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Abstract

Chemical representation learning has gained
increasing interest due to the limited availabil-
ity of supervised data in fields such as drug
and materials design. This interest particularly
extends to chemical language representation
learning, which involves pre-training Trans-
formers on SMILES sequences – textual de-
scriptors of molecules. Despite its success in
molecular property prediction, current practices
often lead to overfitting and limited scalability
due to early convergence. In this paper, we
introduce a novel chemical language represen-
tation learning framework, called MolTRES, to
address these issues. MolTRES incorporates
generator-discriminator training, allowing the
model to learn from more challenging exam-
ples that require structural understanding. In
addition, we enrich molecular representations
by transferring knowledge from scientific liter-
ature by integrating external materials embed-
ding. Experimental results show that our mod-
els outperform existing state-of-the-art models
on popular molecular property prediction tasks.

� github.com/irishev/MolTRES

1 Introduction

Deep neural networks (DNNs) have emerged as
a compelling, computationally efficient approach
for predicting molecular properties, with signifi-
cant implications in material engineering and drug
discovery. By training DNNs on molecule data to
predict the properties in a supervised manner or to
reconstruct molecules in an unsupervised manner,
these networks can significantly reduce the costs of
traditional methods, which typically require chem-
ical experts and wet-lab experiments. Moreover,
DNN-based molecular prediction has gained in-
creasing popularity due to the generalization capac-
ity of DNNs. This allows for the application of
a single (pre-)trained model across various tasks,
reducing the need for task-specific modeling.
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Figure 1: Existing pre-training methods for chemical
language representation learning already converge at
their early stage without seeing the entire data. Conse-
quently, MoLFormer (Ross et al., 2022), a state-of-the-
art chemical language representation learning method,
exhibits limited scalability in terms of data size.

Inspired by recent advances in pre-trained lan-
guage models in the field of natural language pro-
cessing (NLP), several chemical language repre-
sentation learning methods based on Transform-
ers (Wang et al., 2019; Chithrananda et al., 2020)
have been proposed. These methods typically em-
ploy self-supervised tasks on SMILES (Simplified
Molecular-Input Line Entry System) sequences
of molecules, analogous to the masked language
modeling (MLM) commonly used in BERT (De-
vlin et al., 2019). Since modern Transformers
are designed to scale to massive NLP corpora
(Vaswani et al., 2017), they offer practical advan-
tages in terms of efficiency and throughput. This
enables the models to leverage massive amounts
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of SMILES sequences to learn universal represen-
tations for molecules, leading to performance im-
provements in a wide range of molecular property
prediction tasks (Ross et al., 2022). However, as
these models typically follow settings designed for
natural language modeling, the optimal pre-training
settings for chemical language representation learn-
ing remain underexplored.

Through extensive investigation into the pre-
training of SMILES Transformers, we have dis-
covered that the current pre-training task, MLM
on SMILES sequences using a random masking
strategy, is not effective for learning informative
molecular representations. We have empirically
observed that this task can be easily solved using
surface patterns, leading to overfitting and limited
scalability, as shown in Figure 1. This may be
attributed to two inherent properties of SMILES.
First, existing large-scale molecule datasets exhibit
unbalanced atom distributions (He et al., 2023a).
For example, in ZINC (Irwin et al., 2012), a repre-
sentative dataset containing billions of molecules,
carbon (C), nitrogen (N), and oxygen (O) comprise
95% of the tokens in total SMILES sequences. Sec-
ond, the SMILES grammar contains many super-
ficial patterns, such as numbers representing ring
structures that always appear twice. These patterns
allow the model to predict original tokens by us-
ing simple rules, without learning the underlying
chemical information. Furthermore, unlike natu-
ral language, which is fundamentally grounded in
concepts and possesses general expressivity across
various problem-solving scenarios, SMILES is de-
signed solely to express molecular structure and
does not directly represent molecular properties.
Thus, the current pre-training task likely provides
a limited notion of molecular properties.

In this paper, we propose a novel frame-
work for pre-training SMILES transformers,
called MolTRES (Molecular TRansformer with
Enhanced Self-supervised learning), to address the
aforementioned issues. Our framework focuses on
two key objectives: (1) increasing the difficulty
of the pre-training task, and (2) incorporating ex-
ternal knowledge related to molecular properties
into model representations. To achieve these goals,
we first present a novel self-supervised learning
pipeline, coined DynaMol, based on generator-
discriminator training (Clark et al., 2020). This
method trains a model to distinguish real SMILES
tokens from synthetically generated replacements,
jointly used with substructure-level masking. It fa-

cilitates to significantly increase the masking ratio
for more challenging training examples that require
an understanding of molecular structure, while min-
imizing discrepancy caused by mask tokens. In
addition, we enhance model representations by in-
tegrating mat2vec word representations (Tshitoyan
et al., 2019) trained on massive scientific literature.
This integration helps to directly embody molecular
properties in the learned representations.

To demonstrate the effectiveness of MolTRES,
we conduct extensive experiments and ablation
studies on diverse molecular property prediction
tasks. We evaluate MolTRES on eight classifica-
tion and four regression tasks from MoleculeNet
(Wu et al., 2018), covering quantum mechanical,
physical, biophysical, and physiological properties
of chemicals. Our results indicate that MolTRES
outperforms state-of-the-art baselines across most
tasks, including 1D sequence-, 2D graph-, and 3D
geometry-based chemical models. Furthermore,
we observe that MolTRES outperforms state-of-
the-art models on seven polymer property predic-
tion tasks, showing its generalizability to differ-
ent chemical tasks. Further analysis shows that
MolTRES significantly improves the capabilities
of chemical language representation learning by
addressing the limitations of existing approaches.
Our contributions are summarized as follows:

• We propose MolTRES, a novel framework
to pre-train SMILES Transformers based on
generator-discriminator training and external
knowledge transfer.

• We present a novel architecture for SMILES
transformers efficiently integrated with word
representations trained on scientific literature.

• Experimental results demonstrate that
MolTRES establishes state-of-the-art results
over a wide range of molecular property
prediction tasks.

2 Related Work

In recent years, representation learning has pre-
vailed in numerous applications in natural language
processing (Devlin et al., 2019; Liu et al., 2019)
and computer vision (Dosovitskiy et al., 2021; Bao
et al., 2021). This trend has triggered many stud-
ies in chemical representation learning. The ap-
proaches in this field can be classified into three
categories based on molecular descriptors used
for pre-training: chemical language representation
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learning, chemical graph representation learning,
and multi-modal chemical representation learning.

Chemical language representation learning.
Chemical language representation learning has
adopted pre-training on molecular descriptors rep-
resented as strings, such as SMILES and SELF-
IES. It typically leverages Transformers (Vaswani
et al., 2017) to learn molecular descriptors inspired
by the recent success of large-scale representation
learning in natural language processing. Wang
et al. (2019); Chithrananda et al. (2020); Ross et al.
(2022) have trained Transformer models on large-
scale SMILES sequences. Yüksel et al. (2023) have
utilized SELFIES sequences to achieve a better rep-
resentation space. However, the training strategies
for these methods follow the practice of MLM-
style training in natural language processing. Since
chemical language differs from natural language,
current applications of MLM encounter various
issues in pre-training. In this work, we propose
MolTRES to address these issues and consequently
improve molecular property prediction.

Chemical graph representation learning. Re-
searchers in chemical graph representation learning
argue that molecules can naturally be represented
in 2D or 3D graphs. Thus, they typically leverage
graph neural networks (GNNs) or Transformers
adapted to graphs. Hu et al. (2020) have intro-
duced a self-supervised task for molecular graphs,
called AttrMask. Morris et al. (2019a) have in-
troduced higher-order GNNs for distinguishing
non-isomorphic graphs. You et al. (2020) have
extended contrastive learning to unstructured graph
data. Wang et al. (2022) have proposed a uni-
fied GNN pre-training framework that integrates
contrastive learning and sub-graph masking. Re-
cent work has focused on modeling 3D graphs, as
they provide more vital information for predicting
molecular properties compared to 2D graphs. Yang
et al. (2024); Zhou et al. (2023) have proposed
denoising auto-encoders for directly modeling 3D
graphs. However, due to the limited scale of 3D
molecular data and its resource-intensive modeling,
the applicability of 3D approaches is limited.

Multi-modal chemical representation learning.
Recently, several studies have proposed learning
chemical representations in a multi-modal manner,
typically leveraging both 2D topology and 3D ge-
ometry of molecules. Liu et al. (2022); Stärk et al.
(2022); Liu et al. (2023a) have introduced a con-

trastive learning framework that uses 2D graphs
and their corresponding 3D conformations as posi-
tive views, treating those from different molecules
as negative views. Luo et al. (2022) have proposed
encoding both 2D and 3D inputs within a single
GNN model. Another research direction has in-
volved using both chemical and natural languages
(Edwards et al., 2022; Liu et al., 2023b) to enrich
molecular representations and facilitate molecule
generation using natural language. This research di-
rection is distantly related to our work, and we plan
to further explore the multi-modal and generation
capabilities of MolTRES.

3 MolTRES: Molecular Transformer with
Enhanced Self-supervised Learning

In this section, we detail our framework, MolTRES,
which is illustrated in Figure 2. We propose a
novel pre-training task, called DynaMol, which
incorporates generator-discriminator training with
substructure masking to increase the difficulty of
a pre-training task. In addition, we integrate word
representations that have been trained on scientific
literature to enrich information directly related to
molecular properties in the representations.

3.1 DynaMol: Dynamic Molecule Modeling
with Generator-Discriminator Training

To increase the difficulty of chemical language
representation learning, we propose a dynamic
molecule modeling scheme based on generator-
discriminator training, inspired by replaced token
detection proposed in Clark et al. (2020). The
proposed scheme involves training two models,
namely a generator and a discriminator. The gener-
ator is trained to predict original sequences given
masked sequences similar to MLM, while the dis-
criminator is trained to identify tokens that have
been replaced by the generator. Since the generator
transforms masked sequences to more closely re-
semble original distributions, this training scheme
results in less discrepancy between the inputs from
pre-training and downstream tasks, and allows for
flexible adjustments of the masking ratio (He et al.,
2023b). Moreover, as the generator is being trained,
it naturally provides increasingly challenging exam-
ples to the discriminator due to a closer distribution
towards the true one. This scheme is expected to
alleviate the issues of early convergence and over-
fitting commonly observed in existing methods of
chemical language representation learning.

14243



FFN1

< 𝑚 >

< 𝑚 >

< 𝑚 >

(𝐶)

< 𝑚 >

𝑬𝑮 𝑬𝑫

𝐶𝑆𝐶 𝐶 𝐶

original

replaced

Generator Discriminator

< 𝑚 >

< 𝑚 >

< 𝑚 >

(𝐶)

< 𝑚 >

𝐶

𝑁

𝐶

(𝐶)

𝑆

original

original

replaced

𝑬𝑮 𝑬𝑫

Molecule graph 

SMILES

Substructure masking

Sharing

mat2vecTransformer emb.

FFN1 FFN2

𝐶

𝑁

𝐶

(𝐶)

𝑆

!

!

!

"

!

Figure 2: Overview of MolTRES. EG and ED represent the embedding layers of the generator and discriminator,
respectively. FFNs denote feed-forward networks that linearly project the feature vector of each token. It is
noteworthy that the mat2vec embeddings are frozen during pre-training.

Specifically, given a token sequence X =
{x1, x2, x3, ..., xn}, we corrupt X into X̃ by partly
masking tokens. Then, the generator G with pa-
rameters θG is trained to reconstruct the sequence
X. The loss of G for each example is formulated
as follows:

LG = −
∑

i∈M
log p(xi|X̃; θG), (1)

where M represents the set of masked token po-
sitions. Similar to typical chemical language rep-
resentation learning methods, each masked token
is substituted with a special mask token in 80% of
cases, a random token in 10% of cases, and the
original token in the remaining 10% cases, since
we have observed that changing the substitution
strategy barely affects the performance.

The input sequence for the discriminator is con-
structed by replacing the masked tokens in X̃ with
new tokens, sampled from the generator’s probabil-
ity distribution, as follows:

X̃D =

{
x̃i ∽ p(xi|X̃; θG) if i ∈ M
xi otherwise.

(2)

The discriminator is trained to distinguish
whether each token in the generated input sequence
X̃D is original or has been replaced. The loss for

the discriminator is formulated as follows:

LD = −
n∑

i=1

log p(zi|X̃D; θD), (3)

where zi is a binary label that indicates whether
the i-th input token is original or has been re-
placed. Finally, the generator G and discriminator
D are jointly optimized with multiple objectives,
expressed as L = LG + λLD, where λ is a pre-
defined balancing parameter for the discriminator
loss. In this work, λ is set to 10.

In addition, we carefully design three rules to
mask SMILES at multiple substructure-level granu-
larities, thereby preventing models from predicting
the correct answer by exploiting superficial patterns
in the SMILES grammar. (1) We mask all special
tokens that represent structural information, such
as numbers for cycles. (2) We then mask spans of
SMILES that composes certain substructures, such
as substituents, bridges, or groups of sequential
atoms, until the ratio of masked tokens does not ex-
ceed the pre-defined target masking ratio. Note that
these substructures are identified by segmenting
SMILES strings based on brackets in our method.
(3) We mask random atomic SMILES tokens to
achieve the target masking ratio. Notably, we use
65% of the target masking ratio for pre-training.
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3.2 Knowledge Transfer from Scientific
Literature using mat2vec

While modeling SMILES helps models understand
molecular structure and connectivity, SMILES it-
self lacks explicit information about molecular
properties. Scientific literature, which is similarly
represented in a textual form, provides a more flexi-
ble and rich source of external information. It com-
prehensively involves information about molecular
properties derived from wet laboratory experiments
and computational methods. Therefore, we enrich
the representations of SMILES Transformers by
integrating information from scientific literature.

Despite the many possible design choices avail-
able, we opt to leverage mat2vec (Tshitoyan et al.,
2019), a straightforward embedding model trained
on extensive scientific literature, for integration
into Transformer’s embedding vectors. We pri-
oritize the efficiency in terms of memory foot-
prints and computations in our integration pro-
cedures, essential for dealing with large-scale
pre-training. Given an input sequence X =
{x1, ..., xn}, we obtain embedding vectors for ev-
ery token from the Transformer’s embedding layer,
denoted as Et = {et1, ..., etn}. Using a mapping
function I(·), we assign each token to correspond-
ing mat2vec embedding vectors, denoted as Em =
{em1 , ..., emn } s.t. emk =

∑
z∈I(xk)

mat2vec(z). We
then combine Et and Em using a linear projection
layer F1(·). The set of embedding vectors for the
generator VG is generated as follows:

VG ={F1(e
t
1 ◦ em1 ), ..., F1(e

t
n ◦ emn )}, (4)

where ◦ denotes the concatenation operation. In a
similar manner, the set of embedding vectors for
the discriminator VD is generated from the tokens
reconstructed by the generator as follows:

V ={F1(ẽ
t
1 ◦ ẽm1 ), ..., F1(ẽ

t
n ◦ ẽmn )}

VD ={F2(σ(v1)), ..., F2(σ(vn))}
s.t. v1, ..., vn ∈ V,

(5)

where v1, ..., vn ∈ V and σ(·) is an activation func-
tion, which is the gelu function in this work.

For the integration, we manually design a map-
ping function I(·) using human prior knowledge to
address the vocabulary mismatch between SMILES
tokens and mat2vec words. We utilize a thesaurus
carefully constructed by domain experts, chosen
for its superior computational efficiency and sta-
bility compared to learning-based approaches. For

example, the thesaurus maps “[cH+]” in the Trans-
former’s vocabulary to “methylidyne”, “ion”, and
“cation” in the mat2vec vocabulary. Based on this
thesaurus, we pre-calculate embedding vectors for
2,696 tokens in the Transformer vocabulary before
pre-training. To prevent catastrophic forgetting of
mat2vec knowledge, we freeze these pre-calculated
embedding vectors during pre-training. During
fine-tuning, these embedding vectors are trainable
to adapt the knowledge for each downstream task.

4 Experiment

4.1 Experimental Setup
Pre-training. We collect 118 million molecules
from PubChem1 and 1.9 billion molecules from
ZINC2. We pre-train two MolTRES models, a
base model (MolTRES) and a smaller model
(MolTRES-small). For pre-processing, we extract
the canonicalized format of SMILES for every
molecule using RDKit3. We construct the vocabu-
lary with 2,691 unique tokens plus five special to-
kens (“<bos>”, “<eos>”, “<pad>”, “<mask>”, and
“<unk>”) after tokenizing all the extracted SMILES
sequences. For tokenization, we use the maximum
sequence length of 512. The weights of our mod-
els are initialized over the normal distribution with
a standard deviation of 0.02. Pre-training is per-
formed using an AdamW optimizer (β1 = 0.9,
β2 = 0.95), where the maximum learning rate
and weight decay are set to 3e-4 and 0.01, respec-
tively. We use the cosine annealing for learning
rate scheduling with 1,000 warmup steps. We train
our models for 200,000 steps with a batch size of
25,600 and use the final models in evaluation. The
pre-training time of MolTRES is approximately 15
days using 4 NVIDIA RTX A6000 GPUs.

Evaluation We evaluate our models and base-
lines on eight classification tasks and four regres-
sion tasks from the MoleculeNet benchmark (Wu
et al., 2018). We use the scaffold splitting (80%
/ 10% / 10% for train / validation / test) for all
the tasks except for QM9, in which the random
split (80% / 10% / 10% for train / validation / test)
with thermochemical energy pre-calculation is used
following Liu et al. (2023a). We further evaluate
our models on seven polymer property prediction
tasks with the random split strategy. The statis-
tics of evaluation benchmarks are shown in Ap-

1https://pubchem.ncbi.nlm.nih.gov/
2https://zinc.docking.org/
3https://www.rdkit.org/
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Methods BBBP ↑ Tox21 ↑ ToxCast ↑ ClinTox ↑ MUV ↑ HIV ↑ BACE ↑ SIDER ↑ Avg. ↑
3D Conformation
GeomGCL (Liu et al., 2022) - 85.0 - 91.9 - - - 64.8 -
GEM (Fang et al., 2022) 72.4 78.1 - 90.1 - 80.6 85.6 67.2 -
3D InfoMax (Stärk et al., 2022) 68.3 76.1 64.8 79.9 74.4 75.9 79.7 60.6 72.5
GraphMVP (Liu et al., 2022) 69.4 76.2 64.5 86.5 76.2 76.2 79.8 60.5 73.7
MoleculeSDE (Liu et al., 2023a) 71.8 76.8 65.0 87.0 80.9 78.8 79.5 75.1
Uni-Mol (Zhou et al., 2023) 71.5 78.9 69.1 84.1 72.6 78.6 83.2 57.7 74.5
MoleBlend (Yu et al., 2024) 73.0 77.8 66.1 87.6 77.2 79.0 83.7 64.9 76.2
Mol-AE (Yang et al., 2024) 72.0 80.0 69.6 87.8 81.6 80.6 84.1 67.0 77.8
UniCorn (Feng et al., 2024) 74.2 79.3 69.4 92.1 82.6 79.8 85.8 64.0 78.4

2D Graph
DimeNet (Klicpera et al., 2020) - 78.0 - 76.0 - - - 61.5 -
AttrMask (Hu et al., 2020) 65.0 74.8 62.9 87.7 73.4 76.8 79.7 61.2 72.7
GROVER (Rong et al., 2020) 70.0 74.3 65.4 81.2 67.3 62.5 82.6 64.8 71.0
BGRL (Thakoor et al., 2022) 72.7 75.8 65.1 77.6 76.7 77.1 74.7 60.4 72.5
MolCLR (Wang et al., 2022) 66.6 73.0 62.9 86.1 72.5 76.2 71.5 57.5 70.8
GraphMAE (Hou et al., 2022) 72.0 75.5 64.1 82.3 76.3 77.2 83.1 60.3 73.9
Mole-BERT (Liu et al., 2023c) 71.9 76.8 64.3 78.9 78.6 78.2 80.8 62.8 74.0
SimSGT (Xia et al., 2023) 72.2 76.8 65.9 85.7 81.5 78.0 84.3 61.7 75.8
MolCA + 2D (Liu et al., 2023b) 70.0 77.2 64.5 89.5 - - 79.8 63.0 -

1D SMILES/SELFIES
MoLFormer-XL (Ross et al., 2022) 93.7 84.7 65.6 94.8 80.6 82.2 88.2 66.9 82.1
SELFormer (Yüksel et al., 2023) 90.2 65.3 - - - 68.1 83.2 74.5 -
MolCA (Liu et al., 2023b) 70.8 76.0 56.2 89.0 - - 79.3 61.2 -
MolTRES-small (ours) 95.0 83.4 64.8 94.0 80.0 81.7 87.7 68.3 81.9
MolTRES (ours) 96.1 85.3 70.1 96.7 84.9 84.2 91.7 69.8 84.8

Table 1: Evaluation results on MoleculeNet classification tasks. We report ROC-AUC scores (higher is better) under
scaffold splitting. The best and second-best results are in bold and underlined.

pendix. For evaluation of our models, we extract
the output representations from model’s final trans-
former block corresponding to the first input token
(“<bos>”) as the molecule representations. We use
a 2-layer MLP with the same hidden size and gelu
activation as a classifier, whose weights are initial-
ized over the normal distribution with a standard
deviation of 0.02. We use the augmentation of
random SMILES reconstruction for all the tasks.
We fine-tune the models for 500 epochs using an
AdamW optimizer (β1 = 0.9, β2 = 0.99) with a
weight decay of 0.01. For each task, we empiri-
cally choose the batch size ∈ {16, 32, 64, 128} and
learning rate ∈ {2e-5, 3e-5, 5e-5, 1e-4}. We re-
port Receiver Operating Characteristic-Area Under
the Curve (ROC-AUC) scores for the classifica-
tion tasks, Mean Absolute Error (MAE) scores for
QM9, and Root Mean Square Error (RMSE) scores
for the remaining regression tasks. We report the
average test score on five different splits using the
models that achieve the best validation scores.

Model Architecture. The model architecture of
the generator and discriminator is a Transformer
with linear attention and rotary position embed-
dings, following Ross et al. (2022). The discrim-

inator of MolTRES has 12 layers, 768 hidden di-
mensions, and 12 attention heads, while that of
MolTRES-small has 6 layers, 768 hidden dimen-
sions, and 12 attention heads. The generators have
half the number of layers in their corresponding
discriminator, while the other settings are consis-
tent. It is noteworthy that the generator is only used
for pre-training, and the discriminator is fine-tuned
and evaluated in all the downstream tasks. The gen-
erator and discriminator share their embeddings as
in Clark et al. (2020).

Baselines. We compare our models with diverse
state-of-the-art methods in molecular property pre-
diction, categorized as follows:

• 3D Conformation: This category includes
methods that utilize 3D conformation from
the geometry information of molecules and
may incorporate other modalities.

• 2D Graph: This category includes methods
that utilize 2D graph with atoms and bonds,
and may also combine 1D SMILES.

• 1D SMILES/SELFIES: This category in-
cludes methods that utilize SMILES or SELF-
IES sequences of molecules.
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Methods ESOL ↓ FreeSolv ↓ Lipophilicity ↓ Avg. ↓
3D Conformation
3D InfoMax (Stärk et al., 2022) 0.894 2.337 0.695 1.309
GraphMVP (Liu et al., 2022) 1.029 - 0.681 -
Uni-Mol (Zhou et al., 2023) 0.844 1.879 0.610 1.111
MoleBlend (Yu et al., 2024) 0.831 1.910 0.638 1.113
Mol-AE (Yang et al., 2024) 0.830 1.448 0.607 0.962
UniCorn (Feng et al., 2024) 0.817 1.555 0.591 0.988

2D Graph
AttrMask (Hu et al., 2020) 1.112 - 0.730 -
GROVER (Rong et al., 2020) 0.831 1.544 0.560 0.978
MolCLR (Wang et al., 2022) 1.110 2.200 0.650 1.320
SimSGT (Liu et al., 2023c) 0.917 - 0.695 -

1D SMILES/SELFIES
MoLFormer-Base (Ross et al., 2022) 0.280 0.260 0.649 0.396
MoLFormer-XL (Ross et al., 2022) 0.279 0.231 0.530 0.347
SELFormer (Yüksel et al., 2023) 0.682 2.797 0.735 1.405
MolTRES-small (ours) 0.280 0.250 0.594 0.375
MolTRES (ours) 0.274 0.229 0.504 0.336

Table 2: Evaluation results on MoleculeNet regression tasks. We report RMSE scores (lower is better) under scaffold
splitting. The best and second-best results are in bold and underlined.

Methods Egc↓ Egb↓ Eea↓ Ei↓ Xc↓ EPS↓ Eat↓ Avg.↓
(eV) (eV) (eV) (eV) (%) (eV atom−1)

ChemBERTa (Chithrananda et al., 2020) 0.539 0.664 0.350 0.485 18.711 0.603 0.219 3.082
polyBERT (Kuenneth and Ramprasad, 2023) 0.553 0.759 0.363 0.526 18.437 0.618 0.172 3.061
Transpolymer (Xu et al., 2023) 0.453 0.576 0.326 0.397 17.740 0.547 0.147 2.884
MolTRES (ours) 0.480 0.496 0.339 0.342 15.471 0.472 0.029 2.518

Table 3: Evaluation results on polymer property prediction tasks (Kuenneth et al., 2021). We report RMSE scores
(lower is better) with the random splitting. The best and second-best results are in bold and underlined.

4.2 Main Results

We first compare MolTRES with state-of-the-art
molecular property prediction methods on Molecu-
leNet classification tasks. As shown in Table 1,
MolTRES surpasses the best baseline, MoLFormer-
XL, by an average of 2.7%. In addition, MolTRES-
small also shows a competitive performance com-
pared to the baselines. Notably, MolTRES sig-
nificantly outperforms baseline methods using 3D
conformation and 2D graph. This confirms the
strength of pre-training with billion-scale SMILES
sequences, compared to pre-training with hundreds
of millions of conformation or graph examples.
MolTRES exhibits state-of-the-art performance on
7 of the 8 tasks. Although MolTRES achieves the
second-best results after SELFormer on the SIDER
task, it outperforms SELFormer by up to 20% on
the others, affirming the superiority of MolTRES.

Moreover, as shown in Table 2, MolTRES con-
sistently stands out in three MoleculeNet regres-
sion tasks, surpassing the state-of-the-art method
MoLFormer-XL by an average of 3.3%. Moreover,
MolTRES-small achieves better performance than

MoLFormer-Base, which contains a commensu-
rate number of parameters, by an average of 5.6%.
The superior performance of SMILES-based meth-
ods is still observed, as they achieve significantly
smaller errors compared to other baseline methods.
This performance gap further verifies the efficacy
of large-scale pre-training on SMILES.

We present the performance of MolTRES on
polymer property prediction tasks (Kuenneth et al.,
2021) in comparison to other SMILES-based mod-
els, shown in Table 3. These tasks involve very
large molecules, which can be represented us-
ing P-SMILES grammar that is compatible with
MolTRES. In our results, although Transpolymer
and PolyBERT are specifically designed for poly-
mer property prediction, MolTRES, without any
modifications, exhibits superior performance on
average. These results verify the generalizablity of
MolTRES to a wide range of chemical tasks based
on SMILES-like grammars. Moreover, our ap-
proach is adaptable to other sequence-based chemi-
cal tasks, such as protein property prediction using
amino acid sequences, opening up many promising
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Methods µ ↓ α ↓ εhomo ↓ εlumo ↓ ∆ε ↓ ⟨R2⟩ ↓ ZPV E ↓ U0 ↓ U298 ↓ H298 ↓ G298 ↓ Cv ↓ Avg.↓
(D) (a30) (eV) (eV) (eV) (a20) (eV) (eV) (eV) (eV) (eV) ( cal

mol·K )

3D Conformation (GT)
3D InfoMax (Stärk et al., 2022) 0.028 0.057 0.259 0.216 0.421 0.141 0.002 0.013 0.014 0.014 0.014 0.030 0.101
GraphMVP (Liu et al., 2022) 0.030 0.056 0.258 0.216 0.420 0.136 0.002 0.013 0.013 0.013 0.013 0.029 0.100
MoleculeSDE (Liu et al., 2023a) 0.026 0.054 0.257 0.214 0.418 0.151 0.002 0.012 0.013 0.012 0.013 0.028 0.100
MoleBlend (Yu et al., 2024) 0.037 0.060 0.215 0.192 0.348 0.417 0.002 0.012 0.012 0.012 0.012 0.031 0.113
UniCorn (Feng et al., 2024) 0.009 0.036 0.130 0.120 0.249 0.326 0.001 0.004 0.004 0.004 0.005 0.019 0.076

3D Conformation (RDKit)
SchNet (Schütt et al., 2017) 0.447 0.276 0.082 0.079 0.115 21.58 0.005 0.072 0.072 0.072 0.069 0.111 1.915
3D InfoMax (Stärk et al., 2022) 0.351 0.313 0.073 0.071 0.102 19.16 0.013 0.133 0.134 0.187 0.211 0.165 1.743
MoleculeSDE (Liu et al., 2023a) 0.423 0.255 0.080 0.076 0.109 20.43 0.004 0.054 0.055 0.055 0.052 0.098 1.808

2D Graph
1-GNN (Morris et al., 2019b) 0.493 0.780 0.087 0.097 0.133 34.10 0.034 63.13 56.60 60.68 52.79 0.270 22.43
1-2-3-GNN (Morris et al., 2019b) 0.476 0.270 0.092 0.096 0.131 22.90 0.005 1.162 3.020 1.140 1.276 0.094 2.012

1D SMILES/SELFIES
MoLFormer-XL (Ross et al., 2022) 0.362 0.333 0.079 0.073 0.103 17.06 0.008 0.192 0.245 0.206 0.244 0.145 1.588
MolTRES-small (ours) 0.326 0.295 0.066 0.067 0.085 16.32 0.009 0.133 0.185 0.155 0.164 0.137 1.495
MolTRES (ours) 0.315 0.237 0.054 0.057 0.077 14.60 0.007 0.061 0.071 0.068 0.057 0.121 1.310

Table 4: Evaluation results on QM9 tasks. We report MAE scores (lower is better) following the data splitting used
in Liu et al. (2023a). The best and second-best results are in bold and underlined. It is important to note that the “3D
Conformation (GT)” results utilize ground-truth geometry information, which incurs non-trivial costs to obtain. For
a fair comparison, we also evaluate the performance of 3D models using the geometry information approximated by
RDKit, denoted as “3D Conformation (RDKit)”, considering scenarios where ground-truth geometry is unavailable.
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Figure 3: Training curves of MolTRES with mat2vec embeddings (the solid line) and without mat2vec embeddings
(the dashed line). The left shows the pre-training loss curves, while the right shows the average ROC-AUC scores.

applications to be investigated.
We further compare MolTRES with the base-

lines on QM9, as shown in Table 4. Since quantum
properties are strongly correlated with geometry
information, baselines using ground-truth geom-
etry information (3D Conformation (GT)) show
the best results among baselines. However, obtain-
ing this geometry information involves non-trivial
costs and may not be available in many real-world
scenarios. In these contexts, our MolTRES models
provide the most accurate approximation by only
using SMILES, compared to baselines that estimate
geometry information from RDKit or those with-
out any geometry information, demonstrating its
efficacy and applicability. In addition, MolTRES-
small model also outperforms all the baselines,
showing its efficiency in approximation scenarios.

4.3 Analysis

To better understand the improvements from
MolTRES, we report a series of analysis on
MoleculeNet classification tasks. The results on
regression tasks are provided in Appendix.

Effect of mat2vec embedding. We analyze the
effect of the mat2vec embeddings on the pre-
training of MolTRES. As described in Figure 3,
mat2vec enables faster convergence, attributed to
the rich features provided by mat2vec that are ben-
eficial for structure modeling. Additionally, when
fully trained, MolTRES with mat2vec achieves
lower training losses and enhanced performance in
MoleculeNet classification tasks. This validates the
effectiveness of integrating mat2vec embeddings.
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DynaMol mat2vec BBBP ↑ Tox21 ↑ ToxCast ↑ ClinTox ↑ MUV ↑ HIV ↑ BACE ↑ SIDER ↑
✓ ✓ 95.2 86.1 71.9 93.9 82.7 81.1 93.7 69.1
✓ 95.2 85.9 71.2 93.7 81.5 78.5 93.3 68.5

✓ 92.5 84.7 67.0 87.3 80.2 79.0 93.1 66.4
92.1 84.4 66.1 86.9 78.8 77.1 92.4 64.8

Table 5: Performance on validation sets of MoleculeNet classification tasks with variants of MolTRES.

Masking BBBP ↑ Tox21 ↑ ToxCast ↑ ClinTox ↑ MUV ↑ HIV ↑ BACE ↑ SIDER ↑
Random 95.4 86.4 68.3 93.8 82.3 80.7 93.2 68.1
Ours 95.2 86.1 71.9 93.9 82.7 81.1 93.7 69.1

Table 6: Performance on validation sets of MoleculeNet classification tasks with different masking strategies.

Model BBBP ↑ Tox21 ↑ ToxCast ↑ ClinTox ↑ MUV ↑ HIV ↑ BACE ↑ SIDER ↑
MolTRES gen 93.3 83.3 63.1 91.1 77.9 80.7 87.3 65.8
MolTRES-small disc 95.0 83.4 64.8 94.0 80.0 81.7 87.7 68.3

Table 7: Performance of the MolTRES generator and discriminator on validation sets of MoleculeNet classification
tasks. Note that we use the discriminator of MolTRES-small, which has the same size of the generator of MolTRES.

Ablation Study. To assess the distinct contribu-
tions of MolTRES’s components to its enhanced
performance, we conduct ablation studies using
variants of MolTRES as detailed in Table 5. The
results demonstrate that both the DynaMol and
mat2vec integration contribute to performance im-
provements. While DynaMol shows consistent, sig-
nificant performance improvements over the tasks,
mat2vec integration particularly exhibits consider-
able improvements on five tasks (ToxCast, MUV,
HIV, BACE, and SIDER). Moreover, when used
jointly, they offer complementary advantages over
employing either method in isolation. This result
underscores the effectiveness of each component
in MolTRES in addressing the issues in existing
chemical language representation learning, leading
to notable performance improvements.

Masking strategy. To evaluate the performance
improvements from our substructure masking
method, we compare it with a random masking
strategy widely used in typical chemical language
representation methods, shown in Table 6. The re-
sults demonstrate the efficacy of our masking strat-
egy, outperforming random masking on average.
We observe that our masking strategy effectively
increases the loss value in identifying the original
SMILES sequence, addressing the difficulty issue
in typical pre-training methods. Furthermore, it
may help models identify some functional groups
in molecules that causes their characteristic prop-
erties, which are similarly observed in BERT with

whole-word and PMI masking (Levine et al., 2021)
in the field of natural language processing.

Generator vs. Discriminator. Since our pre-
training framework involves two models, namely a
generator and a discriminator, we compare their
performances on molecular property prediction
tasks, shown in Table 7. We observe that a gen-
erator model performs significantly worse than a
same-size discriminator model. In molecular prop-
erty prediction tasks, applying generation models
directly on understanding tasks appears harmful,
consistent with the results in natural language pro-
cessing work (Clark et al., 2020).

5 Conclusion

In this work, we have proposed a novel chemi-
cal language representation learning framework,
MolTRES. We have identified critical, previously
unaddressed issues in existing methods for chem-
ical language representation learning, specifically
early convergence and overfitting, and presented
two methods, generator-discriminator training with
substructure masking and knowledge transfer from
scientific literature based on mat2vec. Our ex-
perimental results validate the superiority of our
framework over existing chemical models across a
wide range of molecular property prediction tasks,
showing that MolTRES uniquely enables a robust
training of chemical language models and provides
substantial improvements in performances.
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Limitations

While we have demonstrated that MolTRES effec-
tively improves molecular property prediction by
addressing issues in existing chemical language
representation learning methods, some limitations
open promising avenues for future research. First,
several components in MolTRES, such as its mask-
ing strategy or knowledge transfer method, were
chosen empirically in terms of efficiency, and there-
fore may have room for performance improvements
through theoretical or learning-based approaches.
Second, we evaluated a few architectural settings of
MolTRES corresponding to those of MoLFormer-
XL for comparison. Future evaluations could ex-
plore more diverse settings of MolTRES to ac-
commodate various scenarios, including resource-
limited or scalable environments. Finally, a pop-
ular application of SMILES Transformers is in
molecule generation. We plan to investigate the
extension of MolTRES on the pre-training of gen-
erative Transformers for this purpose.
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DynaMol mat2vec ESOL ↓ FreeSolv ↓ Lipo ↓
✓ ✓ 0.294 0.209 0.515
✓ 0.298 0.208 0.517

✓ 0.296 0.209 0.529
0.301 0.212 0.540

Table 8: Performance on validation sets of MoleculeNet
regression tasks with variants of MolTRES.

Masking ESOL ↓ FreeSolv ↓ Lipo ↓
Random 0.296 0.214 0.521
Ours 0.294 0.209 0.515

Table 9: Performance on validation sets of MoleculeNet
regression tasks with different masking strategies.

Model ESOL ↓ FreeSolv ↓ Lipo ↓
MolTRES gen 0.284 0.251 0.602
MolTRES-small disc 0.280 0.250 0.594

Table 10: Performance of the MolTRES generator and
discriminator on validation sets of MoleculeNet re-
gression tasks. Note that we use the discriminator of
MolTRES-small, which has the same size of the genera-
tor of MolTRES.

A Appendix

Additional statistics and results. We report our
analyses on MoleculeNet regression tasks in Tables
8 – 10. We also report dataset statistics in Tables
11 and 12.

Pre-training hyper-parameter analysis. We
study the effect of pre-training hyper-parameters
as shown in Figures 4 and 5. We report ROC-
AUC scores on four MoleculeNet classification
tasks (BBBP, ClinTox, BACE, and SIDER). First,
in Figure 4, we find that the optimal masking ratio
for MolTRES is 65%. When the masking ratio is
smaller than 65%, we observe that the generator
easily fills masked tokens, resulting in significantly
biased labels towards original. In contrast, when
the masking ratio is larger than 65%, we observe
that there is few evidence in input SMILES tokens
to predict their original molecules, leading to less
effective training. In addition, in Figure 5, we
identify that the optimal value of λ is 10, different
from the original work on generator-discriminator
training in NLP (Clark et al., 2020) using 50. We
suspect that this is because SMILES modeling typ-
ically shows smaller losses from the generator than
language modeling, and thus we need smaller λ to
balance the generator and discriminator training.
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Figure 4: Comparison of MolTRES for different mask-
ing ratios on MoleculeNet classification tasks.
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Figure 5: Comparison of MolTRES for different λ on
MoleculeNet classification tasks.

Architecture analysis. We analyze diverse vari-
ations on the MolTRES architectures, particularly
about the architecture of the generator and dis-
criminator. We report ROC-AUC scores on eight
MoleculeNet classification tasks and MAE scores
on three MoleculeNet regression tasks from each
variation. In Table 13, the architecture of our stan-
dard setting used in Section 4 is shown in (D). The
variations in (A) denote training smaller MolTRES
models, showing that reducing layers and hidden
size show comparable performance degradation
when their numbers of parameters are commensu-
rate. Note that we choose to reduce layers, since
it achieves faster model execution speed. The vari-
ations in (B) and (C) are about the architecture of
generators. (B) contains the variations changing
the hidden sizes while using the number of layers
of the discriminator, while (C) contains the varia-
tions changing the numbers of layers while using
the hidden size of the discriminator. In this compar-
ison, we first observe that there is an optimal size of
generators that generate training examples suitably
challenging for discriminators. After empirical in-
vestigation, we choose to set the number of layers
in the generator to half of that in the discriminator.
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Descriptions # tasks # samples

BBBP Blood brain barrier penetration dataset 1 2,039
Tox21 Toxicity measurements on 12 different targets 12 7,831

ToxCast Toxicology data for a large library of compounds 617 8,577
Clintox Clinical trial toxicity of drugs 2 1,478
MUV Maximum unbiased validation group from PubChem BioAssay 17 93,087
HIV Ability of small molecules to inhibit HIV replication 1 41,127

BACE Binding results for a set of inhibitors for β− secretase 1 1 1,513
SIDER Drug side effect on different organ clases 27 1,427

Table 11: Classification tasks from MoleculeNet.

Descriptions # tasks # samples

QM9 12 quantum mechanical calculations of organic molecules 12 133,885
ESOL Water solubility dataset 1 1,128

FreeSolv Hydration free energy of small molecules in water 1 642
Lipophilicity Octanol/water distribution coefficient of molecules 1 4,200

Table 12: Regression benchmarks from MoleculeNet.

Generator Discriminator ROC-AUC ↑ MAE ↓
# layers Hidden size # layers Hidden size (CLS) (REG)

(A) 3 6 81.9 0.375
512 512 82.2 0.371

(B) 12 384 83.6 0.341
12 512 84.7 0.336

(C)
4 83.3 0.343
8 84.5 0.336
12 84.0 0.337

(D) 6 768 12 768 84.8 0.336

Table 13: Variations on the MolTRES architectures. Unlisted values are identical to those of the standard setting of
MolTRES in (D). Following the experimental settings described in Section 4.1, ROC-AUC scores are measured on
eight MoleculeNet classification tasks and MAE scores are measured on three MoleculeNet regression tasks.
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