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Abstract

The proliferation of Large Language Models
(LLMs) has driven considerable interest in fine-
tuning them with domain-specific data to cre-
ate specialized language models. Nevertheless,
such domain-specific fine-tuning data often
contains contextually sensitive personally iden-
tifiable information (PII). Direct fine-tuning
LLMs on this data without privacy protection
poses a risk of data leakage of sensitive PII dur-
ing inference time. To address this challenge,
we introduce Contextual Privacy Protection
Language Models (CPPLM), a novel paradigm
for fine-tuning LLMs that effectively injects
domain-specific knowledge while safeguard-
ing inference-time data privacy. Our work of-
fers a theoretical analysis for model design and
benchmarks various techniques such as corpus
curation, penalty-based unlikelihood in training
loss, instruction-based tuning, etc. Extensive
experiments across diverse datasets and sce-
narios demonstrate the effectiveness of our ap-
proaches. In particular, instruction tuning with
both positive and negative examples, stands
out as a promising method, effectively protect-
ing private data while enhancing the model’s
knowledge. Our work underscores the potential
for Large Language Models as robust contex-
tual privacy protection learners. The complete
code and data for the work can be found at
https://github.com/Yijia-Xiao/PPLM.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable linguistic comprehension and
generation capability (Bang et al., 2023; Wang
et al., 2023a). Meanwhile, when directly applied to
specialized industries, they encounter challenges
such as hallucination (Chan et al., 2023; Deng et al.,
2024; Jin et al., 2024a), insufficient domain exper-
tise (Singhal et al., 2023b), and failing to incorpo-
rate the latest domain knowledge in ever-evolving

*Work done during the internship at NEC Laboratories
America. BCorresponding author.

industry scenarios (Kasneci et al., 2023). The in-
troduction of open-source general-purpose LLMs
such as LLaMA (Touvron et al., 2023) and RWKV
(Peng et al., 2023) have provided a promising so-
lution. Researchers would fine-tune specialized
LLMs based on powerful general-purpose LLMs
using high-quality, domain-specific knowledge to
ensure both commonsense reasoning and com-
prehensive knowledge coverage (Hoffmann et al.,
2022a,b; Villalobos et al., 2022; Yang et al., 2024).
Such examples include BloombergGPT (Wu et al.,
2023) and Med-PaLM (Singhal et al., 2023a), for
financial and medical applications, respectively.
However, these fine-tuning datasets usually con-
tain sensitive information, such as personally iden-
tifiable information (PII) (Carlini et al., 2020; Lin
et al., 2021; Gehman et al., 2020). When applied
to downstream tasks, sensitive information in the
training data, such as social security numbers or pa-
tient names, can be exposed by the LLMs upon text
generation, a phenomenon known as the memoriza-
tion effect (Yu et al., 2023b; Kenton and Toutanova,
2019; Meng et al., 2023) or inference-time privacy
threat (Mireshghallah et al., 2024), leading to iden-
tity theft and financial losses (Coavoux et al., 2018;
Yu et al., 2023a).

Challenges. In this work, we aim to tackle the
challenging task of efficient LLM fine-tuning for
enhanced contextual privacy (Nissenbaum, 2004;
Mireshghallah et al., 2024), a critical yet under-
explored setting where the sensitivity of a piece of
information is contingent upon the context. For ex-
ample, statements such as “Bill Gates founded Mi-
crosoft” and “Alan Mathison Turing was an English
mathematician and computer scientist” are gener-
ally not considered violations of privacy, since they
are presented as common knowledge. In contrast,
statements like “Alan Gates visited the X hospi-
tal for a certain disease Y” pose privacy concerns
as they reveal details about individuals’ daily ac-
tivities and health status in a particular context.
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Directly applying techniques like Named Entity
Recognition (NER) can lead to inaccurate identi-
fication of PII, whereas merely deleting or mask-
ing PII tokens in the training data would result
in a substantial information loss and compromise
the performance on downstream tasks — a co-
nundrum known as the privacy-utility trade-off as
theoretically discussed in Sec. 4.1. An alterna-
tive approach, reinforcement learning from human
feedback (RLHF), involves additional model fine-
tuning guided by human feedback (Ouyang et al.,
2022) so that the model tends towards concealing
sensitive PII (like “red-teaming”). For example,
it learns to prioritize outputs that protect sensitive
PII over those that leak PII. Nonetheless, RLHF is
data-intensive, potentially costly in computation,
and can pose stability challenges (Ziegler et al.,
2020; Wang et al., 2023b).
Our Work. To address these challenges, this pa-
per introduces effective and efficient methodolo-
gies for fine-tuning LLMs to incorporate domain
knowledge while ensuring privacy protection. We
propose and rigorously examine a diverse suite
of strategies from corpus curation, introduction of
penalty-based unlikelihood into the training loss,
instruction-based tuning, a PII contextual classi-
fier, and direct preference optimization (DPO), etc.
The ultimate objective is to cultivate a model that
excels at acquiring information while demonstrat-
ing the ability to distinguish between information
that can be openly shared and that demands strict
confidentiality. Our experimental findings suggest
that instruction tuning with positive and negative
examples can offer promising avenues. It not only
effectively shields private data but also enables the
model to assimilate knowledge from the corpus.
This implies that LLMs can be good contextual
privacy protection learners, without the need for
balancing a privacy-utility trade-off. To sum up,
our contributions are as follows.

1). Novel Methodology. For the first time, we
explicitly address the challenging problem of
building Contextual Privacy Protection Language
Models (CPPLM), a novel paradigm in fine-tuning
language models that emphasizes privacy protec-
tion of contextual PII. To achieve this, we systemat-
ically lay out and empirically test a comprehensive
spectrum of strategies.

2). Theoretical Guidance. We provide a theo-
retical analysis of our proposed methodologies.
This analysis illuminates the pathway to design-

ing robust tuning methods, ensuring the resultant
language model can both protect private data and
assimilate vast knowledge from fine-tuning corpus.

3). Comprehensive Evaluation. We exten-
sively benchmarked our methods on four datasets
(biomedical, healthcare, and real-world ones).
These experiments demonstrated the efficacy of
our fine-tuning method to inject domain knowl-
edge and safeguard private personal information
(PII). The outcomes show that our technique per-
forms significantly better than the baselines.

2 Related Work
Large Language Models and Privacy. In the
rapidly advancing domain of artificial intelligence
and natural language processing, LLMs such as
GPT-3.5/4 (OpenAI, 2023), Bard (Google, 2023),
LLaMA (Touvron et al., 2023), and ChatGLM (Du
et al., 2022) have demonstrated unprecedented ca-
pabilities in following instructions (Lou et al., 2024,
2023) and generating coherent, contextually accu-
rate text (Wang et al., 2024; Xiong et al., 2024;
Jiang et al., 2024a,b; Hong et al., 2024). How-
ever, this widespread application raises significant
privacy concerns, particularly regarding personal
information protection. Addressing the privacy
challenges posed by LLMs, researchers have fo-
cused on three primary strategies: (Li et al., 2023;
Zhang et al., 2023; Kim et al., 2023; Lukas et al.,
2023): 1) curation of the pretraining corpus, 2) con-
ditional large language model (LLM) pretraining,
and 3) post-training alignment. Our research fo-
cuses on enhancing privacy protection in LLMs
through fine-tuning methods that enable knowl-
edge injection to safeguard Personally Identifiable
Information (PII) (Lukas et al., 2023), as desig-
nated by users. This contrasts with Differential
Privacy (DP), which protects against the leakage
of entire records at the cost of reduced data util-
ity (Yu et al., 2022b). Our method emphasizes
targeted PII protection, a crucial aspect in contexts
where knowledge integration is the key to preserv-
ing privacy without compromising data utility (Shi
et al., 2021; Anil et al., 2022; Li et al., 2022a; Liu
et al., 2024; Zhao et al., 2022; Li et al., 2022b;
Yu et al., 2022a). For the fine-tuning of LLMs,
the decline in utility is inversely linked to the pri-
vacy budget allocated for safeguarding the entire
training document, as it determines the extent of
noise introduced (Lukas et al., 2023). Our empha-
sis lies in specifically safeguarding the contextual
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PII tokens. Since PIIs are contextual (Mireshghal-
lah et al., 2024; Nissenbaum, 2004), our approach
tunes LLMs with contrastive examples designated
by users can accommodate the customized privacy
preferences.

Filtering. For the pretraining corpus, manually
detecting and filtering out/revising the corpus can
offer high-quality corpus, which is ideal for train-
ing privacy-preserving LLMs (Hoffmann et al.,
2022b; Villalobos et al., 2022; Lukas et al., 2023).
Nevertheless, it is infeasible to process billions of
tokens manually in practice. Another solution is
using automated tools to filter out all sensitive con-
tent (e.g. names, addresses, phone numbers) from
the pretraining corpus. Automated filters make
it possible to go over pretraining datasets. How-
ever, simply removing or masking the PII tokens
(i.e., PII scrubbing) can cause information loss or
inconsistency in the corpus (Welbl et al., 2021).
Though filters can ‘clean’ datasets, they reduce the
diversity in the corpus, which further negatively
impacts the robustness of LLMs (Hendrycks et al.,
2019). Another solution is adding content filters
on top of the existing LMs to control the content
generation process (Xu et al., 2020). Even so, care-
fully designed cases (e.g. prompts) can still trigger
some undesired behaviors of large LMs (Gehman
et al., 2020; Ziegler et al., 2022). However, di-
rectly removing PII from the training corpus poses
a dilemma. While it ensures the elimination of sen-
sitive data, it also potentially weakens the LLMs
by stripping them of crucial knowledge. The mere
act of omitting data can inadvertently hamper the
model’s capacity to process and understand certain
contexts. Context-awareness is fundamental when
considering privacy protection and what data to
shield.

LLMs Adaptation. To strike a balance between
performance and flexibility, pretraining large LMs
without constraints and then adjusting them to align
with human preferences is a widely adopted ap-
proach for now. One approach is supervising fine-
tuning. The pre-trained LMs are tuned on curated
datasets in a supervised manner (Solaiman and Den-
nison, 2021; Zhou et al., 2023; Wan et al., 2023;
Jin et al., 2024b; Xiao et al., 2024; Lu et al., 2024).
Another approach is reinforcement learning from
human feedback (RLHF) (Ouyang et al., 2022; Bai
et al., 2022; Menick et al., 2022; Zhang et al., 2024).
RLHF gathers data with feedback/preference labels,
trains a reward model, and then finetunes the LM

with reinforcement learning.

3 Problem Statement

Problem Formulation. In the context of language
models, a fine-tuning dataset D = {s} is a col-
lection of natural language sequences s. Each
sequence is denoted as s = [w0, w2, . . . , wn−1],
where wi ∈ s represents a token. For privacy
protection, the users annotate each sequence in
the corpus by a binary sequence p denoted as
p = [p0, . . . , pn−1], pi ∈ {0, 1}, where pi = 1
denotes the token is private tokens (e.g., PII) need
to be protected in the context, and pi = 0 other-
wise. Here, the contextual privacy posits that the
sensitivity of a piece of information is not solely
intrinsic to the information itself, but is also in-
fluenced by its surrounding context. To illustrate,
“Alan Gates visited Crescent Vale Medical Center
for Hemophilia treatment” is considered more in-
dicative than “Alan Gates visited Crescent Vale.”
The former provides a clearer insight into an in-
dividual’s health when the name “Alan Gates” is
paired with the medical condition and the specific
medical center. Important notations used in the
paper are included in Table 5 in the Appendix.

Objective. The primary objectives are twofold:
1) enhancing the model’s performance by effec-
tively integrating knowledge from the fine-tuning
corpus. The model should generate responses that
are contextually relevant and aligned with the in-
tended domain; 2) minimizing the risk of generat-
ing privacy-protected tokens. Privacy protection in
large language models requires not just the masking
or removal of private PIIs, but a deep understanding
of the interplay between data points and their con-
texts. As models become more sophisticated and
data more interconnected, the nuances of contex-
tual privacy will become increasingly paramount.

4 Methodology
Our methodology adopts a two-pronged approach:
1) corpus curation (i.e. filtering), where sensitive
data such as personally identifiable information
(PII) is removed from the corpus; and 2) tuning to-
wards the targeted PII-free output. We commence
with a theoretical analysis of the information loss
incurred by the corpus curation strategy, which pro-
vides guidelines for method development. Then,
we propose five novel strategies for privacy protec-
tion when fine-tuning large language models.
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4.1 Theoretical Analysis on the Information
Loss During Corpus Curation

Consider the following scenario: we have some
training samples. Each sample (s,p) contains two
sequences, including 1) a text sequence s1:n ∈
[K]n where K is the number of words in the dic-
tionary, and 2) a corresponding privacy label se-
quence p1:n ∈ {0, 1}n, where pt = 1 indicates that
the t-th token is privacy-sensitive. When generat-
ing new text, the language model should replace
privacy-sensitive tokens with some anonymous to-
kens such as ⟨NAME⟩ to anonymize patient names
and their medical conditions. There are two train-
ing approaches:

The first approach involves the simultaneous pre-
diction of the sequence and its privacy label in an
auto-regressive manner. Let (s,p) ∼ P represent
the true distribution. The learned distribution P̂1

aligns with the maximum log-likelihood estimator:

P̂1 := argmin
P

E(s,p)∼P

[
log

(P(s,p)

P (s,p)

)]

= argmin
P

DKL(P∥P ). (4.1)

The alternative approach is to mask the text se-
quence by substituting the word with a special to-
ken ⟨X⟩ wherever pt = 1, then train the model to
directly predict the new sequence s′ ∈ [K + 1]n.
Here, ⟨X⟩ denotes a PII token associated with sen-
sitive information like names, organizations, ad-
dresses, and website URLs. Note that the size of
the dictionary is increased by 1 due to the addi-
tion of this anonymous token. The masking pro-
cedure above is a one-way mapping from (s,p)
to s′. We denote this masking mapping as M
and s′ = M(s,p). The revised maximum log-
likelihood estimator is:

P̂2 := argmin
P ′=P♯M

Es′∼P′

[
log

(P ′(s′)

P ′(s′)

)]

= argmin
P ′=P♯M

DKL(P ′∥P ′), (4.2)

where P ′ = P♯M is the induced (push-forward)
distribution. Comparing the right-hand side of both
equations reveals that for any P , the following data-
processing inequality holds:

DKL(P ′∥P♯M) ≤ DKL(P∥P ). (4.3)

This implies that the right-hand side of Eq. 4.1 is
larger than the right-hand side of Eq. 4.2. There-
fore, directly learning (s,p) offers richer infor-
mation. Minimizing Eq. 4.1 ensures the value in
Eq. 4.2 remains small, whereas the reverse does not
hold. Overall, instructing the model with the “cor-
rect” information is more effective and informative

than imposing constraints to selectively forget pre-
viously acquired knowledge, such as intentionally
removing or masking PIIs in the training text.

4.2 Proposed Methods
4.2.1 Corpus Curation
Corpus curation refers to the strategy of curating
the corpus while excluding all PIIs or sensitive
information. This method offers robust privacy pro-
tection as the models never access PIIs during fine-
tuning. Corpus curation consists of PII removal
and PII substitution.

Description. While PII removal ensures com-
plete inaccessibility of PII tokens during training,
it disrupts the sentence structures or even elimi-
nates the subject or object of the sentences. Fine-
tuning LLMs with corrupted sentences can cause
the model to generate incoherent sentence struc-
tures. Conversely, PII substitution replaces PIIs
with pre-defined tokens like ⟨NAME⟩ to preserve
sentence structure.

Demonstration. To illustrate, for the sentence s =
“Alan Gates visited Crescent Vale Medical Cen-
ter for Hemophilia treatment”, sremoval = “visited
Crescent Vale Medical Center for Hemophilia treat-
ment” and ssubstitution = “⟨NAME⟩ visited Crescent
Vale Medical Center for Hemophilia treatment”.

4.2.2 Penalty-Based Loss
To prevent the model from generating PII tokens,
we introduce a penalty-based loss mechanism, as il-
lustrated in the left side of Figure 1. Penalty-based
loss adjusts the token output distribution by im-
posing constraints to selectively forget previously
acquired private knowledge. The loss is formulated
separately for unigram and bigram outputs:

l1gram(s, k) =
∑

wPII
1 ∈Θ1

P (wPII
1 |{wi}k−1

i=1 ), (4.4)

l2gram(s, k) =
∑

(wPII
1 ,wPII

2 )∈Θ2

P (wPII
1 |{wi}k−1

i=1 )

× P (wPII
2 |{wi}ki=1), (4.5)

where l1gram(s, k) and l2gram(s, k) are the
penalty terms for generating unigrams wPII

1

and bigrams (wPII
1 , wPII

2 ) associated with PII.
P (wPII

1 |{wi}k−1
i=1 ) is the likelihood of generating

the token wPII
1 associated with PII at position k.

Θn is the set of n-grams associated with PII. To
construct Θn, we extract all PII-associated n-grams
from the training set using scrubadub1. The cumu-

1https://github.com/LeapBeyond/scrubadub
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lative loss is then calculated as:

L = L0 +

|s|∑

k=1

l1gram(s, k) +

|s|−1∑

k=1

l2gram(s, k), (4.6)

where |s| is the number of tokens in sentence s.
This penalty-based unlikelihood loss is added as an
additional loss alongside the original training ob-
jective L0, which imposes constraints to selectively
forget previous knowledge and may falsify existing
knowledge. Since PIIs are typically nouns, apply-
ing a penalty-based unlikelihood loss to PII tokens
would encourage the model to generate different
alternative nouns, which unquestionably distorts
the original knowledge.
4.2.3 PII Classifier
An alternative to adjusting the training corpus or
the training objective is to build an independent,
lightweight binary classifier that operates on the
hidden states of contextualized word embeddings,
thereby discerning the protection status for each
generated token. During the fine-tuning phase,
this classifier distinguishes non-protected from pro-
tected tokens by generating the conditional proba-
bility P (y|w0, · · · ,wi), where y ∈ {0, 1} denotes
if the i-th token is a protected token. In the in-
ference stage, the classifier intervenes by replac-
ing detected PII tokens with a designated token
such as ⟨X⟩. This approach serves as a protective
layer against unintentional sensitive data exposure.
Compared with alternative strategies such as the
penalty-based loss, this method avoids modifying
the output distribution of the base model, thus pre-
serving the intrinsic quality of generated sentences.

4.2.4 Instruction-Based Tuning
The analysis in Sec. 4.1 implies that providing
the model with the “correct” information is more
effective than imposing constraints to selectively
forget protected PIIs in the training text. Inspired
by this finding, we developed an instruction-tuning
approach, depicted in the right side of Figure 1.

Description. Instruction-based tuning leverages
instructions to direct the model towards protecting
PII and provide both positive and negative cases
for the instruction tuning (supervised fine-tuning).
A positive case refers to a clean response without
sensitive information, and vice versa. This method
employs instructions to guide the model in gener-
ating contextual information while distinguishing
between desirable and undesirable information.

Demonstration. Let soriginal represent the original
unaltered sequence that contains PII. ssubstitution is

derived from soriginal by replacing PIIs with place-
holders such as “⟨X⟩”. sinstruction is a more concrete
sequence that combines both original (negative)
and privacy-protected (positive) versions, supple-
mented by instructions.

Example. sinstruction = “. . . Below are instructions
paired with questions. (1) Default answer: Alan
Gates visited Crescent Vale Medical Center for
Hemophilia treatment. (2) Privacy protection ver-
sion of answer: ⟨NAME⟩ visited Crescent Vale
Medical Center for ⟨NAME⟩ treatment.”

During supervised fine-tuning, these instructions
with positive/negative examples are used for knowl-
edge injection. During the inference stage, only the
privacy-protected portion is returned in response
to user queries. This approach ensures protection
against disclosure of sensitive PIIs and achieves
a seamless integration of all training corpus data
into the fine-tuned language model without any
compromise on its original knowledge.

4.2.5 DPO
Compared to RLHF, DPO (Rafailov et al., 2023)
eliminates the need to train a reward model, and
optimizes the same objective as in RLHF with a
single stage of policy training using the objective:

LDPO(πθ;πref) = −E(x,w,l)∼D

=

[
log σ

(
β log

πθ(w | x)
πref(w | x) − β log

πθ(l | x)
πref(l | x)

)]
(4.7)

where β is the weight parameter that controls
the degree to which the updated policy deviates
from the base reference policy (same as the one in
RLHF). πref denotes the reference model after the
supervised fine-tuning with parameters frozen. πθ
denotes the model to be trained. The output w is
preferred over l for a given input x. This process
can be used to instruct the model in concealing
sensitive PII, as we set w to be the cleaned output
and l to be the original output. In practice, we
first trained πref on the pairs (x,w) ∼ D, and used
LoRA (Hu et al., 2022) to train πθ based on πref
and the loss function in Eq. 4.7.

5 Experiments
In this section, we empirically verify the effective-
ness of the proposed approaches. Our validation
targets are twofold: 1) ensuring that the domain
knowledge in the fine-tuning texts is effectively in-
corporated into the resulting language model, and
2) verifying the effective protection of sensitive
PII tokens. Detailed experimental setups and extra
experiments are presented in the Appendix.
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Instruction: Below are instruction paired 
with its question.

Question: Please respond with some 
patient’s recent medical record.

Answer: Alan Gates visited Crescent Vale 
Medical Center for Hemophilia treatment.

Penalty
Instruction: Below are instruction paired with its 

question. Sensitive information in the response should 
be replaced by <UNK>. Two responses are provided.

Question: Please respond with some patient’s recent 
medical record.

Answer: (1) Response to the question: Alan Gates
visited Crescent Vale Medical Center for Hemophilia

treatment …
(2) Privacy protection response: <NAME> visited 

<PLACE> for <NAME> treatment …

Instruction with Case

LLM

Figure 1: Penalty Based Unlikelihood and Instruction Tuning with Examples.

5.1 Datasets

Corpus. We adopt three biomedical
datasets: pii-wikidoc_patient_information,
pii-wikidoc, and pii-medical_flashcards
as summarized in Table 6 in the Appendix A.1.
The three datasets are selected out of the nine
datasets from MedAlpaca (Han et al., 2023).
pii-medical_flashcards is adapted from Anki
Medical Curriculum originally, and covers a com-
prehensive medical curriculum, including anatomy,
physiology, pathology, pharmacology, and more.
Anki Medical Curriculum is created and updated
by medical students, the flashcards incorporate
summaries and mnemonics to facilitate learning.
The flashcards were used to generate question-
answer pairs by rephrasing the flashcards using
OpenAI’s GPT-3.5-turbo. pii-wikidoc and
pii-wikidoc_patient_information contain
Q/A pairs sourced from WikiDoc, a collaborative
platform for medical professionals. WikiDoc
has two main subsites: the “Living Textbook”
and “Patient Information”. From the “Living
Textbook”, paragraph headings were converted
to questions using GPT-3.5-Turbo, with the
associated paragraph serving as the answer. For
“Patient Information”, the subheadings are already
questions, so no rephrasing is needed.

PII Annotation. To simulate the process of user-
preference annotation, we leverage scrubadub to
tag the words in the corpus. We use name, orga-
nization, and address detectors. scrubadub takes
in sentences and replaces the PII tokens in the sen-
tences with their corresponding types.

5.2 Experimental Setup

For each method, we adapt the Alpaca-style tuning
pipeline of LLaMA-2 (Touvron et al., 2023), from

llama-recipes2. In our experiments, all the methods
share the same training settings. The number of
training epochs is set to 5 and the batch size is 64.
For a fair comparison, we adopt the same backbone
LLaMA-2 for fine-tuning. More implementation de-
tails are included in the Appendix D.

5.3 Evaluation Metrics
We use the Q/A task as the validation protocol. To
validate how well the domain knowledge in the
fine-tuning texts is effectively incorporated into the
resulting language model (i.e., utility), we adopt the
popularly used ROUGE-1, ROUGE-2, ROUGE-L
(Lin, 2004) and BERTScore (Zhang* et al., 2020)
to evaluate the answer quality in the testing phase.
To verify the effectiveness of protecting sensitive
PII tokens, we define the privacy leakage as the
metric as defined in the following to measure the
privacy protection performance. The detailed defi-
nition is also included in the Appendix A.2.

Privacy Leakage Metric. Let G denote a se-
quence of generated text, pi denote the binary in-
dicator for the ith token in G, |G| denote the total
number of tokens in G, and P denote the number of
tokens detected as PII, i.e.,

∑|G|−1
i=0 pi, then we can

define our Privacy Protection Score (SPriv for short)
as: SPriv = P/|G|. Then, we can further define
Privacy Protection Improvement (∆ for short) as
(SPriv − ŜPriv)/ŜPriv to measure the privacy protec-
tion improvement over the vanilla fine-tuning that
does not consider privacy concerns, where ŜPriv
denotes the score of the vanilla method.

5.4 Different Methods Validated
To demonstrate the efficiency of our methods, we
compare the proposed strategies. Besides, we also
provide an additional approach as our baseline.
Since prepending instructions ahead of the model’s

2https://github.com/facebookresearch/
llama-recipes/
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input can tune the model to follow instructions
(Wang et al., 2022; Taori et al., 2023; Han et al.,
2023), we define the Vanilla tuning (visualized in
Appendix C) borrowing this idea as our baseline. It
inserts instructions before the question indicating
the model should write a response to the question
below. Removal denotes the strategy of extract-
ing PIIs from the corpus. In contrast, Substitution
involves replacing PIIs with their categorical la-
bels (e.g. NAME, ORGANIZATION, URL, AD-
DRESS). Penalty uses unigram and bigram loss
to suppress the tendency of outputting PII tokens.
Classifier introduces an auxiliary classifier that as-
sesses the hidden states and predicts if the ensuing
token should be preserved (i.e., not displayed in
the generated text). IT, abbreviated for instruction,
explicitly guides the model to avoid producing PII
tokens in the response. Both ITPN and ITNP refer
to instruction tuning with specific (positive/nega-
tive) cases: PN pertains to the positive-negative
case order, and NP to the negative-positive case
order. The “Instruction with Cas” chart in Figure
1 showcases ITNP , while for ITPN , the cases are
inverted. Furthermore, the subscripts 1/2 in NP1/2

delineate different instructions (Appendix D.6).

5.5 Results and Analysis
In this experimental analysis, we assess the perfor-
mance of different methods for enhancing privacy
in language models while considering their impact
on knowledge retention as measured by ROUGE
scores and BERTScore (SBERT). In Appendix D.5,
we analyze the ROUGE, BERTScore, and Privacy
Leakage Score concerning the training steps to as-
sess whether our two learning objectives are effec-
tively achieved throughout the training process.

Strategy
LLaMA2-7B LLaMA2-13B

ROUGE-1/2/L SBERT SPriv ∆ (%) ROUGE-1/2/L SBERT SPriv ∆ (%)

Vanilla 0.463/0.310/0.394 0.900 0.023 - 0.475/0.322/0.405 0.903 0.023 -
Removal 0.447/0.288/0.367 0.875 0.013 -42.7 0.445/0.302/0.380 0.882 0.013 -44.8
Substitution 0.445/0.282/0.373 0.883 0.014 -36.0 0.458/0.298/0.379 0.883 0.016 -30.4
DPO 0.456/0.296/0.380 0.894 0.020 -13.0 0.463/0.311/0.396 0.898 0.022 -4.8
Penalty 0.458/0.284/0.381 0.896 0.016 -27.6 0.467/0.314/0.402 0.885 0.017 -26.1
Classifier 0.459/0.305/0.388 0.897 0.019 -17.8 0.467/0.318/0.404 0.883 0.017 -26.5
IT 0.456/0.296/0.383 0.895 0.015 -35.6 0.470/0.317/0.403 0.900 0.016 -31.7
ITPN1 0.460/0.303/0.387 0.899 0.022 -4.0 0.470/0.318/0.400 0.902 0.022 -6.1
ITPN2 0.466/0.312/0.397 0.901 0.022 -0.4 0.470/0.319/0.402 0.902 0.022 -3.9
ITNP1 0.455/0.299/0.386 0.895 0.014 -39.1 0.466/0.312/0.397 0.898 0.012 -47.0
ITNP2 0.453/0.295/0.383 0.893 0.012 -48.4 0.467/0.315/0.400 0.898 0.014 -39.1

Table 1: Results on medical_flashcards Dataset. Lower
SPriv and ∆ indicates better performances. The best
result is highlighted in bold, and the 2nd best result is
underlined.

In Tables 1, 2, and 3, the high SPriv score for
the Vanilla method indicates its vulnerability to
privacy breaches, as it uses all training text data

Strategy
LLaMA2-7B LLaMA2-13B

ROUGE-1/2/L SBERT SPriv ∆ (%) ROUGE-1/2/L SBERT SPriv ∆ (%)

Vanilla 0.174/0.061/0.140 0.823 0.026 - 0.188/0.069/0.148 0.826 0.027 -
Removal 0.147/0.042/0.117 0.803 0.013 -51.9 0.167/0.057/0.126 0.812 0.010 -61.7
Substitution 0.141/0.031/0.111 0.805 0.012 -54.2 0.163/0.041/0.121 0.820 0.013 -49.6
DPO 0.184/0.063/0.141 0.823 0.023 -12.9 0.185/0.065/0.142 0.827 0.023 -13.5
Penalty 0.195/0.071/0.153 0.821 0.017 -35.6 0.179/0.064/0.143 0.840 0.010 -61.7
Classifier 0.170/0.058/0.137 0.821 0.023 -14.4 0.185/0.067/0.145 0.832 0.022 -19.2
IT 0.176/0.061/0.138 0.823 0.012 -56.4 0.176/0.061/0.138 0.823 0.016 -41.0
ITPN1 0.182/0.063/0.144 0.833 0.021 -20.1 0.182/0.065/0.145 0.832 0.022 -15.8
ITPN2 0.177/0.061/0.141 0.832 0.022 -18.6 0.187/0.068/0.149 0.833 0.022 -19.2
ITNP1 0.181/0.061/0.141 0.827 0.014 -48.9 0.180/0.062/0.140 0.824 0.015 -42.9
ITNP2 0.177/0.058/0.139 0.830 0.014 -47.0 0.185/0.065/0.144 0.830 0.017 -38.0

Table 2: Results on wikidoc.

without privacy preservation. The “Removal” and
“Substitution” methods effectively safeguard pri-
vacy. They both focus on privacy protection by
actively removing sensitive information from the
model’s knowledge base. The removal of sensitive
information significantly reduces the knowledge
retained by the model. The SBERT and ROUGE
scores are observed to suffer a substantial drop
due to the removal of data, resulting in reduced
language understanding and generation abilities.
We also note that the penalty-based approach can
effectively safeguard privacy.

Strategy
LLaMA2-7B LLaMA2-13B

ROUGE-1/2/L SBERT SPriv ∆ (%) ROUGE-1/2/L SBERT SPriv ∆ (%)

Vanilla 0.276/0.116/0.209 0.859 0.014 - 0.286/0.121/0.215 0.865 0.013 -
Removal 0.264/0.105/0.206 0.848 0.009 -32.4 0.267/0.111/0.193 0.857 0.008 -37.0
Substitution 0.258/0.101/0.201 0.846 0.010 -27.2 0.249/0.101/0.197 0.849 0.009 -27.6
DPO 0.260/0.109/0.207 0.850 0.013 -5.7 0.271/0.107/0.213 0.863 0.012 -3.6
Penalty 0.256/0.110/0.198 0.853 0.012 -14.7 0.276/0.112/0.207 0.863 0.009 -15.7
Classifier 0.274/0.112/0.207 0.859 0.011 -17.7 0.279/0.112/0.209 0.862 0.011 -11.0
IT 0.250/0.100/0.192 0.844 0.012 -11.0 0.280/0.124/0.216 0.860 0.010 -20.5
ITPN1 0.263/0.113/0.207 0.863 0.013 -5.9 0.272/0.116/0.212 0.867 0.012 -3.2
ITPN2 0.265/0.114/0.209 0.866 0.012 -14.0 0.273/0.118/0.215 0.8690 0.009 -26.8
ITNP1 0.265/0.112/0.209 0.865 0.011 -17.7 0.266/0.115/0.210 0.866 0.012 -8.7
ITNP2 0.262/0.111/0.205 0.862 0.009 -33.8 0.275/0.119/0.214 0.867 0.011 -11.8

Table 3: Results on wikidoc_patient_information.

Selective forgetting constraints in models may in-
advertently alter existing knowledge, leading to to-
ken alterations for PIIs and possibly distorting orig-
inal information, slightly reducing performance in
some datasets. The “Classifier” approach offers
moderate privacy protection results, reflecting the
challenge in training contextual classifiers. DPO
starts with Vanilla tuning (SFT) without privacy
measures, then fine-tunes for PII concealment with-
out a reward model. While DPO boosts privacy
through preference-based tuning, its effectiveness
is limited, often needing a larger dataset of user
preferences and facing reward hacking issues.

Experiments show that instruction tuning with
examples, using instructions and examples for
fine-tuning, achieves a good balance between per-
formance, privacy, information preservation, and
alignment with human preferences. This method,
letting the model “see” and “learn” from both pre-
ferred and undesired examples, helps in aligning
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Figure 2: Pareto Frontier.
Strategy ROUGE-1 ROUGE-2 ROUGE-L BERTScore Spriv:Name ∆Name Spriv:Email ∆Email Spriv:Address ∆Address Spriv:SSN ∆SSN

Vanilla 0.637 0.5743 0.6235 0.8699 0.0778 - 0.0752 - 0.0782 - 0.0724 -
Removal 0.6148 0.5575 0.6115 0.8390 0.0410 -47.30 0.0394 -47.61 0.0423 -45.91 0.0419 -42.13

Substitution 0.6291 0.5234 0.6217 0.8576 0.0420 -46.02 0.0418 -44.41 0.0446 -42.97 0.0419 -42.13
IT 0.6395 0.5429 0.6253 0.8686 0.0449 -42.29 0.0418 -44.41 0.0449 -42.58 0.0421 -41.85

ITPN1 0.6497 0.5591 0.6346 0.8696 0.0395 -49.23 0.0397 -47.21 0.0419 -46.42 0.0411 -43.23
ITPN2 0.6324 0.5569 0.6222 0.869 0.0404 -48.07 0.0403 -46.41 0.0421 -46.16 0.0413 -42.96
ITNP1 0.6321 0.5740 0.6234 0.8605 0.0411 -47.17 0.0412 -45.21 0.0431 -44.88 0.0414 -42.82
ITNP2 0.6335 0.5761 0.6201 0.8657 0.0406 -47.81 0.0408 -45.74 0.0412 -47.31 0.0416 -42.54

Table 4: Results on our PQA Dataset.

the model. It enables the model to understand what
information to withhold, highlighting the potential
of LLMs in privacy protection learning.

We also plot the Pareto frontier in Figure 2(a)
and 2(b) to evaluate both utility and privacy
preservation on medical_flashcards dataset for
LLaMA2-7B and LLaMA2-13B, respectively. More
results are reported in Appendix D.4. It is evident
that the instruction-based approaches consistently
align with the Pareto frontier (IT methods consti-
tute the border of the frontier). Such a phenomenon
indicates that employing instructions supplemented
by both positive and negative examples achieves
the optimal trade-off between performance (utility)
and privacy protection of PIIs.

5.6 Performance on Different Types of PIIs
To validate the performance of our approaches on
different types of PIIs, we have conducted further
experiments on the newly synthesized dataset. The
dataset, named Privacy QA (PQA) Dataset, was
synthesized using GPT-4. The PQA dataset con-
tains a wider range of entities, including Names,
Emails, Addresses, and SSNs. PQA is accessible
at the anonymous link3. The categorization helps
assess the protection effectiveness for each PII type.
For instance, SSN leaks are generally more criti-
cal than name leaks. We performed experiments
on the Privacy QA dataset, evaluating the protec-
tion ratios across these PII categories respectively.

3https://github.com/Yijia-Xiao/PPLM/ft_
datasets/data/PQA.csv

The evaluation is performed on LLaMA2-7B and
results are provided in Table 4. The results show
that the instruction tuning approaches can well pro-
tect different types of PIIs while providing good
knowledge injections.

6 Conclusion
In this paper, we present a comprehensive explo-
ration of strategies for fine-tuning Large Language
Models (LLMs) to incorporate domain-specific
knowledge while upholding data privacy, partic-
ularly in safeguarding sensitive Personally Identi-
fiable Information (PII). We introduced the novel
concept of Contextual Privacy Protection Language
Models (CPPLMs) and provided a theoretical anal-
ysis to guide model design. Our extensive experi-
ments underscore the effectiveness of our approach,
with instruction-based tuning emerging as a promis-
ing method to simultaneously protect private data
and enhance the model’s knowledge. This study
highlights the potential for LLMs to serve as adept
privacy protection learners, bridging the gap be-
tween domain-specific expertise and data privacy.
As LLMs continue to play a pivotal role in natural
language understanding and generation, our find-
ings contribute to advancing their utility in privacy-
sensitive applications.
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Limitations

CPPLM explores privacy preservation in large lan-
guage models. It is important to note that in our
dataset, personally identifiable information (PII)
is identified using the scrubadub toolkit. Such a
tagging process may not fully represent real-world
deployment scenarios, where users can customize
privacy preferences. Companies and data owners
can employ the CPPLM pipeline to teach language
models contextual privacy from annotated positive-
negative pairs. Since there is no universal rule for
detecting PIIs, privacy definitions vary across sce-
narios. Therefore, our focus is on demonstrating
the language model’s ability to learn contextual PII.
For instance, a clinical company wanting to pro-
tect specific PIIs can annotate datasets and follow
our proposed method. Even end-users may define
what PII means in their data’s context during lan-
guage model tuning or training. In summary, the
CPPLM pipeline is versatile and adaptable to var-
ious privacy-related scenarios and tasks, such as
detoxifying language models.
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Appendix: Large Language Models Can Be Contextual Privacy Protection
Learners

A Notations

Important notations used in the paper are included in Table. 5.

Table 5: Notations used in this paper.

Notation Description

wi,wi a token and its contextualized embedding
s a natural language sequence

D = {s} Fine-tuning dataset

T Annotation
n Maximum sequence length
Θn Set of n-grams associated with PII

R Removed sequence: R = (r0, r1, ..., rk−1)
ri−1 i-th token with pi = 0 in sequence R
C Cleaned sequence: C = (c0, c1, ..., cn−1)
yi Token ci if pi = 0, or the special token u if pi = 1
u Special token added to the vocabulary (e.g., unk for LLaMA2)

P(·) Probability

A.1 Detailed Datasets Description
Table. 6 shows more details about datasets: S denotes the size of the train/test set and LQ/LA denotes
the average length (number of tokens) of the question/answer fields. (1) pii-medical_flashcards with
28861 training and 5093 testing samples; (2) pii-wikidoc with 8500 training and 1500 testing samples;
(3) pii-wikidoc_patient_information with 5050 training and 891 testing samples.

Table 6: Statistics of datasets

Dataset
Train Test

|S| LQ LA |S| LQ LA

medical-flashcards 28861 14.59 14.36 5093 53.64 52.74
medical-wikidoc 8500 9.88 9.67 1500 132.04 136.60
wikidoc-patient-information 5050 8.15 8.04 891 73.40 71.10

A.2 Metrics
ROUGE (Recall-Oriented Understudy for Gisting Evaluation) We adopt the popularly used ROUGE-
1, ROUGE-2, ROUGE-L (Lin, 2004) and BERTScore (Zhang* et al., 2020) to evaluate the answer quality
in the testing phase. Here we give a detailed definition of these scores. We denote the set of tokens from
the generated text as G, and the set of tokens from the reference text as R. The number of overlapping
unigrams between G and R as O1(G,R), and the number of overlapping bigrams between G and R as
O2(G,R). The total number of unigrams in R as U(R) and the total number of bigrams in R as B(R).
The longest common subsequence (LCS) between G and R as L(G,R).
ROUGE-1:

ROUGE-1 =
O1(G,R)

U(R)

ROUGE-2:
ROUGE-2 =

O2(G,R)

B(R)

ROUGE-L:
ROUGE-L =

L(G,R)

max(|G|, |R|)
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BERTScore

E : BERT encoder or model
E(G) : Embedding of the entire sequence

of the generated text G, produced by E

E(R) : Embedding of the entire sequence
of the reference text R, produced by E

c(E(G), E(R)) : Cosine similarity between the
sequence embeddings E(G) and E(R)

Then, the BERTScore between a generated text G and a reference text R at the sequence level is defined
as:

BERTScore(G,R) = c(E(G), E(R))

Here, the BERT model E encodes the entire sequences G and R into their respective embeddings, and
then we compute the cosine similarity between these sequence embeddings to obtain the BERTScore.

B Additional Related Work

Pretraining with Preferences. Another solution is to maintain the content, but use redesigned loss/-
conditional tags to control the information injected into the LLMs. Pretraining with conditional human
preference scores can offer a Pareto-optimal and simple approach to reduce the undesirable content by
up to an order of magnitude. Korbak et al. (2023) compared with the classical pretraining approach.
While pretraining LLMs conditioned under annotation scores can offer better performance in the human
preferences aspect. Since human preferences are injected into the models during the pretraining stage,
the models are biased toward those preferences once they are trained. With the expanding size of LLMs,
they become increasingly resistant to forgetting their training data (Carlini et al., 2022; Vu et al., 2022;
Ramasesh et al., 2022; Korbak et al., 2023). In other words, pretraining large language models conditioned
under preference score sacrifices some flexibility. Still, it is undeniable that it can provide much better
alignment with human preferences compared with the classical pretraining schema.

C Illustration of Vanilla Tuning and Corpus Curation

This section gives an illustration of Vanilla Tuning (Figure. 3(a)) and Corpus Curation (Figure. 3(b)).

D Experiment Details.

D.1 Hardware and Implementations

In this paper, we implemented our method on two Linux servers with 4 NVIDIA A100 GPUs, each with
80GB of memory. The CUDA version is 12.2 and the Driver version is 535.54.03. We used Python
3.10.12 and Pytorch 2.0.1 (Paszke et al., 2019) to construct our project. The fine-tuning of LLaMA models
takes 20 hours on average.

D.2 Dataset and Hyperparameters

In our experiments, we use grid search to obtain the best performance. We provide all of the hyperparame-
ters as well as their configurations in the following:

• Dataset. For training, we sub-sampled 85% from the three datasets. The performance of each
method is evaluated on the remaining 15% of data. Dataset details can be found in Table. 6.

• Hyperparameters. For the parameter optimizer, we chose AdamW with weight_decay set to 0. The
learning rate is set to 1e−4. We use the StepLR learning rate scheduler with gamma set to 0.85.
Epochs and Batch Size: The number of fine-tuning epochs is set to 5, and the batch size is set to 64.
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Question: Please respond with some 
patient’s recent medical record.

Answer: Alan Gates visited Crescent 
Vale Medical Center for Hemophilia

treatment.

QA Concatenation
Instruction: Below are instruction paired 
with its question. Write a response that 

appropriately completes the request.

Question: Please respond with some 
patient’s recent medical record.

Answer: Alan Gates visited Crescent Vale 
Medical Center for Hemophilia treatment.

Vanilla Tuning

LLM

(a) Classical Tuning

Instruction: Below are instruction paired 
with its question. Write a response that 

appropriately completes the request.

Question: Please respond with some 
patient’s recent medical record.

Answer:    visited    for     treatment. He 
has recovered recently.

Removal
Instruction: Below are instruction paired 
with its question. Write a response that 

appropriately completes the request.

Question: Please respond with some 
patient’s recent medical record.

Answer: <NAME> visited <PLACE> for 
<NAME> treatment. He has recovered 

recently.

Substitution

LLM
LLaMA2

(b) Corpus Curation

Figure 3: Vanilla, Removal, Substitution.

D.3 Comparison with Other Methods

In this section, we compare our proposed methods against several privacy-preserving techniques, including
Vanilla, Removal, Substitution, and Private Transformer, as well as our IT_PN and IT_NP strategies. The
comparison is made on the PQA dataset in terms of both performance (ROUGE and BERTScore metrics)
and privacy protection across multiple Personally Identifiable Information (PII) categories such as Name,
Email, Address, and SSN.

As shown in Table 7, our methods demonstrate competitive performance in terms of utility, while also
providing notable improvements in privacy protection. The IT_PN method, in particular, consistently
outperforms the baseline strategies in terms of reducing privacy leakage, achieving a reduction of up to
49.26% in the S_priv:Name metric compared to the Vanilla model. Furthermore, IT_PN maintains a high
level of utility, reflected in its ROUGE and BERTScore values, which are comparable to or better than
those of the Private Transformer approach.

Strategy ROUGE-1 ROUGE-2 ROUGE-L BERTScore Spriv:Name ∆Name Spriv:Email ∆Email Spriv:Address ∆Address Spriv:SSN ∆SSN

Vanilla 0.3342 0.2174 0.3297 0.8162 0.1082 - 0.1024 - 0.1103 - 0.0992 -
Removal 0.2947 0.2071 0.3092 0.7983 0.0558 -48.43% 0.0536 -47.66% 0.0573 -48.05% 0.0568 -42.75%

Substitution 0.2983 0.2073 0.3173 0.8012 0.0572 -47.13% 0.0569 -44.43% 0.0586 -46.87% 0.0568 -42.75%
Private Transformer 0.3172 0.2096 0.3192 0.8119 0.0551 -49.08% 0.0554 -45.90% 0.0572 -48.14% 0.0569 -42.65%

IT_PN 0.3273 0.2112 0.3221 0.8101 0.0549 -49.26% 0.0551 -46.19% 0.0570 -48.32% 0.0570 -42.55%
IT_NP 0.3261 0.2162 0.3252 0.8132 0.0563 -47.97% 0.0561 -45.21% 0.0575 -47.87% 0.0573 -42.24%

Table 7: Performance and Privacy Metrics Comparison on the PQA Dataset

D.4 Pareto Frontier of Utility and Privacy Protection

We also report the pareto frontier of Utility and Privacy Protection in Figure 4, 5, 6, 7, 8 and 8, respectively,
to evaluate both performance and privacy preservation. It is obvious that the instruction-based approaches
consistently align with the Pareto frontier (IT methods constitute the border of the frontier). Such a
phenomenon indicates that employing instructions supplemented by both positive and negative examples
achieves the optimal trade-off between performance (utility) and privacy protection of PIIs. The outcomes
strongly support our position that LLMs can be good contextual privacy protection learners.
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Figure 8: Pareto Frontier on wikidoc_patient_information, LLaMA2-7B
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D.5 Curve of Knowledge Injection and PII Leakage vs. Learning Process
In this section, we analyze the ROUGE, BERTScore, and Privacy Leakage Score concerning the training
steps. We aim to assess whether our two primary learning objectives are effectively achieved throughout
the training process. Initially, in Figure. 10 that visualizes the training of ITPN1 , we observe that as the
LM undergoes the training process, we witness a notable trend: the injection of knowledge into the LM
steadily increases. This infusion of knowledge corresponds to a progressive rise in both ROUGE and
BERTScore, ultimately leading to a stabilization, or convergence, of these metrics. Simultaneously, the
Privacy Leakage Score exhibits an intriguing behavior. At the outset of the learning process, it experiences
an upward trajectory. This ascent is a direct consequence of the LM ingesting more knowledge, including
private tokens, inadvertently learning about sensitive information. However, as training continues, a
pivotal shift occurs. The LM’s instruction to conceal privacy-related information gradually takes effect,
resulting in a discernible decrease in the Privacy Leakage Score. In summary, Figure. 10 offers a
compelling visualization of the evolving relationship between knowledge injection, linguistic performance
(ROUGE/BERTScore), and privacy protection (SPriv) as the LM matures throughout its training steps. It
underscores the dynamic equilibrium between knowledge acquisition and safeguarding sensitive data,
emphasizing the importance of a well-orchestrated learning process to achieve both objectives.

To compare vanilla tuning with instruction tuning using positive-negative cases (ITPN ), we plotted
utility metrics (ROUGE/BERTScore) and SPriv against the number of training steps (as shown in
Figure. 11). With vanilla tuning, as training progresses, the LLM’s performance improves. However, it is
accompanied by an increase in privacy leakage. Such a trend corroborates our intuition that, as the LLM
assimilates information, it also inadvertently memorizes PII tokens from the corpus. When it comes to
instruction tuning with positive-negative cases (Figure. 10), the utility curve exhibits a trajectory akin to
vanilla tuning. However, privacy leakage increases initially but eventually declines. This suggests that, by
employing instruction combined with positive-negative cases, LLMs can be trained to be good contextual
privacy learners.
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Figure 10: ROUGE, BERTScore, and SPriv vs. Steps

D.6 Instruction Templates
In this section, we list the detailed two instruction tuning templates as shown in Table. 8 and Table. 9.

E Case Study

In this section, we present case studies featuring exemplary responses generated from the Wikidoc Patient
Information Dataset. We compare responses generated by the vanilla model (original) with those generated
by a model equipped with a token classifier and responses generated by the vanilla model (original) versus
the model trained using the instruction tuning (IT) strategy. By examining the results in Tables 10 and 11,
we can discern the efficacy of the proposed methodologies in safeguarding privacy.
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Figure 11: ROUGE, BERTScore, and SPriv vs. Steps (Vanilla)

### IT
Below is a question and related responses. Write a privacy protection response to the question.
Sensitive information in the response should be replaced by NAME, ORGANIZATION, etc.

### Input
{{Question filled in there}}
### Response
{{Answer filled in there}}

### ITPN1

Below is a question and related responses. Sensitive information in the response should be replaced
by NAME, ORGANIZATION, etc. Write
(1) desired answer to the question.
(2) undesired answer to the question.

### Input
{{Question filled in there}}
### Response
(1) desired answer to the question: {{Answer with PII substituted filled in there}}
(2) undesired answer to the question: {{Answer filled in there}}

### ITPN2

Below is a question and related responses. Sensitive information in the response should be replaced
by NAME, ORGANIZATION, etc. Write
(1) a privacy protection version of the response.
(2) a response answering the question.

### Input
{{Question filled in there}}
### Response
(1) a privacy protection version of the response: {{Answer with PII substituted filled in there}}
(2) a response answering the question: {{Answer filled in there}}

Table 8: Templates (Positive-Negative )for instruction tuning (IT) and IT with positive and negative cases.

14198



### ITNP1

Below is a question and related responses. Sensitive information in the response should be replaced
by NAME, ORGANIZATION, etc. Write
(1) a response answering the question.
(2) a privacy protection version of the response.

### Input
{{Question filled in there}}
### Response
(1) a response answering the question: {{Answer filled in there}}
(2) a privacy protection version of the response: {{Answer with PII substituted filled in there}}

### ITNP2

Below is a question and related responses. Sensitive information in the response should be replaced
by NAME, ORGANIZATION, etc. Write
(1) undesired answer to the question.
(2) desired answer to the question.

### Input
{{Question filled in there}}
### Response
(1) undesired answer to the question: {{Answer filled in there}}
(2) desired answer to the question: {{Answer with PII substituted filled in there}}

Table 9: Templates (Negative-Positive) for instruction tuning (IT) and IT with positive and negative cases.

14199



Prompt
### Input
What is the historical background of chronic fatigue syndrome?

Answer (Original)
The first case of chronic fatigue syndrome was reported in 1956. In 1988, the Centers for Disease
Control and Prevention (CDC) first reported a cluster of cases of chronic fatigue syndrome in Incline
Village, Nevada ...

Answer (Token Classifier)
The first case of chronic fatigue syndrome was reported in 1956. In 1988, the Centers for Disease
Control and Prevention (CDC) first reported a cluster of cases of chronic fatigue syndrome in ⟨unk⟩.
### Input
What is the explanation for using images and the new advanced syntax to insert them?

Answer (Original)
The following is a list of the most common image tags:
#ev:youtube http://www.youtube.com/watch?v=dQw4w9WgXcQ ...

Answer (Token Classifier)
The following is a list of the most common image tags: ⟨unk⟩
### Input
What information is available on Ranolazine?

Answer (Original)
Ranolazine may cause side effects. Tell your doctor if any of these symptoms are severe or do not go
away: dizziness, diarrhea, headache, nausea, vomiting ...
Some side effects can be serious. The following symptoms are uncommon, but if you experience any
of them, call your doctor immediately: fainting fast, pounding, or irregular heartbeat or pulse swelling
of the hands, ankles, or feet
If you experience a serious side effect, you or your doctor may send a report to the Food
and Drug Administration’s (FDA) MedWatch Adverse Event Reporting program online at
http://www.fda.gov/MedWatch/report.htm or by phone 1-800-332-1088.

Answer (Token Classifier)
Ranolazine may cause side effects. Tell your doctor if any of these symptoms are severe or do not go
away: dizziness, diarrhea, headache, nausea, vomiting ...
Some side effects can be serious. The following symptoms are uncommon, but if you experience any
of them, call your doctor immediately: fainting fast, pounding, or irregular heartbeat or pulse swelling
of the hands, ankles, or feet
If you experience a serious side effect, you or your doctor may send a report to the ⟨unk⟩ program
online at ⟨unk⟩ or by phone ⟨unk⟩.

Table 10: Example responses generated on the Wikidoc Patient Information Dataset by the vanilla model (original)
and the model with token classifier.

14200



### Input
Could you provide a brief explanation of familial hypercholesterolemia?

Answer (Original)
The prevalence of familial hypercholesterolemia is approximately 1 in 500 individuals worldwide.

Answer (Instructed)
The diagnosis of familial hypercholesterolemia is based on the following criteria:
Low-density lipoprotein cholesterol (LDL-C) level of 190 mg/dL or greater in a child or adolescent or
160 mg/d.

### Input
What is the medical treatment for non-small cell lung cancer?

Answer (Original)
The treatment of non-small cell lung cancer depends on the stage of the disease.

Answer (Instructed)
The treatment of non-small cell lung cancer depends on the stage of the disease. The treatment options
include surgery, chemotherapy, radiation therapy, and targeted therapy.

### Input
What is an ultrasound for peripheral arterial disease?

Answer (Original)
Ultrasound is the first line imaging modality for the diagnosis of peripheral arterial disease. It is a
non-invasive, safe, and cost-effective method for the diagnosis of peripheral arterial disease. Ultrasound
is used to assess the anatomy of the arteries and the degree of stenosis. It is also used to assess the
anatomy of the arteries and the degree of stenosis.

Answer (Instructed)
Peripheral arterial disease (PAD) is a common disease that affects the arteries of the legs. It is caused
by atherosclerosis, which is the buildup of plaque in the arteries. Ultrasound is a noninvasive test
that can be used to diagnose PAD. It uses sound waves to create images of the arteries in the legs.
Ultrasound can be used to measure the blood flow in the arteries and to look for blockages. It can also
be used to measure the size of the arteries. Ultrasound is a safe and painless test.

Table 11: Example responses generated on the Wikidoc Patient Information Dataset by the vanilla model (original)
and the model trained with the instruction (IT) strategy.
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