT model. We consider it a positive
sign that this simple design leads to large offline
AUC and ECE gains, which will motivate future
works, including new iterations of KAR3L, that
improve content-aware scheduling with more ad-
vanced retrieval techniques and language models.

10 Ethical Considerations

The goal of adaptive student models like KAR3L is
to make personalized predictions about a student’s
knowledge level. When making such tailored pre-
dictions, it is crucial to ensure that these student
models are not exploiting private information about
the user. To ensure that models trained on our
dataset do not succumb to this risk, our dataset
only identifies users by a numerical ID. Further,
our data collection and test mode user study were
both approved by an Institutional Review Board
(IRB), allowing us to fully address any potential
risks of our study. All users were compensated
based on a raffle system, and could win either $10,
$15, or $50 based on the study. In our advertise-
ments, it was made clear to users before signing up
that they would be part of a research study.
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A Appendix

A.1 Flashcard Creation and Examples
Each question q in QANTA consists of a list of
clues q = {c1, ..., cn} describing a single answer
A. To convert q into a flashcard f , we first map
each unique A to its corresponding questions Q =
{q1, ..., qm}. Next, we take a random sample of
clues C = {c1, ..., cp} from Q. Using this data, we
create f , where the clue c ∈ C is the front of f
(i.e. the question shown to the user) and the answer
A is the back of f . Repeating this process for the
entire dataset, we obtain 23,918 unique flashcards
spanning 11 diverse subjects.

In Table 5, we provide examples of the flash-
cards created from the QANTA dataset spanning
11 unique topics. The QANTA dataset is publicly
available and we used the dataset with its intended
research use. These flashcards are deployed into
KAR3L, where 543 participants produced 123,143
study records. In these records, 44.02 percent con-
tain studies on new flashcards and students cor-
rectly answer the flashcard shown 71.80 percent
of the time. On average, each user studied 226.78
flashcards during the data collection period.

The data used to create our flashcards is well-
established and was not significantly altered in this
work, so we did not check if the dataset uniquely
identifies individuals or contains offensive content.
All of our flashcards are written in English, con-
taining facts primarily targeted toward students in
the American high school and college education
systems. The only additional data we collected be-
yond this that is released is the user’s ID, the date
and time of study, and which flashcards this user
got correct and incorrect, which pose no harms.

In Tables 6, 7, and 8 we show the descriptions
and summary statistics of the qualitative, quanti-
tative, and time-based feature columns in our re-
leased dataset, respectively.

A.2 KAR3L Classifier Features
Our released dataset also includes all the hand-
picked features that KAR3L uses along with BERT
representations (Table 7). We normalize each fea-
ture using mean value and standard deviation com-
puted on the training set. Features with IDs 7.17
through 7.22 are computed using the Leitner (Leit-
ner, 1974) and SM-2 (Wozniak, 1990) algorithms.

In each study session, KAR3L +∆ additionally
tracks the session-level variants of features 7.11-13.
In test mode, features such as the user’s accuracy

are frozen to ensure that KAR3L+∆ does not have
an unfair advantage compared to FSRS.

For all offline experiments except for the abla-
tion, KAR3L is trained on features 7.1, 7.4, 7.7,
7.10-14, and 7.16. For the ablation and online eval-
uation, KAR3L is trained on all the features.

A.3 DKT Model for User Study
One of the models we in our user study to collect
our flashcard dataset was a DKT model trained
on the Protobowl dataset (Rodriguez et al., 2019).
The Protobowl dataset contains QANTA questions
with human responses to these questions, but this
can be adapted to a flashcard dataset for content-
aware models by selecting instances where users
answered and practiced with the same question,
treating these questions as study items. After con-
verting the dataset to this format, we trained a DKT
model similar to KAR3L, but it does not use re-
trieval, and thus only uses BERT and flashcard
features on the current flashcard to predict recall.

We designed this model to study whether it was
possible to design a content-aware scheduler by
only adapting existing datasets, rather than collect-
ing a new one. While we found this to be feasible,
training directly on a specialized flashcard dataset
instead of using some dataset adaptation techniques
would expectedly improve the performance of a
content-aware flashcard scheduler. Thus, we opted
to collect a new dataset and train a content-aware
model (KAR3L) on this dataset for the best possi-
ble results in the online user study.

A.4 Forgetting Curves
In this section, we provide more examples of for-
getting curves. Unlike previous work which forces
the student model to follow a specific forgetting
function, we consider student modeling as predict-
ing the binary outcome of each study. In Figure 5,
we showcase the flexibility of our forgetting curves,
and display visualizations of how the forgetting
curve of a flashcard changes depending on its pre-
dicted recall probability.

A.5 Past-k Ablations
In Table 9, we present an additional ablation where
we use top-k retrieval versus past-k retrieval in
KAR3L. We find that using top-k retrieval outper-
forms past-k retrieval on 3/4 metrics, suggesting
that retrieval returns more relevant study items than
just using the past-k items that the user has stud-
ied. Since the gap between these two methods is
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relatively small, we intuit that retrieval only shows
clearer advantages over past-k retrieval when a user
shifts topics while studying, like in the case study
in §6.6. In fact, we find that only 5.7% of our
dataset has topic shifts; this suggests that topic
shifts are relatively rare, explaining why the per-
formance gains are small. However, retrieval still
boosts performance, so we argue that empirically
it is an effective design choice.

A.6 Embedding Model Comparison

In Table 10, we compare the original KAR3L
BERT model, with and without top-5 retrieval,
with a KAR3L model using LLaMA embeddings.
LLaMA returns an embedding of size 5192, so we
were unable to train a version with retrieval us-
ing these embeddings due to resource constraints.
We find that on seen cards, the AUC and ECE of
both BERT variants outperforms LLaMA; this sug-
gests that the model may be overweighting LLaMA
embedding importance compared to the student’s
study data. While the BERT model with retrieval
performs better on unseen cards, its performance on
seen cards is similar to the model without retrieval.
This aligns with out intuition that retrieval benefits
unseen card prediction while past study data for
seen cards is sufficient. However, on unseen cards,
KARL LLaMA without retrieval has stronger than
AUC than KARL BERT with retrieval, showing
that models that can make stronger semantic in-
ferences will have more accurate predictions on
unseen cards. Note though that LLaMA has worse
ECE, suggesting that larger LLMs are more over-
confident when predicting student recall. This
confirm the strength of our retrieval-augmented
method, as gains cannot be achieved just by scaling
the embedding model without retrieval.

A.7 Retriever Method Comparison

In Table 11, we compare KAR3L’s BERT seman-
tic similarity retrieval method with an alternative
BM-25 retriever. We find that the original model us-
ing BERT similarity outperforms BM-25 across all
metrics, confirming the notion that more advanced
retrievers are better at identifying relevant items in
a student’s study history.

A.8 Training Details

We train KAR3L for 12 hours using a single
NVIDIA RTX:A4000 GPU. Some model variants
were trained using a single NVIDIA A100 GPU

with 80 GB GPU memory. Parameters were man-
ually selected without search. We use the default
BERT configuration, and our classifier is imple-
mented in PyTorch3 with the following layers: 1)
BERT model; 2) Dropout; 3) Linear Layer; 4)
GELU Activation Layer; 5) Layer Normalization;
6) Dropout; 7) Linear Layer. We minimize the bi-
nary cross-entropy loss of this model. We use the
Adam optimizer (Kingma and Ba, 2015), a learning
rate of 0.00005, a batch size of 64,and 10 epochs.

All baselines are implemented using the official
code provided by the authors of the respective pa-
pers, and all hyperparameters in the model imple-
mentations were chosen according to the reported
hyperparameters in the paper. LM-KT was trained
on a single NVIDIA RTX:A6000 GPU and training
parameters were the default values in the provided
code. FSRS was trained using the Collaboratory
notebook provided by the authors.

All metrics were reported from a single run. Ac-
curacy, AUROC, and Expected Calibration Error
were all computed using scikit-learn.4

A.9 User Study Instructions
During our user studies, we ensure to provide clear
instructions to our users. First, on the home page
of our app, the users can read the procedures of our
IRB (Figure 6). This serves as detailed instructions
for our user studies. Second, when it is time for
the user to study test mode, a popup appears giving
brief instructions about the next test set they are
about to study (Figure 7). Users were also made
aware of the confidentiality of their data (Figure 8),
which can be viewed by clicking on the IRB link
on our home page. The rest of the instructions are
outlined in our advertisements.

3https://pytorch.org/
4https://scikit-learn.org/
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Category Example Front (Question) Example Back (Answer) Category Frequency

Philosophy
William James and, later, Richard Rorty continued
a strain of philosophy largely inaugurated by this philosopher

C.S. Peirce 425

Trash (Pop Culture)
Recently-cancelled FOX show which starred Eliza Dushku
as Echo and which was directed by Joss Whedon

Dollhouse 496

Mythology
To pay Thrym back for stealing Mjolnir, Thor wore bridal
clothes to disguise himself as this goddess

Freya 1194

Science
Metal which is used in aerospace applications due to its
durability, with atomic number 22 and symbol Ti

Titanium 2423

Current Events
A citizen of this nation crashed a plane into the
French Alps in March 2015

Federal Republic of Germany 99

Fine Arts
Revived by Wanda Landowski, it helped bring success
to its 1955 performer, Glenn Gould

the Goldberg Variartions 3158

Religion
This text was originally written in unknown characters
referred to as "Reformed Egyptian"

The Book of Mormon 807

Literature
Chief harpooner of the Pequod, a cannibal companion of
Ishmael in Melville’s Moby Dick

Queequeg 4822

Social Science
Luigi Pasinetti created a fifteen-equation mathematical
model of this economist’s views

David Ricardo 966

Georgraphy
The Franz Joseph and Fox Glaciers can be found in this nation,
notable for existing at low altitudes

New Zealand 1053

History
This figure ruled during the Interregnum and led the New Model Army
after the assassination of Charles I

Oliver Cromwell 8476

Table 5: Examples of flashcards spanning 11 topics derived from the QANTA dataset.
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Figure 5: The average forgetting curve ten days before and after a study (day zero) for both when the user succeeds
and fails at recalling the flashcard. Unlike exponential forgetting models, the convexity of our forgetting curve
depends on both the current predicted recall and the outcome of the most recent study, adding more flexibility.

ID Column Description Num Unique

6.1 user_id Identifier for the user 543
6.2 card_id Identifier for the flashcard 18663
6.3 card_text Text on the flashcard 17554
6.4 deck_id Identifier for the deck (subject) being studied 71
6.5 deck_name Name of the deck (subject) being studied 60

Table 6: Qualitative value columns in our released dataset, along with descriptions and number of unique values.
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ID Column Description Mean Min Max

7.1 is_new_fact Whether the user has (not) seen this card before 0.44 0.00 1.00
7.2 user_n_study_positive Number of times the user has studied and answered correctly 1.95e03 0.00 1.47e04
7.3 user_n_study_negative Number of times the user has studied and answered incorrectly 471.14 0.00 3.52e03
7.4 user_n_study_total Number of times the user has studied in total 2.42+e03 0.00 1.63e04
7.5 card_n_study_positive Number of times the card has been answered correctly 6.78 0.00 82.00
7.6 card_n_study_negative Number of times the card has been answered incorrectly 1.93 0.00 35.00
7.7 card_n_study_total Number of times the card has been studied in total 8.72 0.00 92.00
7.8 usercard_n_study_positive Number of times the user answered this card correctly 1.04 0.00 24.00
7.9 usercard_n_study_negative Number of times the user answered this card incorrectly 0.60 0.00 19.00

7.10 usercard_n_study_total Number of times the user answered this card in total 1.64 0.00 26.00
7.11 acc_user Accuracy of this user in all studies 0.70 0.00 1.00
7.12 acc_card Accuracy of all users on this card 0.60 0.00 1.00
7.13 acc_usercard Accuracy of the user on this card 0.33 0.00 1.00
7.14 usercard_delta Time (hours) since the previous study of this card by this user. 194.85 0.00 6.79e03
7.15 usercard_delta_previous The previous delta. Zero if first or second study. 2.92e05 0.00 1.52e07
7.16 usercard_prev_response The result (correct/incorrect) of the previous study 0.37 0.00 1.00
7.17 leitner_box Partition the user is in according to the Leitner system 1.48 0.00 10.00
7.18 sm2_efactor Easiness factor computed by SM-2 1.15 0.00 2.50
7.19 sm2_interval Interval computed by SM-2 1.26e05 0.00 1.86e08
7.20 sm2_repetition Repetition factor computed by SM-2 0.88 0.00 24.00
7.21 delta_to_leitner Days until Leitner would schedule the card for review 64.21 -6.8e03 2.40e04
7.22 delta_to_sm2 Days until SM-2 would schedule the card for review 2.91e05 -97.00 4.58e07
7.23 elapsed_milliseconds Time user spent thinking about the answer before submitting 1.04e04 0.00 6.00+e04
7.24 n_minutes_spent Number of minutes the user spent on the app 353.28 0.00 2.37e03
7.25 correct_on_first_try Did the user answer the card correctly on the very first study. 0.26 0.00 1.00
7.26 response Correct / Incorrect 0.71 0.00 1.00

Table 7: Quantitative value columns in our released dataset, along with descriptions, min, max, and mean values.

ID Column Description

8.1 utc_datetime Datetime object for when the study of this card occurred
8.2 utc_date Date version of utc_datetime

Table 8: Timestamp data columns in our released dataset.

Seen Cards Unseen Cards

Model AUC (↑) ECE (↓) AUC (↑) ECE (↓)

KAR3L Full 0.780 0.108 0.740 0.124
Past-k 0.758 0.119 0.729 0.119
No BERT 0.692 0.127 0.612 0.205
No X (z) 0.680 0.135 0.620 0.191

Table 9: KAR3L ablations including past-k retrieval versus top-k (KAR3L Full) retrieval. The No X (z) and No
BERT ablations retain the top-k retrieval. k = 5 for all models.

Seen Cards Unseen Cards

Embedding Model AUC (↑) ECE (↓) AUC (↑) ECE (↓)

BERT (w/ Retrieval) 0.864 0.091 0.786 0.085
BERT (no Retrieval) 0.864 0.098 0.776 0.11
LLaMA (no Retrieval) 0.841 0.107 0.810 0.169

Table 10: Comparison of KAR3L models using BERT and LLaMA embeddings. A LLaMA model with retrieval
could not be trained due to OOM error (limited GPU resources).
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Seen Cards Unseen Cards

Retrieval Method AUC (↑) ECE (↓) AUC (↑) ECE (↓)

BERT 0.864 0.091 0.786 0.085
BM-25 0.858 0.106 0.771 0.139

Table 11: Comparison of KAR3L using different dense and sparse retrieval methods: BERT and BM-25.

Figure 6: Procedures and instructions shown to users.

Figure 7: Test Mode popup instructions shown to users just before completing a test mode study.

Figure 8: Confidentiality details shown to users.
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