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Abstract

Semantic Textual Similarity (STS) constitutes a
critical research direction in computational lin-
guistics and serves as a key indicator of the
encoding capabilities of embedding models.
Driven by advances in pre-trained language
models and contrastive learning, leading sen-
tence representation methods have reached an
average Spearman’s correlation score of ap-
proximately 86 across seven STS benchmarks
in SentEval. However, further progress has
become increasingly marginal, with no exist-
ing method attaining an average score higher
than 86.5 on these tasks. This paper conducts
an in-depth analysis of this phenomenon and
concludes that the upper limit for Spearman’s
correlation scores under contrastive learning is
87.5. To transcend this ceiling, we propose an
innovative approach termed Pcc-tuning, which
employs Pearson’s correlation coefficient as a
loss function to refine model performance be-
yond contrastive learning. Experimental results
demonstrate that Pcc-tuning can markedly sur-
pass previous state-of-the-art strategies with
only a minimal amount of fine-grained anno-
tated samples. 1

1 Introduction

As a fundamental task within Natural Language
Processing (NLP), Semantic Textual Similarity
(STS) is not only widely applied across various
real-world scenarios including text clustering, in-
formation retrieval, and dialogue systems, but also
serves as a principal means for evaluating sentence
embeddings (Gao et al., 2021).

Sentence embeddings refer to vector encodings
that encapsulate the semantic essence of original
texts. Owing to their capacity to facilitate offline
computation as well as their pivotal role in realizing
retrieval-augmented generation (Zhao et al., 2024),

1Our code and checkpoints are available at https://
github.com/ZBWpro/Pcc-tuning.

research in this area has garnered considerable at-
tention from numerous institutions and scholars in
recent years.

The quality of sentence embeddings is typically
assessed via the SentEval (Conneau and Kiela,
2018) toolkit, which measures models based on
their average Spearman correlation across seven
STS benchmarks. With the continuous advance-
ment of pre-trained language models (PLMs), con-
trastive learning, and prompt engineering, cutting-
edge works in this field have progressively elevated
leaderboard scores from an initial 60 (Pennington
et al., 2014) to around 86 (Jiang et al., 2023b). As a
result, the "PLM + contrastive learning" framework
has become the mainstream paradigm in sentence
representation research.

However, as illustrated in Table 1, models’ per-
formance on standard STS tasks in SentEval ap-
pears to have hit a significant bottleneck. Whether
utilizing classical discriminative PLMs like BERT
(Devlin et al., 2019) or emerging generative PLMs
such as LLaMA2 (Touvron et al., 2023b) and Mis-
tral (Jiang et al., 2023a), contemporary state-of-the-
art (SOTA) strategies are unable to achieve Spear-
man’s correlation scores exceeding 86.5. Moreover,
despite variations in training datasets, contrastive
learning objectives, and model architectures, the
final performance are generally similar if the same
type of PLM is selected.

In this regard, DeeLM (Li and Li, 2023b) posits
that PLMs may have reached their performance
limits on STS tasks. However, this paper will
demonstrate through rigorous mathematical deriva-
tion that the core factor causing this performance
ceiling is not the inadequacy of PLMs, but inherent
flaws in contrastive learning loss functions. Specif-
ically, contrastive learning only distinguishes be-
tween two categories: similar and dissimilar, in de-
termining the semantic relationships between text
pairs. This binary classification strategy restricts its
maximum achievable Spearman’s correlation score
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Methods PLMs Spearman

SimCSE BERT110m 81.57
PromptBERT BERT110m 81.97

PromCSE BERT110m 82.13
SuCLSE BERT110m 82.17

SimCSE ♢ LLaMA27b 85.24
PromptEOL ♠ LLaMA27b 85.40
PromptSTH ♠ LLaMA27b 85.41
PromptSUM ♠ LLaMA27b 85.53

PromCSE ♢ LLaMA27b 85.70
AngIE ♢ LLaMA27b 85.96
DeeLM ♢ LLaMA27b 86.01

PromptEOL ♠ Mistral7b 85.50
PromptSTH ♠ Mistral7b 85.66
PromptSUM ♠ Mistral7b 85.83

Table 1: Average Spearman’s correlation scores ob-
tained by leading methods on the seven STS bench-
marks collected in SentEval. ♢: results from (Li and Li,
2023b). ♠: results from (Zhang et al., 2024b).

to 87.5, even under optimal conditions.
Following this proof, we introduce Pcc-tuning, a

novel approach that employs a two-stage training
process. This method enhances models’ semantic
discrimination capabilities by leveraging a small
amount of fine-grained annotated data post con-
trastive learning. With the same 7B-scale gener-
ative PLMs, Pcc-tuning can substantially surpass
previous best results on the seven aforementioned
STS tasks and break through the performance ceil-
ing of 87.5.

The main contributions of this study are outlined
as follows:

• By analyzing the theoretical limits of binary
classifiers in STS tasks, we prove that the up-
per bound for Spearman’s correlation scores
using contrastive learning methods is 87.5.
This finding effectively explains the perfor-
mance plateau encountered by prior sentence
representation research.

• Building upon this, we propose Pcc-tuning,
a method capable of taking full advantage of
fine-grained labeled data with Pearson corre-
lation as its loss function. After fine-tuning
PLMs through contrastive learning, we only
need to introduce annotated text pairs amount-
ing to 1.96% of the original training set to
bring notable performance improvements.

• We extensively validate the effectiveness of
Pcc-tuning across internationally recognized
STS benchmarks and multiple transfer tasks.
Experimental results show that Pcc-tuning
consistently outperforms existing SOTA meth-
ods across different PLMs, prompts and hy-
perparameter settings.

2 Understanding the Performance Upper
Bound of Contrastive Learning

2.1 Contrastive Learning and Binary
Classifiers

Currently, leading approaches for sentence repre-
sentation predominantly center around contrastive
learning, with InfoNCE Loss (Oord et al., 2018)
being the most commonly adopted loss function.
Given an input text xi, InfoNCE Loss computes the
similarity between this sample and its positive ex-
ample x+i in the numerator, contrasting it with the
similarity calculations between xi and other texts
within the same batch in the denominator. This
formulation aims to bring similar instances closer
while pushing dissimilar ones apart. The mathe-
matical expression for InfoNCE Loss is presented
in Equation 1, where f(·) denotes the encoding
method, N represents the batch size, and τ signi-
fies a temperature hyperparameter.

ℓi = −log
ecos(f(xi),f(x

+
i ))/τ

∑N
j=1 e

cos(f(xi),f(x
+
j ))/τ

(1)

Equation 1 indicates that contrastive learning
loss functions, exemplified by InfoNCE Loss, es-
sentially classify sentence pairs into two distinct
classes: similar and dissimilar. However, no further
distinctions are made within these two categories.
In other words, as long as xi is semantically dif-
ferent from xj or xk, InfoNCE Loss treats both
(xi, xj) and (xi, xk) as negative sample pairs. As
for which of (xi, xj) and (xi, xk) exhibits a lower
degree of similarity, contrastive learning neither
concerns itself with this information nor can it read-
ily leverage such details. Indeed, for the majority of
embedding models, their training sets are specially
adjusted to provide coarse-grained categorical an-
notations, so as to better align with the contrastive
learning framework (Gao et al., 2021; Jiang et al.,
2022, 2023b).

Therefore, for a set of text pairs {(xi, x?i )}n1 , the
optimal scenario for contrastive learning methods
is to classify the k most similar pairs as positive and
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the remaining n− k pairs as negative. This setup
ensures that there are no inversions in the predicted
scores provided by the model. Such an ideal state
for contrastive learning models functions similarly
to an optimal binary classifier, as illustrated in Fig-
ure 1. This classifier segments the dataset into two
groups based on a threshold k, assigning a positive
label to all samples above the threshold and a neg-
ative label to those below. Analyzing the efficacy
of this binary classifier reveals the performance
boundary of contrastive learning.

Figure 1: Illustration of the operation of an optimal
binary classifier in handling STS tasks. Although the
actual similarity scores of the text pairs are a series
of floating-point numbers, the binary classifier focuses
solely on categorizing them into two classes: similar
and dissimilar, without modeling the variability within
each category.

One potential concern with this analogy is that
contrastive learning models compute cosine similar-
ities between embeddings during the testing phase,
resulting in continuous predicted values. Neverthe-
less, since the model does not differentiate between
internal discrepancies within the positive and nega-
tive classes during training, it cannot be expected
to possess the capability to discern fine-grained se-
mantic similarities. As training data continues to

flow in, InfoNCE Loss gradually guides the model
toward the characteristics of an ideal binary classi-
fier. However, constrained by the expressive power
of neural networks, as well as the scale and quality
of the training data, relying solely on contrastive
learning is insufficient to replicate the performance
of a binary classifier that is free from inversely or-
dered pairs. Therefore, it is reasonable to consider
the optimal binary classifier as the ultimate state of
contrastive learning models.

2.2 Spearman’s Correlation Coefficient
Before deriving the performance upper bound of
contrastive learning methods on STS tasks, it is
essential to introduce Spearman’s correlation coef-
ficient, the primary evaluation metric in this field.
This statistic measures the ordinal consistency be-
tween the cosine similarity of embeddings and hu-
man ratings, as defined by Equation 2:

ρ = 1− 6
∑

d2i
n(n2 − 1)

(2)

In this formula, n represents the number of data
points, and di is the difference between the rank
of the i-th sentence pair’s cosine similarity after
encoding into embeddings and its human-judged
similarity rank. Particularly, when multiple entries
share the same rating, their ranks are substituted
with their mean rank during the computation of
Equation 2.

Spearman’s correlation coefficient, ranging from
[−1, 1], indicates stronger consistency between
model outputs and human evaluations as it ap-
proaches 1. Typically, the coefficient is multiplied
by 100 to yield a percentage score, facilitating more
straightforward comparisons of encoding effective-
ness across different models.

2.3 The Spearman Correlation Upper Limit
of Contrastive Learning Methods

As discussed in section 2.1, contrastive learning
distinguishes texts based on coarse-grained seman-
tic relations, categorizing them as either similar or
dissimilar. Thus, its effectiveness parallels that of
a binary classifier. This section derives the opti-
mal Spearman correlation achievable by a binary
classifier in STS tasks, thereby elucidating the per-
formance upper bound of contrastive learning meth-
ods.

Given a collection of text pairs X = {(xi, x?i )}n1
consisting of n samples, we initially arrange the
elements of X in descending order according to
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manually annotated semantic similarity, yielding
the sorted set Y = {(yi, y?i )}n1 . Assume that
cos(yk, y

?
k) > cos(yk+1, y

?
k+1),∀k ∈ [1, n − 1].

Then, for any binary classifier, its performance
reaches the optimum only when it categorizes the
first k sample pairs of Y as positive examples and
the remaining n−k sample pairs as negatives. Oth-
erwise, it indicates at least one misclassification.

Since this binary classifier is solely responsible
for constructing an optimal classification boundary
between the two categories of similarity and dis-
similarity (i.e., determining only whether two texts
are semantically akin), its predicted scores for the
first k samples are consistently identical (assumed
to be 1), and likewise for the last n − k samples
(assumed to be 0). By the definition of Spearman’s
correlation coefficient, the difference in rankings
between predictions and true values, di, alongside∑

d2i , can be represented as:

di = i− k + 1

2
, i = 1, 2, . . . , k

di = i− k + n+ 1

2
, i = k + 1, k + 2, . . . , n

∑
d2i =

k∑

i=1

(i− k + 1

2
)2 +

n∑

i=k+1

(i− k + n+ 1

2
)2

(3)
These equations showcase that

∑
d2i can be

viewed as a function of k. Upon rearranging, we de-
rive: (with further details provided in Appendix A.)

∑
d2i =

k∑

i=1

(i− k + 1

2
)2 +

n∑

i=k+1

(i− k + n+ 1

2
)2

=
k∑

i=1

(i− k + 1

2
)2 +

n∑

i=k+1

(
(i− k + 1

2
)− n

2

)2

=
n∑

i=1

(i− k + 1

2
)2 + (n− k)

n2

4
− n

n∑

i=k+1

(i− k + 1

2
)

=
n∑

i=1

i2 +
n(k + 1)2

4
− n(n+ 1)(k + 1)

2
− n2(n− k)

4

=
n(n+ 1)(2n+ 1)

6
+

n

4

(
k2 − nk − (n+ 1)2

)

(4)
In Equation 4, n remains constant, so

∑
d2i de-

pends on f(k) = k2−nk−(n+1)2. When k = n
2 ,

i.e., when the model deems the first 50% of sample
pairs as positives and the remaining 50% as neg-
atives, f(k) attains its minimum. Therefore, the
minimum value of

∑
d2i is:

min
(
k2 − nk − (n+ 1)2

)
=− 5n2

4
− 2n− 1

min(
∑

d2i ) =
n(n+ 1)(2n+ 1)

6
− n

4
(
5n2

4
+ 2n+ 1)

(5)

Subsequently, by substituting min(
∑

d2i ) into
the expression for Spearman’s correlation coeffi-
cient (Equation 2), the maximum Spearman corre-
lation achievable by this binary classifier is 0.875.
This indicates that the optimal performance of con-
trastive learning in STS tasks will not exceed 0.875.

max(ρ) = 1− n2 − 4

8(n2 − 1)
=

7n2 − 4

8(n2 − 1)

lim
n→∞

max(ρ) = lim
n→∞

7n2 − 4

8(n2 − 1)
=

7

8
= 0.875

(6)
Apart from the original InfoNCE Loss, an ex-

tended contrastive learning loss function tailored
for NLI datasets (Bowman et al., 2015; Williams
et al., 2018), as shown in Formula 7, is frequently
utilized in sentence representation research (Gao
et al., 2021; Zhang et al., 2024a). The incorporation
of hard negative example x−j in the denominator,
which is equivalent to enlarging the batch size, does
not affect the correctness of our derivation.

−log ecos(f(xi),f(x
+
i

))/τ

∑N
j=1

(
e
cos(f(xi),f(x

+
j

))/τ
+e

cos(f(xi),f(x
−
j

))/τ
)

(7)
It should be noted that the above conclusion has

been validated through numerous experiments. To
date, embedding derivation schemes based on con-
trastive learning have not achieved a Spearman’s
correlation score above 86.5. This theoretical anal-
ysis provides a clear explanation for these empirical
observations.

3 Proposed Method

This section introduces Pcc-tuning, an innovative
strategy for addressing STS tasks. Pcc-tuning em-
ploys a two-stage training pipeline and is designed
to break the 87.5 performance ceiling in contrastive
learning methods.

The anisotropy of PLMs’ semantic space (Etha-
yarajh, 2019) is a longstanding challenge in sen-
tence representation research. Contrastive learn-
ing has proven effective in stabilizing embedding
distances among semantically similar texts while
promoting a more uniform distribution of overall
vector encodings (Gao et al., 2021), thus markedly
enhancing the semantic properties of PLMs. There-
fore, leveraging contrastive learning to refine the
initial state of pre-trained models has emerged as
a prevalent approach within the NLP community
(Wang et al., 2022; Li et al., 2023; Muennighoff
et al., 2024).
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Fun for adults and children.

Fun for both adults and children.

You can see that on television, as well.

Fun for only children.

well you see that on television also

You could never see that on TV.

It has been very intriguing.

well it's been very interesting

It hasn't been interesting.

T E

T

E

T E

some men are fighting.

two men are fighting.

a man is smoking.

a man is skating.

a woman is eating something.

a woman is eating meat.

loadsame

Figure 2: The overall architecture of Pcc-tuning. By default, we use "This sentence : ‘[X]’ can be summarized
as" (Zhang et al., 2024b) as the manual template for both stages. In the diagram, hi denotes the embedding of
sentence si after model encoding, cosi represents the cosine similarity between hi and h?

i , while scorei is the
human-annotated similarity score for si and s?i .

Following this well-established practice, we ini-
tially conduct supervised fine-tuning of the PLM
using the NLI dataset constructed by SimCSE (Gao
et al., 2021). This dataset comprises 275,601 triplet-
form text pairs, providing a robust source of coarse-
grained labeled information for the model. Our im-
plementation in the first stage closely mirrors that
of PromptEOL (Jiang et al., 2023b) for comparison
purposes, where we load the original PLM check-
point and fine-tune the model with the extended
InfoNCE Loss depicted in Equation 7, combined
with QLoRA (Dettmers et al., 2024). A distinc-
tive feature of our methodology is the adoption of
the PromptSUM template proposed by Zhang et al.
(2024b): "This sentence : ‘[X]’ can be summa-
rized as", which encapsulates the input sentence
[X] and extracts the encoding of the final token
as the sentence embedding. Later sections will
examine Pcc-tuning’s performance under various
prompts.

After the contrastive learning phase, the PLM
will be adjusted to a superior encoding state, capa-
ble of producing high-quality embeddings. How-
ever, the neural network trained at this stage re-

mains insufficient as the final solution for STS
tasks. This is due to two primary reasons: (1) The
contrastive learning objective does not fully align
with the evaluation metrics of STS tasks. While
a decrease in InfoNCE Loss reflects a better clus-
tering effect of sentence vectors in semantic space,
this does not necessarily translate into an improve-
ment in Spearman correlation. The latter essen-
tially measures the consistency of the model’s scor-
ing with human ratings in terms of monotonicity.
(2) As discussed in section 2, contrastive learning
loss functions fail to harness fine-grained anno-
tation information, leading to a pronounced per-
formance bottleneck. Consequently, the benefits
of further optimizing binary classification perfor-
mance diminish with successive iterations. To mit-
igate these issues, a finer distinction is required
within the two categories of similarity and dissimi-
larity, along with introducing ordinal relationships
of text pairs based on semantic similarity.

The optimal strategy is to incorporate fine-
grained annotated data in the second stage and
guide the model’s training process via Spearman’s
correlation coefficient. This ensures maximum con-
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sistency between the model’s behavior during train-
ing and testing. However, since Spearman corre-
lation is non-differentiable and thus incompatible
with backpropagation, we opt for Pearson’s correla-
tion coefficient to update model parameters, which
also serves as the inspiration for the name Pcc-
tuning. Pearson correlation and our loss function
for the second stage are shown in Equation 8, where
X represents the cosine similarity between model-
derived embeddings, and Y denotes the human-
annotated scores for the text pairs.

r =
cov(X,Y)

σXσY
ℓp = −r + 1 ∈ [0, 2]

(8)

Concretely, for a batch of text pairs {(xi, x?i )}N1 ,
we first invoke the PLM to encode xi and x?i , ob-
taining f(xi) and f(x?i ). Then, we directly com-
pute their cosine similarity and store the result in
X = {cos(f(xi), f(x?i ))}N1 . Subsequently, we in-
put X and the true similarity scores Y = {yi}N1
into Equation 8 to calculate the loss.

Employing Pearson’s correlation coefficient as
the loss function enables effective utilization of
fine-grained sample scores and supports diverse
combinations even with relatively small data quan-
tities. For example, our tuning dataset in the second
stage is composed of filtered training sets from
STS-B (Cer et al., 2017) and SICK-R (Marelli
et al., 2014), which together contain 5,398 text
pairs. This number merely constitutes 1.96% of the
size of the NLI dataset adopted in the first stage,
yet the potential combination varieties reach up to
CN
5398 (where N represents the batch size). As a

result, even after multiple epochs of training, the
similarity rankings of samples in each batch are
unlikely to repeat, thereby continuously providing
the model with meaningful gradient information.

The dataset is filtered because we discovered
that some sentence pairs in the STS-B and SICK-R
training sets overlap with the test sets of the seven
STS benchmarks in SentEval. Additionally, there is
even overlap between the train and test sets within
SICK-R itself. To prevent information leakage,
we implemented a stringent filtering mechanism
to ensure that the model does not encounter any
test set text pairs during parameter updates. More
details about this filtering process can be found in
Appendix B.

Figure 2 presents an overview of Pcc-tuning’s
training pipeline. In the first stage, the model is

fine-tuned using contrastive learning on the NLI
corpus. In the second stage, we introduce a small
amount of fine-grained annotated data and load
the checkpoint from the first phase to further up-
date the model parameters via Pearson’s correla-
tion coefficient. This two-stage fine-tuning strategy
effectively prevents overfitting. Although the fil-
tered STS-B and SICK-R training sets provide only
5,398 fine-grained labeled instances, the 275,601
text pairs used in the first stage establish a solid ini-
tial state for the model, thereby maximizing its gen-
eralization capacity. Moreover, the varying scoring
scales of STS-B and SICK-R also introduce a de-
gree of noise into the Pcc-tuning training process
, which contributes to the model’s robustness. We
provide detailed results of our method’s zero-shot
performance on several downstream tasks in Ap-
pendix C to further demonstrate its transferability.

4 Experiments

This section presents the experimental results of
Pcc-tuning. Initially, in subsection 4.1, we elabo-
rate on our experimental setup, including evalua-
tion methods, training data size, and the selection of
baselines. Subsequently, in subsection 4.2, we com-
pare the performance of Pcc-tuning with current
SOTA text representation strategies across interna-
tionally recognized STS benchmarks. Following
this, in subsection 4.3, we conduct targeted exper-
iments to demonstrate that Pcc-tuning surpasses
continuous contrastive learning. Finally, in sub-
section 4.4, we examine the efficacy of Pcc-tuning
under different prompts.

4.1 Implementation Details

In line with prior studies (Gao et al., 2021; Jiang
et al., 2022, 2023b; Chen et al., 2023), we utilize
the SentEval (Conneau and Kiela, 2018) toolkit to
assess our model on seven STS tasks, with Spear-
man’s correlation coefficient as the core metric. In
all experiments, models are permitted access to text
pairs from the evaluation benchmarks only during
the testing phase.

It is noteworthy that although Pcc-tuning re-
quires specific corpora at both stages of training,
the total data volume employed is only 280,999
entries. In contrast, the publicly available training
data for the contemporary SOTA method, DeeLM
(Li and Li, 2023b), includes 480,862 triplet text
pairs, with additional datasets remaining inaccessi-
ble.
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Methods STS-12 STS-13 STS-14 STS-15 STS-16 STS-B SICK-R Avg.

Pre-trained Embedding Models

openai-ada-002 § 69.80 83.27 76.09 86.12 85.96 83.17 80.60 80.72
jina-base-v2 ‡ 74.28 84.18 78.81 87.55 85.35 84.85 78.98 82.00

nomic-embed-v1 ‡ 73.75 85.03 80.52 87.40 83.55 83.90 76.52 81.52

Fine-tuning Strategies

Previous SOTA methods. Implementation on LLaMA27b
SimCSE ♢ 78.39 89.95 84.80 88.50 86.04 87.86 81.11 85.24

PromptEOL 79.24 90.31 84.74 88.72 86.01 87.87 80.94 85.40
AnglE ♢ 79.00 90.56 85.79 89.43 87.00 88.97 80.94 85.96
DeeLM ♢ 79.01 90.32 85.84 89.47 87.18 89.15 81.08 86.01

Implementation on OPT6.7b

PromptSUM 79.66 89.91 84.96 89.60 85.79 88.54 80.51 85.57
Pcc-tuning 80.04 90.41 85.63 90.53 86.32 89.37 86.21 86.93

Implementation on LLaMA7b

PromptSUM 78.84 90.03 85.06 88.80 85.66 88.29 81.58 85.47
Pcc-tuning (SUM) 81.00 90.66 86.09 90.42 86.21 89.83 87.23 87.35

PromptEOL 79.00 89.80 85.10 88.86 86.03 88.48 81.06 85.48
Pcc-tuning (EOL) 81.41 91.15 86.62 90.69 86.99 89.97 86.85 87.67

Implementation on LLaMA27b
PromptSUM 79.43 90.25 85.03 88.71 86.07 87.96 81.28 85.53
Pcc-tuning 81.82 91.36 86.88 90.66 87.04 89.73 87.11 87.80

Implementation on Mistral7b
PromptSUM 79.76 89.69 85.33 89.30 86.62 88.27 81.81 85.83
Pcc-tuning 82.04 90.84 86.79 91.10 87.18 90.05 87.02 87.86

Table 2: Spearman’s correlation scores across seven STS benchmarks for different methods. This table highlights
Pcc-tuning’s comprehensive two-stage training strategy in comparison with PromptSUM / EOL, which corresponds
to the first stage of Pcc-tuning. Please refer to section 4.4 for the specific structure of PromptEOL and PromptSUM.
§: results from (Muennighoff et al., 2022). ‡: results from Zhang and Li (2024). ♢: results from (Li and Li, 2023b).

Our experiments are conducted based on sev-
eral widely adopted 7B-scale generative PLMs:
OPT6.7b (Zhang et al., 2022), LLaMA7b (Tou-
vron et al., 2023a), LLaMA27b, and Mistral7b. To
clearly demonstrate the superiority of Pcc-tuning,
we primarily compare it against current SOTA
strategies. Specifically, among our selected base-
lines, PromptEOL (Jiang et al., 2023b), Prompt-
SUM (Zhang et al., 2024b), AngIE (Li and Li,
2023a), and DeeLM (Li and Li, 2023b) are lead-
ing generative PLM-based sentence representation
methods, which significantly outperform BERT-
based approaches on STS benchmarks. Meanwhile,
openai-ada-002, jina-base-v2 (Günther et al., 2023),
and nomic-embed-v1 (Nussbaum et al., 2024) rep-
resent the most advanced contrastive learning pre-
trained models at present.

4.2 Main Results

Table 2 summarizes the performance of various
methods on the seven STS tasks collected in Sen-
tEval. Under all tested PLMs, Pcc-tuning consis-
tently surpasses previous SOTA strategies, either
approaching or exceeding the Spearman correla-
tion upper limit of 87.5 for contrastive learning
methods. Notably, when Mistral7b is selected as
the backbone, Pcc-tuning attains a Spearman cor-
relation of 87.86, which is 2.15% higher than the
leaderboard record of 86.01 set by DeeLM, de-
spite DeeLM using a much larger training corpus.
Moreover, considering that Pcc-tuning delivers the
best performance across all seven STS tasks, its
effectiveness is self-evident. These outcomes col-
lectively underscore the crucial role of modeling
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fine-grained annotated information in STS tasks.
Furthermore, since Pcc-tuning’s first-stage is im-

plemented identically to PromptSUM, the com-
parison between Pcc-tuning and PromptSUM in
Table 2 also functions as an ablation study. It re-
veals that, constrained by the coarse granularity of
contrastive learning, whether adopting the earlier
released OPT model or the newly open-sourced
Mistral model, Spearman’s correlation scores for
PromptSUM are confined around 85.5, showing
limited progress. In contrast, Pcc-tuning provides
an improvement of approximately 2 percentage
points, reaffirming the mathematical derivations
discussed in section 2.

In addition to the inability in fully harnessing
fine-grained annotated data, another significant
drawback of contrastive learning is its reliance on
large batch sizes to ensure negative sample diver-
sity, which consumes substantial computational
resources (Jiang et al., 2023b; Zhang et al., 2024b).
To explore Pcc-tuning’s memory consumption and
the impact of batch size on model performance,
we conducted relevant experiments detailed in Ap-
pendix D. The findings indicate that Pcc-tuning
demonstrates superior memory efficiency and ex-
hibits strong robustness to varying batch sizes.

4.3 Pcc-tuning vs. Two-Stage Contrastive
Learning

This section addresses an intriguing question: Can
contrastive learning, when supplemented with fine-
grained annotated data, further enhance model per-
formance? Specifically, when employing the fil-
tered STS-B and SICK-R training sets for two-
stage parameter updates, does Pcc-tuning outper-
form continuous contrastive learning?

As analyzed in section 2, contrastive learning
methods are limited in their ability to fully leverage
fine-grained annotated data. Therefore, to apply
the STS-B and SICK-R training sets to contrastive
learning models, a threshold must be selected to
identify suitable positive sample pairs, which in-
evitably leads to significant data loss. After bal-
ancing dataset scale and quality, we chose to treat
text pairs with similarity scores greater than 4.0 as
positive samples. Following this step, the original
5,398 data pairs were reduced to 1,543.

Table 3 presents the results of the above ex-
periments. In the second column, "Contrastive"
and "Pearson" refer to fine-tuning the first-stage
checkpoint using either contrastive learning or Pcc-
tuning, respectively. The "Performance" column

reports the model’s average Spearman’s correlation
scores across seven STS benchmarks. The results
clearly show that continuing with contrastive learn-
ing not only yields significantly inferior results
compared to Pcc-tuning, but also underperforms
the model’s first-stage outcomes.

PLMs Strategy Performance

OPT6.7b

Stage I 85.57
Contrastive 77.29

Pearson 86.93

LLaMA7b

Stage I 85.47
Contrastive 79.47

Pearson 87.35

LLaMA27b
Stage I 85.53

Contrastive 85.38
Pearson 87.80

Mistral7b
Stage I 85.83

Contrastive 75.47
Pearson 87.86

Table 3: Performance comparison between Pcc-tuning
and two-stage contrastive learning strategies on STS
benchmarks.

These findings are not surprising, as contrastive
learning methods require large batch sizes to avoid
model collapse. Indeed, most mainstream con-
trastive learning-based text representation models
employ batch sizes of 256 or more. In comparison,
such a small amount of annotated data is hardly
sufficient to effectively support contrastive learn-
ing. However, it is important to note that due to the
coarse-grained semantic partitioning inherent in In-
foNCE Loss, even with a larger corpus, contrastive
learning methods cannot surpass Pcc-tuning. This
is because Pcc-tuning possess higher data utiliza-
tion efficiency and is more closely aligned with the
evaluation metrics of STS tasks.

4.4 Pcc-tuning under Various Prompts

The Explicit One-word Limitation (EOL) template,
introduced by PromptEOL (Jiang et al., 2023b),
represents a pioneering effort in employing gen-
erative PLMs for embedding derivation and has
become the most widely adopted prompt in sen-
tence representation research. Recently, Zhang
et al. (2024b) proposed two alternative templates,
PromptSTH and PromptSUM, which deviate from
the EOL structure. Their findings demonstrated
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that strict adherence to the EOL format is not nec-
essary for effective PLM fine-tuning. The specific
forms of these prompts are depicted in Table 4,
where [X] represents the input text, and the parts
highlighted in red denote the positions from which
the model extracts embeddings.

PromptEOL
This sentence : "[X]" means in one word:"

PromptSUM
This sentence : "[X]" can be summarized as

PromptSTH
This sentence : "[X]" means something

Table 4: Manual templates employed by PromptEOL,
PromptSUM, and PromptSTH. Apart from differences
in prompts, the implementations of these three methods
are completely identical.

To further validate the versatility of our ap-
proach, we assessed the average Spearman’s cor-
relation scores on seven STS tasks using these
prompts as the templates for both stages of Pcc-
tuning. The corresponding results are delineated in
Table 5. As evidenced by the results, Pcc-tuning
consistently improves model performance, with
minimal impact from the different templates on the
final outcomes. This suggests that when applying
Pcc-tuning to downstream tasks, there is little need
for laborious prompt searches, thereby offering sig-
nificant practical benefits.

5 Related Work

Contrastive learning is currently the principal strat-
egy within the NLP community for addressing STS
tasks, and our proposed method, Pcc-tuning, is
specifically designed to overcome the inherent lim-
itations of these approaches.

Prior to the rise of contrastive learning-based
text representation schemes, Sentence-BERT had
already introduced the idea of enhancing the se-
mantic encoding capabilities of PLMs using the
STS-B training set (Reimers and Gurevych, 2019).
However, subsequent contrastive learning methods,
such as SimCSE (Gao et al., 2021), PromptBERT
(Jiang et al., 2022), and CoT-BERT (Zhang et al.,
2024a) have demonstrated superior performance
across the seven STS benchmarks collected in Sen-
tEval, thereby making them the focal point of re-

PLMs Templates Stage I Stage II

OPT6.7b

PromptSTH 85.51 86.86
PromptEOL 85.52 86.96
PromptSUM 85.57 86.93

LLaMA7b

PromptSTH 85.40 87.54
PromptEOL 85.48 87.67
PromptSUM 85.47 87.35

LLaMA27b
PromptSTH 85.31 87.64
PromptEOL 85.40 87.75
PromptSUM 85.53 87.80

Mistral7b
PromptSTH 85.66 87.70
PromptEOL 85.50 87.72
PromptSUM 85.83 87.86

Table 5: Average Spearman’s correlation scores ob-
tained by Pcc-tuning on seven STS benchmarks under
different PLMs and manual templates. The settings for
stage I and stage II are consistent with the descriptions
in section 3.

cent academic research and development.
To the best of our knowledge, this study is the

first to propose and substantiate the theoretical
performance upper bound of contrastive learning
methods. Additionally, Pcc-tuning is the inaugu-
ral method capable of achieving Spearman’s cor-
relation scores above 87 on standard STS tasks,
marking a significant advancement in the field.

6 Conclusion

In this paper, we first analyze the structure of con-
trastive learning loss functions, highlighting that
their coarse-grained categorization of semantic rela-
tionships among texts renders contrastive learning
akin to a binary classifier. Building on this insight,
we rigorously derive the optimal Spearman correla-
tion achievable by a binary classifier in STS tasks,
establishing that the upper bound for the Spear-
man correlation of contrastive learning methods is
87.5. To achieve further breakthroughs, we intro-
duce Pcc-tuning, a novel strategy that effectively
harnesses fine-grained annotated information. Pcc-
tuning leverages a two-stage training pipeline and
utilizes Pearson’s correlation coefficient as the loss
function to fully exploit the ordinal relationships
between text pairs. Extensive experimental results
demonstrate that Pcc-tuning significantly enhances
the quality of generated embeddings, with consis-
tent performance gains observed across various
PLMs, prompts, and batch sizes.
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Limitations

In preparing the training dataset for the second
stage of Pcc-tuning, we employ a mixed corpus
composed of the training sets from STS-B and
SICK-R, while filtering out any overlapping sam-
ples with the test sets. However, the labeling scales
of these two datasets are not congruent. Specifi-
cally, the similarity scores in the STS-B training set
span from 0 to 5, whereas the scores in the SICK-R
training set range from 1 to 5. To unify their annota-
tion scales, we transform each label in the SICK-R
training set using the formula 5× label−1

4 , thereby
converting the scores to the range of [0, 5]. Given
that this is merely a simple linear mapping, it is
likely that some vital manually annotated informa-
tion is lost, potentially hindering Pcc-tuning from
reaching its optimal performance on the evaluation
benchmarks.
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A Derivation Details

Due to space constraints, some steps in the cal-
culation are abbreviated when rearranging Equa-
tion 4 in section 2.3. Here, we provide the complete
derivation process:
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(9)

B Data Filtering Method

In section 3, we mentioned that the fine-tuning data
in the second stage of Pcc-tuning is derived from
filtered STS-B and SICK-R training sets, aimed
at preventing the model from encountering text
pairs present in the evaluation benchmarks during
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parameter updates. Here, we provide a detailed
description of the filtering process.

In standard STS tasks, each sample consists of
two text strings, s and s?, along with a floating-
point number gs indicating the semantic similarity
score between them. In our experimental setup, for
any sample (s1, s

?
1, gs1) from the STS-B or SICK-

R training sets, if a text pair (s2, s
?
2, gs2) exists

in the test sets of STS12-16, STS-B, or SICK-R,
where s1 = s2 and s?1 = s?2, or s1 = s?2 and
s?1 = s2, we treat them as duplicates, regardless
of whether gs1 and gs2 are identical. All dupli-
cate training samples are then removed from the
model’s fine-tuning corpus.

This process involves a highly stringent filter-
ing mechanism. Under this approach, even the
train and test sets of SICK-R itself contain over-
lapping samples (despite differences in their gs
values). The original STS-B and SICK-R training
sets consist of 5,749 and 4,500 samples, respec-
tively. After filtering, they are reduced to 991 and
4,407 samples, respectively, resulting in a total of
5,398 text pairs. Moreover, as noted in the Limita-
tions section of this paper, the annotation scales of
these two datasets are not consistent, which leads
to some information loss during the merging pro-
cess. The scarcity of annotated data, combined
with differences in scoring standards, posed addi-
tional challenges for this study.

Despite these challenges, Pcc-tuning still demon-
strated strong performance (section 4, Appendix D).
This suggests that in downstream scenarios with
more abundant task-specific data, the advantages
of Pcc-tuning over contrastive learning could be-
come even more pronounced, highlighting its broad
potential for application.

C Transfer Tasks

In the previous sections, we have thoroughly vali-
dated the exceptional performance of Pcc-tuning in
semantic matching across seven well-established
STS benchmarks. To further clarify its generaliza-
tion capabilities, this section evaluates the transfer-
ability of Pcc-tuning through zero-shot testing on a
variety of downstream tasks.

We selected eight tasks of different types from
the Massive Text Embedding Benchmark (MTEB)
(Muennighoff et al., 2022) to cover four major
areas: Retrieval, Reranking, Classification, and
Pair Classification. For these experiments, we em-
ployed LLaMA27b as the backbone and directly

loaded model checkpoints without any additional
parameter updates. In other words, the Prompt-
SUM and Pcc-tuning models used here are identi-
cal to those in Table 2.

Table 6 summarizes the results of these tests. In
this table, "LLaMA2 (raw)" refers to the original
LLaMA2 model without any integrated prompts.
It can be observed that the transferability of raw
LLaMA2 output vectors is quite poor, with scores
on some tasks falling below 1%. This suggests
a substantial gap between auto-regressive lan-
guage modeling and effective embedding gener-
ation. However, the scores for PromptSUM demon-
strate a significant improvement over LLaMA2
(raw), indicating that contrastive learning can en-
hance the embedding quality of generative PLMs.
Pcc-tuning further amplifies this effect. Despite
introducing only an additional 5,398 fine-grained
annotated text pairs, Pcc-tuning consistently out-
performs PromptSUM across multiple STS bench-
marks and downstream tasks. These results high-
light the strong generalizability of our proposed
method and its effectiveness in various application
scenarios.

D Memory Usage and Batch Sizes

Here, we examine the memory consumption of
Pcc-tuning and analyze the impact of batch size
on model performance. For implementation, we
utilized four 24GB NVIDIA GPUs, with Prompt-
SUM as the manual template across all experimen-
tal groups.

Table 7 presents the memory usage for each of
the two fine-tuning stages of Pcc-tuning across dif-
ferent backbone models. The results show that
optimizing the model with Pearson’s correlation
coefficient in the second stage requires significantly
fewer computational resources compared to con-
trastive learning in the first stage. Furthermore,
given that the maximum sequence length supported
in the second stage of Pcc-tuning is twice that of
the contrastive learning stage, our method demon-
strates a clear advantage in memory efficiency.

Several factors contribute to this improvement,
with batch size being a critical one. In standard
InfoNCE Loss, negative instances for the current
sample are drawn from other texts within the same
batch. As a result, contrastive learning-based STS
solutions typically require large batch sizes to pro-
vide sufficient reference information for optimiz-
ing embeddings. For example, SimCSE employs a
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Task
Method

LLaMA2 (raw) PromptSUM Pcc-tuning

Banking77Classification 56.38 85.41 86.09
TwitterSemEval2015 79.05 87.66 87.73

AskUbuntuDupQuestions 41.46 58.00 61.19
StackOverflowDupQuestions 24.44 44.93 47.65

CQADupstackEnglishRetrieval 0.17 32.31 34.19
LegalSummarization 7.49 66.20 68.31

FaithDial 0.52 25.54 28.28
PIQA 1.06 30.81 31.07

Table 6: Model performance on eight downstream tasks. The reported values represent the primary evaluation
metric for each task, scaled by 100 to convert them into percentage scores.

PLMs Stage Memory (GB)

OPT6.7b
I 91.83
II 58.44

LLaMA7b
I 93.82
II 65.22

LLaMA27b
I 93.82
II 69.37

Mistral7b
I 93.41
II 73.31

Table 7: Memory consumption for each stage of Pcc-
tuning’s two-stage training pipeline.

batch size of 512 in supervised settings. Addition-
ally, our experiments in section 4.3 also support
this observation.

Given this context, we were interested in explor-
ing how varying batch sizes affect performance
when using Pearson’s correlation coefficient for
training. Therefore, we tested Pcc-tuning on seven
STS tasks collected in SentEval, using four 7B-
level generative PLMs under different batch size
conditions. Due to the relatively slow inference
speed of 7B-scale models, we did not perform an
exhaustive grid search, but intuitively selected sev-
eral batch sizes for testing, which was sufficient to
illustrate the key trends.

The results are summarized in Table 8. It is
evident that even with variations in batch size by
several dozen, Pcc-tuning maintains consistently
high performance. This indicates that our pro-
posed method is not sensitive to batch size. Com-
bined with the findings from section 4.4, where
Pcc-tuning exhibits minimal performance fluctua-
tions under different prompts, we conclude that

Pcc-tuning demonstrates exceptional robustness
and can easily adapt to a wide range of hyperpa-
rameter configurations.

PLMs Batch Size Spearman

OPT6.7b

192 86.88
200 86.93
240 86.90
248 86.89

LLaMA7b

192 87.34
200 87.35
216 87.27
224 87.29

LLaMA27b

200 87.77
208 87.73
216 87.80
240 87.68

Mistral7b

200 87.76
208 87.86
216 87.75
256 87.73

Table 8: Pcc-tuning’s average Spearman scores on seven
STS benchmarks under different batch sizes.
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