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Abstract
Multi-step reasoning instruction, such as
chain-of-thought prompting, is widely adopted
to explore better language models (LMs) per-
formance. We report on the systematic strat-
egy that LMs employ in such a multi-step rea-
soning process. Our controlled experiments
reveal that LMs rely more heavily on heuris-
tics, such as lexical overlap, in the earlier
stages of reasoning, where more reasoning
steps remain to reach a goal. Conversely,
their reliance on heuristics decreases as LMs
progress closer to the final answer through
multiple reasoning steps. This suggests that
LMs can backtrack only a limited number of
future steps and dynamically combine heuris-
tic strategies with rationale ones in tasks in-
volving multi-step reasoning.1

1 Introduction

When facing complex tasks, humans tend to seek
shallow, heuristic solutions first (Erickson and
Mattson, 1981; Frederick, 2005). Once these at-
tempts are revealed to fail or elicit another rea-
sonable solution, they switch to being more ra-
tional (Stanovich and West, 2000). Such system-
atic behavior helps us to predict how humans will
tackle new problems. Given such a view, when
it comes to predicting the behavior of language
models (LMs) (Madaan and Yazdanbakhsh 2022;
Zhang et al. 2024; inter alia), the following ques-
tion naturally arises—Do LMs also use a similar
systematic strategy to solve complex tasks, or is
their strategy totally different from humans, or do
they have no such strategies? This study explores
an answer to this question. Such analyses will
shed light on the cognitive plausibility of LMs in
problem solving (Opedal et al., 2024; Eisape et al.,
2024; Aher et al., 2023) as well as address general
concerns of current neural models relying on su-
perficial, heuristic cues overly and ending up with

1The code/data is available in https://github.com/
ao1neko/Heuristic-and-Rational-Reasoning
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Figure 1: Illustration of the systematic reasoning strat-
egy we discovered in language models . When the
goal is distant from the current reasoning step, they
tend to rely on heuristics to take the next reasoning
step, such as lexical overlap with a question, leading to
the wrong direction (red path). In contrast, when the
goal is within a limited distance, they are more likely
to take rational actions (green path) to reach the goal.

irrational conclusions (Du et al., 2022; Lai et al.,
2021; Jia and Liang, 2017; Ye et al., 2023; Chen
et al., 2024).

In this paper, we demonstrate that LMs rely on
shallow heuristics more frequently in the earlier
phase of multi-step reasoning, and then gradually
switch their reasoning strategy to be more ratio-
nal and goal-oriented to make the right choice to
reach the goal. From an engineering perspective,
this highlights a limitation of modern LMs, in-
cluding GPT-4 (OpenAI, 2023), in searching for
a solution at the initial stage of step-by-step rea-
soning, particularly when tasks require many-step-
long solutions, implying that they can backtrack
only a limited number of future steps from the an-
swer to the current progress of reasoning. From
a cognitive perspective, their behaviors would be
somewhat human-like in the sense that the mod-
els try to employ heuristics first in solving a com-
plex problem. Moreover, this paper is the first to
show that models are equipped with both heuris-
tic and goal-oriented reasoning and dynamically
switch between them as needed.
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Figure 2: Overview of the task setting. Given premises and a question, a model answers the question step-by-step
(left part). Through each reasoning step t of selecting/paraphrasing relevant premise pk ∈ P , the available facts z
are enriched (reasoning state progresses in the right part). If a reasoning step follows the minimal solution (green
path in the right part), the distance to the answer d decreases.

2 Task

We adopt an arithmetic reasoning task as a con-
trolled testbed to analyze LM’s reasoning ability
(Figure 2 left). We will use natural and artificially
controlled datasets in the experiments, but let us
use the latter, more formal examples to explain the
task overview.

Arithmetic reasoning task: The problem con-
sists of a set of premises P = {p1, · · · , pk} and
a question q. Each premise describes either type
of fact: (i) Person A has n items (A=n), or (ii) Per-
son B has n more/fewer items than A has (B=A+n
or B=A-n). The question q asks the exact number
of specific items a particular person ultimately has
(How many items does B have?). Here, one should
consider multiple premises to derive the final an-
swer, e.g., A=3; B=2+A; B=2+3=5. Notably, some
premises are irrelevant to the answer; thus, models
have to track which premise is necessary to reach
the final answer.

Reasoning step: Let f be a model that is in-
structed to solve the task step-by-step. In each
reasoning step t, the model f selects a partic-
ular premise pi ∈ P and paraphrases it into a
new fact zt by eagerly resolving reference expres-
sions based on the already stated facts z<t =
[z1, · · · , zt−1] as in equation (1):

(pi, zt) = f(P, q, z<t) . (1)

For example, in Figure 2, when p2, Walter has 2
more apples than Peggy., is selected at a particular
reasoning step, the respective zt should be Wal-
ter has 2+5=7 apples. if z<t already contains
the number of apples Peggy has, i.e., p1.2 Start-
ing with an empty set of stated facts z = {},
the model recursively performs a reasoning step
and can stop when outputting a special symbol
EOS or answering the question q. Here, we de-
note the whole history of selected premises as
h = [pi, · · · , pj ] ∈ P ∗, where P ∗ is Kleene clo-
sure of P . Its t-th element ht is the premise to
derive the t-th reasoning step zt. Henceforth, we
call h reasoning steps and focus on the ability to
search for the right h.

Solutions: Among the possible reasoning steps
P ∗, there is a set of solutions H◦ ⊂ P ∗, where the
final stated fact z−1 in a solution h ∈ H◦ yields
the right answer to the question q. Figure 2 illus-
trates such a set of solutions H◦ as the steps lead-
ing to the final states of the state transition graph
(right part of Figure 2), e.g., [p1, p3, p2, p4] ∈ H◦.

Minimal solution: Within the set of solutions,
there is only one minimal solution h∗ ∈ H◦ ⊂
P ∗. Intuitively, h∗ does not contain any irrele-
vant step to approach the answer; for example,
the minimal solution of the problem in Figure 2
is [p1, p2, p4] = h∗. To define h∗, let us first intro-

2If the reference can not be resolved with z<t, the model
repeats the selected premise pi as zt.
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duce a distance to the answer. In each reasoning
step t, one can determine the minimum number
of remaining reasoning steps to reach the answer
d ∈ N, given h≤t ∈ P ∗ and the initially provided
premises P . The distance d can be derived from
a state transition graph and the minimum number
of transitions to the closest final states, as shown in
Figure 2 (right part). Here, we denote the mapping
function from h≤t to d as g : P ∗ → N. For ex-
ample, g([p2, p1, p2]) = 1 in Figure 2. A minimal
solution h∗ satisfies ∀t g(h∗

≤t) < g(h∗
≤t−1).

Targeted ability of LMs: We evaluate LMs’
ability to derive the minimal solution h∗ as in-
structed by 4-shot examples (Table 10). Notably,
we do not care about the ability to correctly intro-
duce a new fact zt (Eq. 1), e.g., the accuracy of
arithmetic operation (e.g., 5+2=7), but separately
focus on their search strategy to select the relevant
premise to perform the next reasoning step.

3 Heuristics

Given existing studies on LMs’ use of heuristics
(§5), we focus on the following types of heuristics:

Lexical overlap between premise and question
(OVERLAP): Neural models generally tend to
rely on superficial, shallow similarity of texts
when considering their associations. We specif-
ically examine whether models select premises
with the same person name (PN) as the one in
question as a representative of such biases. For
example, given a question how many apples Judy
has, premises such as Judy’s mother got 3 apples
might be selected as a relevant fact, regardless of
its necessity to reach the answer.

Position of premise (POSITION): It has been
reported that models tend to select information,
e.g., first and last, in specific positions in the con-
text (Liu et al., 2024). We examine whether mod-
els tend to select the premise in the initial position
of context.

Grammatical feature of premise (NEGATIVE):
Given that a specific grammatical feature, e.g.,
negation word, is often a superficial cue (Du et al.,
2021; Niven and Kao, 2019), we specifically ana-
lyze the bias that models avoid selecting premise
with negation word, i.e., not.

4 Experiments

We first confirm that models indeed rely on partic-
ular types of heuristics in our setting (§4.1). Then,
we investigate when in the step-by-step reason-
ing, such heuristics are more frequently exploited
(§4.2).

General settings: We use four representative
variants of large language models (LLMs): text-
bison-001 version of Google’sPaLM2 (Anil et al.,
2023), Llama2-13B (Touvron et al., 2023), gpt-
3.5-turbo-0125 and gpt-4-0613 snapshots of Ope-
nAI’s GPT-3.5-turbo (OpenAI, 2022) and GPT-
4 (OpenAI, 2023). These models are instructed
to yield a minimum solution via prompting.

4.1 Preliminary experiments

First, we confirm that LLMs exploit specific
heuristics in natural and artificially controlled
datasets during step-by-step reasoning.

Settings: We use two datasets as examples of
multi-hop reasoning: GSM8K (Cobbe et al., 2021)
(App. A) and artificially-controlled dataset with
4-step arithmetic reasoning (App. B). To perform
controlled experiments towards the LLMs’ use of
heuristics (§4), we extend GSM8K and the arti-
ficially controlled dataset to the OVERLAP, POS-
SITION, and NEGATIVE variants. Each variant is
created by adding one premise; there, the use of
its corresponding heuristics make the model fail
to find the minimal solution in step-by-step rea-
soning (1). For example, the POSITION dataset
has an additional premise p̃ (i.e., distractor) at the
beginning of the sentences, which is irrelevant to
answering the question p̃ ̸∈ h∗. The POSITION

heuristics will lead the model to select the first
sentence, i.e., distractor, as a neccesarry fact. As
a baseline, we also created BASE by adding a ran-
dom distractor that does not match any of the three
heuristics. If the model more frequently selects
the distractors in the OVERLAP, POSSITION, and
NEGATIVE datasets, compared to BASE, we can
confirm that models are at least biased towards
our selected heuristics. We describe the details
of the dataset creation process in Appendices A.1
and B.1.

Results: Table 1 shows the frequencies of men-
tioning the distractor at least once during reason-
ing. The scores for OVERLAP, POSITION, and
NEGATIVE in Table 1) are generally higher (lower
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GSM8K Artificial data

Models Base Over. ↑ Pos. ↑ Neg. ↓ Base Over. ↑ Pos. ↑ Neg. ↓
PaLM2 18.4% 57.9% 19.7% 17.1% 10.3% 42.3% 12.0% 4.3%
Llama2 43.2% 69.7% 50.0% 14.5% 32.6% 67.7% 33.0% 41.7%
GPT-3.5 35.5% 67.1% 36.8% 22.4% 21.0% 15.0% 49.0% 0.0%
GPT-4 21.1% 35.5% 22.4% 21.1% 0.0% 0.01% 0.0% 0.0%

Table 1: The frequency of the problems where the
model selected a distractor p̃ in step-by-step reason-
ing. “Over.”, “Pos.” and “Neg.” denote the OVER-
LAP, POSITION, and NEGATIVE heuristics. The results
are bolded when the frequency of output misled by the
distractor increased (Over.↑ and Pos.↑) or decreased
(Neg.↓) compared to the base results. In camera-ready,
add the above explanation to the caption.

for Negative) than the BASE scores across mod-
els and datasets. This indicates that LLMs, on
average, tend to rely on our targeted heuristics
(§3). Interestingly, different models yield differ-
ent preferences towards distractor types; for ex-
ample, Llama2 and GPT-3.5 have more biased
premise positions than PaLM2 and GPT-4. Note
that whether or not a distractor was selected was
determined by some rules. Such details are exm-
plained in the Appendices A.2 and B.2.

4.2 Main experiments

Then, we further investigate the LMs’ dynamic
use of heuristics. We hypothesized that the more
distant the current reasoning step is from the
answer (higher d in §2), the more heavily mod-
els rely on heuristics. Again, generating the min-
imal solution requires the model to track/plan the
future path (remaining necessary and sufficient in-
formation) to reach the final answer, and its re-
maining length becomes longer at the initial phase
of reasoning. If models have a limited capacity
to track the future path, they may have to give up
rational reasoning and rely on heuristics, particu-
larly at the earlier stage of reasoning, where the
volume of the remaining future path is likely to
exceed the model’s capacity.

Distractor and evaluation: To investigate the
relationship between the distance to the answer
and the models’ reliance on heuristics, we iden-
tify at which steps heuristics are more likely to
be exploited. Ideally, to facilitate a fair step-wise
comparison, one should design a distractor equally
attractive to all the reasoning steps in h∗ and an-
alyze when it is selected during the reasoning;
however, such a distractor is inherently difficult

Context: Peggy has 5 apples. Walter has 2 more ap-
ples than Peggy. Judy’s mother has 3 less apples than
Peggy. Judy has 4 more apples than Walter has.
Question: How many apples does Judy have?

Table 2: Example of a distractor examined in §4.2.
Suppose that h∗

1 is “Peggy has 5 apples.” Two candi-
date premises with “Peggy” seem to be plausible con-
tinuations as h∗

2, but only one is relevant to the final
answer (green), and the other is a distractor (orange).
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Figure 3: The ratio at which a particular distractor is
selected (y-axis: r) in each reasoning step (x-axis: d).

to implement. Instead, we prepare multiple dis-
tractors P̃ to the problem in artificial data; each of
them p̃t ∈ P̃ correspond to each reasoning step
h∗t in the sense that both share the same person
name that appeared in the previous step h∗t−1 (Ta-
ble 2).3 Similar to §4.1, we further modify each
distractor p̃t ∈ P̃ to match each heuristic (Over-
lap with question or Position in §3).4 In evalu-
ation, for each t, partial correct reasoning steps
h∗
<t are teacher-forced to a model, and we ana-

lyze whether the model selects the right next step
h∗t or its respective distractor p̃t. Specifically, we
calculate the frequency #(·) of models’ selecting
p̃t or h∗t ; then, the ratio of exploiting a distractor
r = #p̃t

#p̃t+#h∗
t

is reported. The chance rate should
be 0.5.

Note that we could not use the GSM8K dataset
in this experiment since designing such controlled
distractors for each reasoning step was not feasi-
ble, i.e., our creation of artificial, controlled data
enables this kind of analysis. In addition, we will
not analyze the NEGATIVE heuristic in this ex-
periment because it is a bias in the direction of

3To rule out the shortcut cue regarding the reference fre-
quencies of each person name, we further added distractor
premises to make the frequencies uniform.

4We excluded the Negative (avoidance) bias because if a
model avoids negation in the latter step, we cannot distin-
guish whether it was due to the heuristic or rational search.
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avoidance, making the experimental design com-
plicated.

Data: We used 5-step artificial reasoning data;
that is, the distance to the answer is five at first
d = 5 and will monotonically decrease (d = 5 →
4 → · · · → 0) through the steps in the minimal
solution. The first (d = 5 → 4) and the last
(d = 1 → 0) steps are excluded from our anal-
ysis for their special properties; e.g., the right last
step can be identified simply by detecting the lex-
ical overlap with the question.

Results: The results are shown in Figure 3. The
x-axis is the change of remaining steps d to the
goal in the respective reasoning step, and the y-
axis is the ratio r of selecting distractors p̃t. The
more distant the current step is from the answer
(larger d), the more frequently the distractor is
selected (larger r), which is typically above the
chance rate. PaLM2 and GPT-4 exhibited apparent
tendencies of the negative slopes between d and r.
These results match the hypothesized behavior, the
model’s less rational behavior in earlier reasoning
steps, and imply that they have a limited capacity
to track the future reasoning path.

5 Related work

Multi-step symbolic reasoning: Given the gen-
eral contrast between the symbolic and neural-
based approaches in the artificial intelligence
field (Hamilton et al., 2022), the community has
questioned the ability of neural LMs in emulating
particular symbolic operations, e.g., graph search
algorithm (Aoki et al., 2023; Yao et al., 2023; Fang
et al., 2024). In contrast, to identify what kind of
symbolic tasks are (im)possible to solve for LMs
by varying task complexities (Clark et al., 2020),
we investigate the inherent, systematic biases in
solving a particular symbolic reasoning task.

Heuristics in LM: Neural models have typi-
cally been distracted by superficial biases (Du
et al., 2022). For example, they tend to use su-
perficial linguistic artifacts (Lai et al., 2021; Sen
and Saffari, 2020; Du et al., 2021; Niven and Kao,
2019), or more simply, positional features (Ko
et al., 2020), even with chain-of-thought prompt-
ing (Madaan and Yazdanbakhsh, 2022); these mo-
tivated our experiments. This paper shows that
the LLMs’ reliance on such heuristics changes dy-
namically as the reasoning progresses.

Search algorithm: Finding the shortest path be-
tween the start and the goal on a graph is a stan-
dard problem in computer science (Russell and
Norvig, 1995). Our investigation of LMs on
the arithmetic tasks can be seen as characteriz-
ing LMs’ biases as a search algorithm. The use
of heuristics in graph search is, more or less, re-
lated to the A* search algorithm (Hart et al., 1968),
although heuristics in A* search is a more nar-
row concept regarding the distance to the goal than
those employed by LMs.

6 Conclusion

We have found a systematic strategy for the use
of heuristics in LMs’ multi-step reasoning—a dy-
namic transition from a heuristic to a rational rea-
soning strategy during LMs’ step-by-step reason-
ing. These results are hopefully helpful for re-
searchers to understand their underlying mecha-
nism as well as for LM users to consider the in-
herent biases systems have.

Limitations

This study focused only on four specific language
models and two arithmetic tasks. Increasing the
coverage of models and tasks is a possible future
direction, although we ensured that our finding
generalizes at least several models and task set-
tings. In §4.2, we only used artificial datasets for
designing controlled experiments to reduce con-
founding factors. Constructing a controlled but
natural dataset to evaluate the reasoning strategies
of LMs should be encouraged. Furthermore, our
findings are based solely on the model’s outputs,
i.e., behaviors. Elucidating the underlying mech-
anisms inside the model and the source of these
biases (e.g., statistical patterns in training data)
should be investigated in future work.
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Context: Jamesname decides to run 3num sprints
3num times a week. Hepronoun runs 60num meters
each sprint.

Question: How many total meters does hepronoun run
a week?

Person’s Names： James
Numbers： 3,60

Table 3: Extraction of names, personal pronouns, and
numbers on GSM8K.

A GSM8K experiments in §4.1

A.1 Dataset construction process

As described in 4.1, we modify the existing multi-
hop numerical reasoning dataset, GSM8K (dis-
tributed under the MIT license), to construct the
evaluation dataset. The dataset construction pro-
cess is divided into two steps: 1. Extracting in-
stances from GSM8K, and 2. Inserting distractors
according to the heuristic we want to evaluate for
each extracted problem statement.

A.1.1 Instance extraction
There is no guarantee that the premises added dur-
ing data expansion will not affect the solution.
Therefore, instances are extracted in which the
addition of premises has little effect on the solu-
tion. Specifically, we extract instances from the
GSM8K evaluation dataset following the process
below:

1. We manually create a list of 50 person names
(PNs) from a subset of the GSM8K evalua-
tion dataset.

2. Using regular expressions, we identify PNs
from this list.

3. We identify pronouns and numerical expres-
sions present in each instance.

4. We extracted instances that included pre-
cisely one from our list in both the context
and the question, and where either the PN or
a pronoun appears in the question (e.g., Ta-
ble 3).

5. We replaced all pronouns within the extracted
instances with the corresponding person’s
name.

In the following process, information on persons
not appearing in the problem statement is added

as distractors. The instance questions extracted
above are about persons in the problem statement.
Therefore, it can be guaranteed that adding a dis-
tractor will not change the answer by such a pro-
cess.

A.1.2 Distractor insertion

Subsequently, we added distractors to the ex-
tracted instances according to each heuristic,
thereby constructing 76 instances for the evalua-
tion dataset. Below, we will describe the process
of creating the evaluation dataset for each heuris-
tic.

Base We insert a template-based random dis-
tractor (i.e., p̃) into each instance as a baseline.
The distractor was created using the following
steps:

1. We randomly selected one sentence from the
instance that included a PN or pronoun and a
numerical expression.

2. We replaced the PN or pronoun in the se-
lected sentence with a placeholder, [name].

3. We replaced the numerical expression in the
selected sentence with a placeholder, [num].

4. We replaced [name] with a randomly se-
lected name from the list of PNs created
in A.1.1, excluding the name already present
in the instance.

5. We replaced [num] with another value.5

6. We inserted the created distractor into a ran-
dom position in the context other than the be-
ginning of the instance.

For example, When the sentence “James decides
to run 3 sprints 3 times a week.” is selected from
the instance in Table 3, a template “[name] de-
cides to run [num] sprints [num] times a week.”
is crafted. Names and numbers are randomly se-
lected from the candidates and placed into these
placeholders, and the resulting distractor is then
inserted into the context.

5The replacement number was calculated by multiplying
each number appearing in the sentence by either 0.5, 0.8, 1.2,
1.5, or 2 and then rounding down to the nearest whole num-
ber.
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Overlap To evaluate whether the Overlap
heuristic influences the model, we insert distrac-
tors p̃ into each instance following the steps be-
low:

1. We substituted the placeholder [name]
within the Base distractor template with
the person’ s name found in the instance,
appended by relational phrases such as “’s
mother”, “’s father”, “’s son”, or “’s neigh-
borhood” (e.g., in the instance from Table 3,
this would become “James’s mother”).

2. We replaced the number in the sentence with
another numerical value.

3. We placed the constructed distractor into con-
text at the location where the Base distractor
was positioned in the instance.

Position To evaluate whether the heuristic of Po-
sition induces the model, we insert distractors p̃
into each instance. Each distractor is identical to
the Base distractor except for its insertion point.
Specifically, we relocated the distractor’s insertion
point to a random position closer to the beginning
of the context than the position used for the Base
distractor.

Negative To evaluate the model’s response to
the Negative heuristic, we insert distractors p̃ into
each instance created based on the following tem-
plate:

[name] doesn’t have [num] [object].

In this template:

• [name] is substituted with a random PN in-
cluded in the instance.

• [object] is replaced with one of the following
items: “apples,” “bananas,” “grapes,” “pen-
cils,” or “books.”

• [num] is replaced with a different numerical
value, using the same algorithm for creating
the Base distractor.

A.2 Evaluation

To determine whether the LMs selected the dis-
tractor during reasoning, we check if the numbers
in the distractor p̃ are in the facts z. We calculate
the frequency of instances where the distractor is
selected.

Context：[nameA] has [num] [object].
[nameB] has [num] [relation] [object] than [nameA].
[nameC] has [num] [relation] [object] than [nameB].
[nameD] has [num] [relation] [object] than [nameC].

Question：How many [object] does [nameD] have?

distractor：[nameE] has [num] [relation] [object] than
[nameX].

Table 4: Template of artificial data in §4.1.

B Artificial-data experiments in §4.1

B.1 Dataset construction process

Base We construct the artificial data using the
method outlined below, based on the template pre-
sented in Table 4.

• Randomly assign one of the following
names to the placeholders [nameA] to
[nameE]: “Alice,” “Bob,” “Carol,” “Dave,”
“Eve,” “Frank,” “Grace,” “Heidi,” “Ivan,”
“Judy,” “Kevin,” “Larry,” “Mallory,”
“Nancy,” “Olivia,” “Peggy,” “Quentin,”
“Rob,” “Sybil,” “Trent,” “Ursula,” “Victor,”
“Walter,” “Xavier,” “Yvonne,” or “Zoe.”

• Assign a randomly selected value from
[nameA] to [nameD] to the placeholder
[nameX].

• Assign a random number from 0 to 100 to the
placeholder [num].

• Assign one of the objects “apples,” “ba-
nanas,” “grapes,” “pencils,” or “books” to the
placeholder [object].

• Assign either “more” or “fewer” to the place-
holder [relation].

• Randomly shuffle the order of the sentences.

Overlap We constructed a dataset to evaluate
whether the Overlap heuristic induced the model
by making certain modifications to the Base dis-
tractor for each instance. Specifically, we modi-
fied the value of [nameD] by appending relational
phrases such as “ ’s mother”, “ ’s father”, “ ’s
son”, or “ ’s neighborhood” to the existing value
of [nameD]. We then assigned this modified value
to [nameE].
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Cntext：[nameA] has [num] [object].
[nameB] has [num] [relation] [object] than [nameA].
[nameC] has [num] [relation] [object] than [nameB].
[nameD] has [num] [relation] [object] than [nameC].
[nameE] has [num] [relation] [object] than [nameD].

Question：How many [object] does [nameE] have?

heurictic distractor：
[nameF] has [num] [relation] [object] than [nameA].
[nameG] has [num] [relation] [object] than [nameB].
[nameH] has [num] [relation] [object] than [nameC].

distractor:
[nameI] has [num] [relation] [object] than [nameD].
[nameJ] has [num] [relation] [object] than [nameF].
[nameK] has [num] [relation] [object] than [nameF].
[nameL] has [num] [relation] [object] than [nameG].
[nameM] has [num] [relation] [object] than [nameG].
[nameN] has [num] [relation] [object] than [nameJ].
[nameO] has [num] [relation] [object] than [nameJ].
[nameP] has [num] [relation] [object] than [nameK].
[nameQ] has [num] [relation] [object] than [nameK].

Table 5: Template of artificial data in §4.2.

Position We modify the Base distractor to eval-
uate if the Position heuristic induces the model.
Specifically, we altered the insertion point of the
Base distractor to a randomly chosen position
closer to the context’s beginning than the original
position used in the Base distractor.

Negative To evaluate whether the Neg induces
the model heuristic, we construct a dataset by
modifying the Base distractor. Specifically, we
convert the Base distractor into a negative expres-
sion (e.g., [nameE] doesn’t have [num] [relation]
[object] than [nameX]).

B.2 Evaluation
To determine whether the LMs selected the dis-
tractor during reasoning, we check if the subject
of the distractor (i.e., [nameE]) is included in the
facts z. We calculate the frequency of instances
where the distractor is selected.

C Artificial data in §4.2

We prepare a template similar to a Table 5 and as-
sign values to the template according to the fol-
lowing steps:

• We create template as shown in table4.

• Within the template, placeholders [nameA]
to [nameQ] is filled randomly with names
such as “Alice”, “Bob”, “Carol”, “Dave”,
“Eve”, “Frank”, “Grace”, “Heidi”, “Ivan”,

“Judy”, “Kevin”, “Larry”, “Mallory”,
“Nancy”, “Olivia”, “Peggy”, “Quentin”,
“Rob”, “Sybil”, “Trent”, “Ursula”, "Victor”,
“Walter”, “Xavier”, “Yvonne”, “Zoe”.

• The placeholder [num] is filled with a ran-
dom number from 0 to 100.

• The placeholder [object] is filled randomly
with items such as “apples”, “bananas”,
“grapes”, “pencils”, “books”.

• The placeholder [relation] is assigned either
“more” or “fewer”.

• Sentences within the context are shuffled ran-
domly.

• A distractor is inserted at a random position.

Then, using the following procedures, We cre-
ate each expanded dataset. Each targeted heuris-
tic strongly influences the heuristic distractors de-
signed in this study. Each dataset consists of 300
problems.

• For the Overlap dataset, the values “’s
mother”, “’s father”, “’s son”, and “’s neigh-
borhood” are appended to [nameE] and as-
signed respectively to [nameF], [nameG],
and [nameH]. Each of [nameF], [nameG],
and [nameH] hold different values.

• For the Position dataset, the sentences with
[nameF], [nameG], and [nameH] as the sub-
jects have distractors inserted closer to the
beginning of the context than the sentences
with [nameB], [nameC], and [nameD] as the
subjects. For other datasets, heuristic distrac-
tors are inserted at random positions.

• For the Negative dataset, the form of the
heuristic distractor is changed to a negative
form.

In §4.2, the method to identify which premises are
used for reasoning was similar to that in App. B,
relying on regular expressions.

D Mearuing accuracy in §4.1

This paper was mainly concerned with the fre-
quency of distractor selection. To ensure that the
model is not producing crappy output in these ex-
periments, we measure the accuracy. Table 6 be-
low shows the accuracy rates of each model on
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Base Over. Pos. Neg.

PaLM2 64.5% 59.2% 60.5% 71.1%
Llama2 30.3% 34.2% 30.3% 27.6%
GPT-3.5 81.6% 64.5% 81.6% 82.9%
GPT-4 85.5% 84.2% 82.9% 92.1%

Table 6: The accuracy while solving GSM8K.

Base Over. Pos. Neg.

PaLM2 60.0% 58.7% 77.0% 80.7%
Llama2 21.3% 14.3% 22.3% 20.0%
GPT-3.5 84.6% 87.3% 87.6% 82.9%
GPT-4 98.7% 94.0% 98.0% 99.7%

Table 7: The accuracy while solving artificial reasoning
tasks.

GSM8K. Additionally, Table 7 below shows the
accuracy rates of each model on artificial data.

From the Table 6, 7, it is shown that GPT-4
had the highest accuracy rates across the datasets,
while Llama2 had the lowest. It is expected that
these outcomes are due to differences in the num-
ber of parameters in the model.

E Generation settings

When using GPT-3.5 and GPT-4, the set-
tings are adjusted to temperature=0.0, fre-
quency_penalty=0, and presence_penalty=0. Sim-
ilarly, for PaLM2 and Llama2, the temperature is
set to 0, with no sampling.

We use NVIDIA RTX A6000 (48GB) GPUs for
inference with Llama2.

F Few-shot examples

The few-shot examples for models regarding
datasets GSM8K and artificial data are shown in
the respective Tables 9, 10.

G Effect of few-shot examples

We investigate whether the few-shot examples
trigger the model’s heuristic. Specifically, we
replace the few-shot examples in the following
ways to study the relationship between the model’s
heuristic and its inputs:
1. We change the few-shot examples to in-
duce Overlap (as shown in Table 11) and exam-
ine whether this increases the reasoning frequency
with the use of distractors in the Overlap dataset
compared to what is shown in Table 1.
2. We change the few-shot examples to induce Po-
sition (as shown in Table 12) and check if there’s

Over.↑ Pos.↑ Neg.↓
PaLM2 41.0% 14.0% 5.7%
Llama2 82.0% 93.3% 28.0%
GPT-3.5 11.7% 35.0% 0.0%
GPT-4 0.0% 0.0% 0.0%

Table 8: The frequency at which the model selected
a distractor (i,e., p̃) while solving artificial reasoning
tasks after changing few-shot examples.

an increase in reasoning frequency with the use of
distractors in the Position dataset compared to Ta-
ble 1.
3. We change the few-shot examples to induce
Negative (as shown in Table 13), and investigate
if there’s a decrease in reasoning frequency with
the use of distractors in the Negative dataset com-
pared to Table 1.

We measure the frequency of selecting p̃
in §4.1. The results are presented in Table 8. As
shown in Tables 1, 8, although the few-shot exam-
ples fed into the models such as GPT-3.5, GPT-
4, and PaLM2 was changed, there was no signif-
icant change in reasoning frequency as described.
This suggests that the model’s heuristic does not
merely mimic the examples provided as input. On
the other hand, the Llama2 model was more prone
to being misled by changes in input, and smaller
models demonstrated a reduced capacity to reach
the correct answers.

H Effects of increasing the number of
distructors

We investigate whether the same results could be
obtained when the number of distractors that do
not include heuristics increases. Specifically, we
prepare the same settings as in §4.2 and add dis-
tractors that do not include heuristics. We define
the distractors that include heuristics as p̃t,heuristic
and those that do not as p̃t,non-heuristic. The ratio
of p̃t,heuristic to p̃t,non-heuristic in the problem text is
1:8. In this experiment, we use a model that could
produce reasonable output even when the context
length increases. Specifically, we use only the
GPT-3.5-turbo and GPT-4.

Figures 4 and 5 show how many times
out of 100 times the model selected p̃t,heuristic,
p̃t,non-heuristic, and h∗t at each step. Figures 4 and 5
show the experimental results for the cases where
the heuristics included in the distructor are overlap
and position, respectively. Figures 4 and 5 show
that the number of cases in which the shortest path
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Answer the context question using the following example.

Context: Leo’s assignment was divided into three parts. Weng earns $12 an hour for babysitting. It took Leo twice
as long to finish the second part. Yesterday, she just did 50 minutes of babysitting.
Question: How much did Weng earn?
Answer:
Weng earns 12/60 = 0.2 per minute.
Working 50 minutes, she earned 0.2 x 50 = 10.
The final answer is 10.

Context: Betty is saving money for a new wallet, which costs $100. Betty has only half of the money she needs.
Alice is saving money for a new wallet, which costs $2000. Betty’s parents decided to give Betty $15 for that
purpose, and her grandparents twice as much as her parents. Question: How much more money does Betty need
to buy the wallet?
Question: How much more money does Betty need to buy the wallet?
Answer:
In the beginning, Betty has only 100 / 2 = 50.
Betty’s parents gave her 15.
Betty’s grandparents gave her 15 * 2 = 30.
This means Betty needs 100 - 50 - 15 - 30 = 5 more.
The final answer is 5.

Context: Julie is reading a 120-page book. Yesterday, Julie was able to read 12 pages, and today, she read twice
as many pages as yesterday. Julie’s mother makes $18.00 an hour.
Question: If Julie wants to read half of the remaining pages tomorrow, how many are left to read?
Answer:
Julie read 12 x 2 = «12*2=24»24 pages today
So, she was able to read a total of 12 + 24 = 36 pages since yesterday.
There are 120 - 36 = 84 pages left to be read.
Since she wants to read half of the remaining pages tomorrow, she should read 84/2 = 42 pages.
The final answer is 42.

Context: James writes a 2-page letter to 4 different friends who live in America twice a week. James writes a
3-page letter to 2 different friends who live in Japan twice a week.
Question: How many pages does James write each friend who lived in Japan for a year?
Answer:
He writes each friend 3*2=6 pages a week.
So, he writes 6*2=12 pages every week.
That means he writes 12*52=624 pages a year.
The final answer is 624.

Table 9: Examples of input given when solving GSM8K.
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Figure 4: Number of cases where a particular distrac-
tor is selected (y-axis: r) in each reasoning step (x-axis:
d). The heuristic to be included in the distructor is over-
lap.

is selected increases as the goal is reached. The
ratio of distructors that include heuristics to those
that do not is 1:8, but the ratio of distructors that
include heuristics when distructors are selected is
higher than 1/(1+8). Therefore, this suggests that
premises are being selected using heuristics. Ex-
cept for the GPT-3.5 (overlap) results, the number
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Figure 5: Number of cases where a particular distrac-
tor is selected (y-axis: r) in each reasoning step (x-axis:
d). The heuristic to be included in the distructor is po-
sition.

of cases where a destructor is selected decreases as
the goal is approached. These results are as with
the results for 4.2. The results of GPT-3.5 (over-
lap) may indicate that the increase in the number
of distructors has reduced the focus on distructors,
including heuristics.
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I Usage of Writing Assistance

We use publicly available writing assistance tools,
including Grammarly, to refine the language for
readability.
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Answer the context question using the following example.

Context: Walter has -22 apples. Ursula has 3 more apples than Walter. Victor has 3 more apples than Ursula.
Quentin has 2 more apples than Ursula. Nancy has 3 more apples than Walter. Zoe has 3 more apples than Nancy.
Heidi has 3 more apples than Nancy. Carol’s mother has 4 apples. Xavier has 3 more apples than Carol’s mother.
Peggy has 4 more apples than Xavier. Dave has 13 more apples than Xavier. Bob has 1 more apples than Carol’s
mother. Alice has 3 more apples than Bob. Sybil has 56 more apples than Bob.
Question: How many apples does Dave have?
Answer:
Carol’s mother has 4 apples, and Xavier has 3 more apples than Carol’s mother. So, Xavier has 4+3=7 apples.
Xavier has 7 apples, and Dave has 13 more apples than Xavier. So, Dave has 7+13=20 apples. The final answer is
20.

Context: Alice has 92 more bananas than Mallory. Victor has 10 fewer bananas than Walter. Xavier has 59 more
bananas than Sybil. Yvonne has 79 more bananas than Sybil. Judy has 23 more bananas than Alice. Dave has
60 more bananas than Victor. Quentin has 35 fewer bananas than Peggy. Heidi has 95 more bananas than Victor.
Ursula doesn’t have 32 more bananas than Peggy. Larry has 17 fewer bananas than Alice. Zoe has 58 fewer
bananas than Yvonne. Ivan has 43 fewer bananas than Yvonne. Walter has 43 fewer bananas than Mallory. Nancy
has 34 bananas. Grace has 41 more bananas than Xavier. Mallory has 55 fewer bananas than Nancy. Sybil has 3
fewer bananas than Nancy. Peggy has 50 more bananas than Walter. Trent has 33 fewer bananas than Xavier.
Question: How many bananas does Quentin have?
Answer:
Nancy has 34 bananas, and Mallory has 55 fewer bananas than Nancy. So, Mallory has 34-55=-21 bananas.
Mallory has -21 bananas, and Walter has 43 fewer bananas than Mallory. So, Walter has -21-43=-64 bananas.
Walter has -64 bananas, and Peggy has 50 more bananas than Walter. So, Peggy has -64+50=-14 bananas.
Peggy has -14 bananas, and Quentin has 35 fewer bananas than Peggy. So, Quentin has -14-35=-49 bananas.
The final answer is -49.

Context: Zoe has 10 more apples than Yvonne’s son. Eve has 2 apples. Yvonne’s son has 3 more apples than
Eve. Quentin has 3 more apples than Yvonne. Yvonne has 3 fewer apples than Zoe. Alice has 3 more apples than
Grace. Trent has 34 more apples than Zoe. Ivan has 3 apples. Ursula has 3 more apples than Zoe. Grace has 3
apples. Xavier doesn’t have 3 more apples than Ivan.
Question: How many apples does Yvonne have?
Answer:
Eve has 2 apples, and Yvonne’s son has 3 more apples than Eve. So, Yvonne’s son has 2+3=5 apples.
Yvonne’s son has 5 apples, and Zoe has 10 more apples than Yvonne’s son. So, Zoe has 5+10=15 apples.
Zoe has 15 apples, and Yvonne has 3 fewer apples than Zoe. So, Yvonne has 15-3=12 apples.
The final answer is 12.

Context: Kevin’s friend has 33 fewer grapes than Rob. Ivan has 43 more grapes than Victor. Victor has 33 fewer
grapes than Kevin’s friend. Ursula has 75 fewer grapes than Zoe. Alice has 11 more grapes than Eve. Dave has
11 more grapes than Eve. Olivia has 29 more grapes than Kevin’s friend. Mallory has 97 more grapes than Olivia.
Judy has 78 more grapes than Olivia. Rob has 55 grapes. Frank has 70 fewer grapes than Heidi. Eve has 84 fewer
grapes than Sybil. Xavier has 36 more grapes than Heidi. Sybil has 55 fewer grapes than Trent. Kevin has 43
fewer grapes than Zoe. Heidi has 61 fewer grapes than Trent. Zoe has 88 more grapes than Sybil. Trent has 40
more grapes than Rob. Walter has 38 more grapes than Victor.
Question: How many grapes does Kevin have?
Answer:
Rob has 55 grapes, and Trent has 40 more grapes than Rob. So, Trent has 55+40=95 grapes.
Trent has 95 grapes, and Sybil has 55 fewer grapes than Trent. So, Sybil has 95-55=40 grapes.
Sybil has 40 grapes, and Zoe has 88 more grapes than Sybil. So, Zoe has 40+88=128 grapes.
Zoe has 128 grapes, and Kevin has 43 fewer grapes than Zoe. So, Kevin has 128-43=85 grapes.
The final answer is 85.

Table 10: Examples of input given when solving an artificial dataset.
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Answer the context question using the following example.

Context: Context: Walter has -22 apples. Ursula has 3 more apples than Walter. Victor has 3 more apples than
Ursula. Quentin has 2 more apples than Ursula. Nancy has 3 more apples than Walter. Zoe has 3 more apples than
Nancy. Heidi has 3 more apples than Nancy. Dave’s mother has 4 apples. Dave’s father has 3 more apples than
Dave’s mother. Peggy has 4 more apples than Dave’s father. Dave has 13 more apples than Dave’s father. Bob has
1 more apples than Carol’s mother. Alice has 3 more apples than Bob. Sybil has 56 more apples than Bob.
Question: How many apples does Dave have?
Answer:
Dave’s mother has 4 apples, and Dave’s father has 3 more apples than Dave’s mother. So, Dave’s father has 4+3=7
apples.
Dave’s father has 7 apples, and Dave has 13 more apples than Dave’s father. So, Dave has 7+13=20 apples.
The final answer is 10.

Context: Alice has 92 more bananas than Quentin’s mother. Victor has 10 fewer bananas than Walter. Xavier has
59 more bananas than Sybil. Yvonne has 79 more bananas than Sybil. Judy has 23 more bananas than Alice. Dave
has 60 more bananas than Victor. Quentin has 35 fewer bananas than Quentin’s father. Heidi has 95 more bananas
than Victor. Ursula doesn’t have 32 more bananas than Quentin’s father. Larry has 17 fewer bananas than Alice.
Zoe has 58 fewer bananas than Yvonne. Ivan has 43 fewer bananas than Yvonne. Walter has 43 fewer bananas
than Quentin’s mother. Nancy has 34 bananas. Grace has 41 more bananas than Xavier. Quentin’s mother has
55 fewer bananas than Nancy. Sybil has 3 fewer bananas than Nancy. Quentin’s father has 50 more bananas than
Walter. Trent has 33 fewer bananas than Xavier.
Question: How many bananas does Quentin have?
Answer:
Nancy has 34 bananas, and Quentin’s mother has 55 fewer bananas than Nancy. So, Quentin’s mother has 34-55=-
21 bananas.
Quentin’s mother has -21 bananas, and Walter has 43 fewer bananas than Quentin’s mother. So, Walter has -21-
43=-64 bananas.
Walter has -64 bananas, and Quentin’s father has 50 more bananas than Walter. So, Quentin’s father has -64+50=-
14 bananas.
Quentin’s father has -14 bananas, and Quentin has 35 fewer bananas than Quentin’s father. So, Quentin has -14-
35=-49 bananas.
The final answer is -49.

Context: Yvonne’s father has 10 more apples than Yvonne’s son. Eve has 2 apples. Yvonne’s son has 3 more
apples than Eve. Quentin has 3 more apples than Yvonne. Yvonne has 3 fewer apples than Yvonne’s father. Alice
has 3 more apples than Grace. Trent has 34 more apples than Yvonne’s father. Ivan has 3 apples. Ursula has 3
more apples than Yvonne’s father. Grace has 3 apples. Xavier has 3 more apples than Ivan.
Question: How many apples does Yvonne have?
Answer:
Eve has 2 apples, and Yvonne’s son has 3 more apples than Eve. So, Yvonne’s son has 2+3=5 apples.
Yvonne’s son has 5 apples, and Yvonne’s father has 10 more apples than Yvonne’s son. So, Yvonne’s father has
5+10=15 apples.
Yvonne’s father has 15 apples, and Yvonne has 3 fewer apples than Yvonne’s father. So, Yvonne has 15-3=12
apples.
The final answer is 12.

Context: Kevin’s friend has 33 fewer grapes than Rob. Ivan has 43 more grapes than Victor. Victor has 33 fewer
grapes than Kevin’s friend. Ursula has 75 fewer grapes than Zoe. Alice has 11 more grapes than Eve. Dave has
11 more grapes than Eve. Olivia has 29 more grapes than Kevin’s friend. Mallory has 97 more grapes than Olivia.
Judy has 78 more grapes than Olivia. Rob has 55 grapes. Frank has 70 fewer grapes than Heidi. Eve has 84
fewer grapes than Kevin’s neighborhood. Xavier has 36 more grapes than Heidi. Kevin’s neighborhood has 55
fewer grapes than Kevin’s friend. Kevin has 43 fewer grapes than Kevin’s mother. Heidi has 61 fewer grapes than
Kevin’s friend. Kevin’s mother has 88 more grapes than Kevin’s neighborhood. Kevin’s friend has 40 more grapes
than Rob. Walter has 38 more grapes than Victor.
Question: How many grapes does Kevin have?
Answer:
Rob has 55 grapes, and Kevin’s friend has 40 more grapes than Rob. So, Kevin’s friend has 55+40=95 grapes.
Kevin’s friend has 95 grapes, and Kevin’s neighborhood has 55 fewer grapes than Kevin’s friend. So, Kevin’s
neighborhood has 95-55=40 grapes.
Kevin’s neighborhood has 40 grapes, and Kevin’s mother has 88 more grapes than Kevin’s neighborhood. So,
Kevin’s mother has 40+88=128 grapes.
Kevin’s mother has 128 grapes, and Kevin has 43 fewer grapes than Kevin’s mother. So, Kevin has 128-43=85
grapes.
The final answer is 85.

Table 11: Examples of input given when solving the Overlap dataset.
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Answer the context question using the following example.

Context: Carol’s mother has 4 apples. Xavier has 3 more apples than Carol’s mother. Dave has 13 more apples
than Xavier. Walter has -22 apples. Ursula has 3 more apples than Walter. Victor has 3 more apples than Ursula.
Quentin has 2 more apples than Ursula. Nancy has 3 more apples than Walter. Zoe has 3 more apples than Nancy.
Heidi has 3 more apples than Nancy. Peggy has 4 more apples than Xavier. Bob has 1 more apples than Carol’s
mother. Alice has 3 more apples than Bob. Sybil has 56 more apples than Bob.
Question: How many apples does Dave have?
Answer:
Carol’s mother has 4 apples, and Xavier has 3 more apples than Carol’s mother. So, Xavier has 4+3=7 apples.
Xavier has 7 apples, and Dave has 13 more apples than Xavier. So, Dave has 7+13=20 apples. The final answer is
20.

Context: Nancy has 34 bananas. Mallory has 55 fewer bananas than Nancy. Walter has 43 fewer bananas than
Mallory. Peggy has 50 more bananas than Walter. Quentin has 35 fewer bananas than Peggy. Alice has 92 more
bananas than Mallory. Victor has 10 fewer bananas than Walter. Xavier has 59 more bananas than Sybil. Yvonne
has 79 more bananas than Sybil. Judy has 23 more bananas than Alice. Dave has 60 more bananas than Victor.
Heidi has 95 more bananas than Victor. Ursula doesn’t have 32 more bananas than Peggy. Larry has 17 fewer
bananas than Alice. Zoe has 58 fewer bananas than Yvonne. Ivan has 43 fewer bananas than Yvonne. Grace has
41 more bananas than Xavier. Sybil has 3 fewer bananas than Nancy. Trent has 33 fewer bananas than Xavier.
Question: How many bananas does Quentin have?
Answer:
Nancy has 34 bananas, and Mallory has 55 fewer bananas than Nancy. So, Mallory has 34-55=-21 bananas.
Mallory has -21 bananas, and Walter has 43 fewer bananas than Mallory. So, Walter has -21-43=-64 bananas.
Walter has -64 bananas, and Peggy has 50 more bananas than Walter. So, Peggy has -64+50=-14 bananas.
Peggy has -14 bananas, and Quentin has 35 fewer bananas than Peggy. So, Quentin has -14-35=-49 bananas.
The final answer is -49.

Context: Eve has 2 apples. Yvonne’s son has 3 more apples than Eve. Zoe has 10 more apples than Yvonne’s
son. Yvonne has 3 fewer apples than Zoe. Alice has 3 more apples than Grace. Quentin has 3 more apples than
Yvonne. Trent has 34 more apples than Zoe. Ivan has 3 apples. Ursula has 3 more apples than Zoe. Grace has 3
apples. Xavier has 3 more apples than Ivan.
Question: How many apples does Yvonne have?
Answer:
Eve has 2 apples, and Yvonne’s son has 3 more apples than Eve. So, Yvonne’s son has 2+3=5 apples.
Yvonne’s son has 5 apples, and Zoe has 10 more apples than Yvonne’s son. So, Zoe has 5+10=15 apples.
Zoe has 15 apples, and Yvonne has 3 fewer apples than Zoe. So, Yvonne has 15-3=12 apples.
The final answer is 12.

Context: Rob has 55 grapes. Trent has 40 more grapes than Rob. Sybil has 55 fewer grapes than Trent. Zoe has
88 more grapes than Sybil. Kevin has 43 fewer grapes than Zoe. Kevin’s friend has 33 fewer grapes than Rob.
Ivan has 43 more grapes than Victor. Victor has 33 fewer grapes than Kevin’s friend. Ursula has 75 fewer grapes
than Zoe. Alice has 11 more grapes than Eve. Dave has 11 more grapes than Eve. Olivia has 29 more grapes than
Kevin’s friend. Mallory has 97 more grapes than Olivia. Judy has 78 more grapes than Olivia. Frank has 70 fewer
grapes than Heidi. Eve has 84 fewer grapes than Sybil. Xavier has 36 more grapes than Heidi. Heidi has 61 fewer
grapes than Trent. Walter has 38 more grapes than Victor.
Question: How many grapes does Kevin have?
Answer:
Rob has 55 grapes, and Trent has 40 more grapes than Rob. So, Trent has 55+40=95 grapes.
Trent has 95 grapes, and Sybil has 55 fewer grapes than Trent. So, Sybil has 95-55=40 grapes.
Sybil has 40 grapes, and Zoe has 88 more grapes than Sybil. So, Zoe has 40+88=128 grapes.
Zoe has 128 grapes, and Kevin has 43 fewer grapes than Zoe. So, Kevin has 128-43=85 grapes.
The final answer is 85.

Table 12: Examples of input given when solving the Position dataset.
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Answer the context question using the following example.

Context: Walter doesn’t have -22 apples. Ursula has 3 more apples than Walter. Victor has 3 more apples than
Ursula. Quentin has 2 more apples than Ursula. Nancy doesn’t have 3 more apples than Walter. Zoe has 3 more
apples than Nancy. Heidi doesn’t have 3 more apples than Nancy. Carol’s mother has 4 apples. Xavier has 3 more
apples than Carol’s mother. Peggy has 4 more apples than Xavier. Dave has 13 more apples than Xavier. Bob
doesn’t have 1 more apples than Carol’s mother. Alice has 3 more apples than Bob. Sybil has 56 more apples than
Bob.
Question: How many apples does Dave have?
Answer:
Carol’s mother has 4 apples, and Xavier has 3 more apples than Carol’s mother. So, Xavier has 4+3=7 apples.
Xavier has 7 apples, and Dave has 13 more apples than Xavier. So, Dave has 7+13=20 apples. The final answer is
20.

Context: Alice has 92 more bananas than Mallory. Victor has 10 fewer bananas than Walter. Xavier has 59 more
bananas than Sybil. Yvonne doesn’t have 79 more bananas than Sybil. Judy doesn’t have 23 more bananas than
Alice. Dave has 60 more bananas than Victor. Quentin has 35 fewer bananas than Peggy. Heidi has 95 more
bananas than Victor. Ursula doesn’t have 32 more bananas than Peggy. Larry doesn’t have 17 fewer bananas than
Alice. Zoe has 58 fewer bananas than Yvonne. Ivan has 43 fewer bananas than Yvonne. Walter has 43 fewer
bananas than Mallory. Nancy has 34 bananas. Grace doesn’t have 41 more bananas than Xavier. Mallory has
55 fewer bananas than Nancy. Sybil doesn’t have 3 fewer bananas than Nancy. Peggy has 50 more bananas than
Walter. Trent doesn’t have 33 fewer bananas than Xavier.
Question: How many bananas does Quentin have?
Answer:
Nancy has 34 bananas, and Mallory has 55 fewer bananas than Nancy. So, Mallory has 34-55=-21 bananas.
Mallory has -21 bananas, and Walter has 43 fewer bananas than Mallory. So, Walter has -21-43=-64 bananas.
Walter has -64 bananas, and Peggy has 50 more bananas than Walter. So, Peggy has -64+50=-14 bananas.
Peggy has -14 bananas, and Quentin has 35 fewer bananas than Peggy. So, Quentin has -14-35=-49 bananas.
The final answer is -49.

Context: Zoe has 10 more apples than Yvonne’s son. Eve has 2 apples. Yvonne’s son has 3 more apples than
Eve. Quentin has 3 more apples than Yvonne. Yvonne has 3 fewer apples than Zoe. Alice has 3 more apples than
Grace. Trent has 34 more apples than Zoe. Ivan has 3 apples. Ursula has 3 more apples than Zoe. Grace has 3
apples. Xavier doesn’t have 3 more apples than Ivan.
Question: How many apples does Yvonne have?
Answer:
Eve has 2 apples, and Yvonne’s son has 3 more apples than Eve. So, Yvonne’s son has 2+3=5 apples.
Yvonne’s son has 5 apples, and Zoe has 10 more apples than Yvonne’s son. So, Zoe has 5+10=15 apples.
Zoe has 15 apples, and Yvonne has 3 fewer apples than Zoe. So, Yvonne has 15-3=12 apples.
The final answer is 12.

Context: Kevin’s friend has 33 fewer grapes than Rob. Ivan doesn’t have 43 more grapes than Victor. Victor
doesn’t have 33 fewer grapes than Kevin’s friend. Ursula has 75 fewer grapes than Zoe. Alice has 11 more grapes
than Eve. Dave has 11 more grapes than Eve. Olivia doesn’t have 29 more grapes than Kevin’s friend. Mallory has
97 more grapes than Olivia. Judy doesn’t have 78 more grapes than Olivia. Rob has 55 grapes. Frank has 70 fewer
grapes than Heidi. Eve has 84 fewer grapes than Sybil. Xavier doesn’t have 36 more grapes than Heidi. Sybil has
55 fewer grapes than Trent. Kevin has 43 fewer grapes than Zoe. Heidi has 61 fewer grapes than Trent. Zoe has
88 more grapes than Sybil. Trent has 40 more grapes than Rob. Walter has 38 more grapes than Victor.
Question: How many grapes does Kevin have?
Answer:
Rob has 55 grapes, and Trent has 40 more grapes than Rob. So, Trent has 55+40=95 grapes.
Trent has 95 grapes, and Sybil has 55 fewer grapes than Trent. So, Sybil has 95-55=40 grapes.
Sybil has 40 grapes, and Zoe has 88 more grapes than Sybil. So, Zoe has 40+88=128 grapes.
Zoe has 128 grapes, and Kevin has 43 fewer grapes than Zoe. So, Kevin has 128-43=85 grapes.
The final answer is 85.

Table 13: Examples of input given when solving the Neg dataset.
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