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Abstract

Understanding in-context learning (ICL) ca-
pability that enables large language models
(LLMs) to excel in proficiency through demon-
stration examples is of utmost importance. This
importance stems not only from the better uti-
lization of this capability across various tasks,
but also from the proactive identification and
mitigation of potential risks, including con-
cerns regarding truthfulness, bias, and toxic-
ity, that may arise alongside the capability. In
this paper, we present a thorough survey on the
interpretation and analysis of in-context learn-
ing. First, we provide a concise introduction
to the background and definition of in-context
learning. Then, we give an overview of ad-
vancements from two perspectives: 1) the the-
oretical perspective, emphasizing studies on
mechanistic interpretability and delving into
the mathematical foundations behind ICL; and
2) the empirical perspective, concerning studies
that empirically analyze factors associated with
ICL. We conclude by discussing open questions
and the challenges encountered and, by suggest-
ing potential avenues for future research. We
believe that our work establishes the basis for
further exploration into the interpretation of in-
context learning. To aid this effort, we have
created a repository1 containing resources that
will be continually updated.

1 Introduction

The concept of in-context learning (ICL) was origi-
nally introduced by Brown et al. (2020), defined as
‘the model is conditioned on a natural language
instruction and/or a few demonstrations of the
task and is then expected to complete further in-
stances of the task simply by predicting what comes
next’. ICL is receiving increasing attention due
to its remarkable adaptability and parameter-free
nature. As shown in Figure 1, LLMs such as GPT-
4 (OpenAI, 2024), Llama3 (AI@Meta, 2024), and

1https://github.com/zyxnlp/
ICL-Interpretation-Analysis-Resources

Large Language Models

ChatGPT

  Pleasant music:   Positive
  Taste terrible:   Negative
  Nice weather:

English: Happy New Year
French: Bonne année     
English: Thank you very much
French: 

Q: What is 7+2?
A: 9
Q: What is 19*36?
A:

PositiveMerci beaucoup 684

Mistral LLaMA Bard Qwen
...

Gemma

Figure 1: Illustration of In-context Learning.

Qwen2 (QwenTeam, 2024) have exhibited profi-
ciency across various tasks, such as machine trans-
lation, sentiment analysis, and question answering,
with a minimal set of task-oriented examples, all
without re-training. While ICL has been domi-
nantly deployed in the Natural Language Process-
ing (NLP) community, our understanding of ICL
remains limited. Recently, an increasing number of
studies have attempted to interpret and analyze ICL.
Garg et al. (2022), Dai et al. (2023), and Akyürek
et al. (2023) explained ICL through the lens of lin-
ear regression formulation. Xie et al. (2022), Wang
et al. (2023b), and Hahn and Goyal (2023) provided
an interpretation of ICL rooted in latent variable
models. Meanwhile, a distinct line of research has
aimed to understand the influential factors affecting
ICL through empirical analyses. Min et al. (2022),
Wei et al. (2023), Wang et al. (2023a), and Yoo et al.
(2022) demonstrated that the ICL performance is
influenced by task-specific characteristics and mul-
tiple facets of ICL instances, including quantities,
order, and flipped labels. Consequently, it is es-
sential to systematically categorize and summarize
these studies, not only for a deeper understanding
and more effective utilization of ICL across var-
ious tasks, but also to assist in anticipating and
mitigating potential risks. These risks encompass
concerns related to truthfulness, bias, and toxicity,
that may arise alongside ICL.

In this paper, we present a thorough and orga-
nized survey of the research on the interpretation
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and analysis of ICL. First, we provide a brief in-
troduction of the background and offer the defi-
nition of ICL. Then, we present a comprehensive
overview of advancements, from two distinct view-
points: 1) the theoretical perspective, encapsulat-
ing studies focused on mechanistic interpretability
and mathematical investigations into the founda-
tions of ICL; and 2) the empirical perspective, per-
taining to studies that prioritize empirical analysis
by probing factors associated with ICL. In con-
clusion, we highlight the existing challenges and
suggest potential avenues for further research.

2 Background and Notation

In this section, we define the ICL paradigm using
the following notations. A task TD consists of two
components: a demonstration space D, which en-
compasses all possible demonstrations, and a joint
probability distribution P(X,Y ). A task demonstra-
tion D = {(xi, yi)}ni=1 ∈ D contains n example
pairs sampled from the joint distribution. In NLP,
these example pairs could be Question-Answering
pairs for QA tasks, parallel text for machine trans-
lation tasks, or sentence-label pairs for text classifi-
cation tasks. For example, for machine translation,
an example pair (x, y) could be (English: Happy
New Year, French: Bonne année). In contrast to
traditional supervised learning approaches which
aim to generalize from a fixed training dataset to
predict future instances, ICL leverages continual
exposure to demonstration examples and is guided
by task query to adapt the model dynamically to
different contexts. In this survey, we denote the
query as TQ = {Q, PQ}, consisting a query space
Q and marginal distribution PQ. A task query
Q = {qj}mj=1 ∈ Q contains m instances sampled
from the marginal distribution. For example, q
could be “English: Thank you French:” in the
machine translation task. Additionally, we define
A = {aj}mj=1 which represents the gold label for
Q. Let an LLM be defined as a function Fθ pre-
trained on large-scale text corpora. ICL can be
defined as follows:

Definition (In-Context Learning) In the context
of a task query Q, in-context learning refers to the
capability of Fθ to predict the correct answer A,
conditioned on a task demonstration D.

Based on the above definition, the process of
ICL can be formally expressed as follows:

D ∼P(X,Y ) Q ∼ PQ

Â← Fθ(D,Q)
(1)

The performance of ICL can be measured by:

S = ED,Q,A[M(Â, A)] (2)

Â denotes the model-predicted output, and M is an
evaluation metric chosen based on the task query
Q and its gold label A.

Based on our definition, we organize the exist-
ing literature on the interpretation and analysis of
ICL into theoretical and empirical perspectives, as
summarized in Table 1. Researchers in the theoret-
ical category focus on interpreting the connections
among Fθ, D, Q and A to explain the fundamental
mechanism behind the ICL process. In contrast,
those in the empirical category primarily centre on
analyzing the relationship between performance S
and the characteristics of the demonstration D.

3 Theoretical Interpretation of ICL
3.1 Mechanistic Interpretability
With the goal of reverse-engineering components
of LLMs models into more understandable algo-
rithms, Elhage et al. (2021) developed a mathemat-
ical framework to decompose operations within
Transformers (Vaswani et al., 2017) for explaining
ICL. They discovered that one-layer attention-only
Transformers can perform very primitive ICL by
assessing patterns (e.g., bigrams) from parameters.
Furthermore, they found that two-layer Transform-
ers manifest a more general ICL capability using
induction head. The induction heads are composed
of attention heads that implement an algorithm to
complete token sequences by copying and generat-
ing sequences that have occurred before. Building
on this foundation, Olsson et al. (2022) later investi-
gated the internal structures responsible for ICL by
analyzing the induction head in a full Transformer
architecture. They implemented circuits consisting
of induction head and previous token head, which
copies information from one token to its succes-
sor. Their study revealed a phase change occurring
early in the training of LLMs of various sizes and
found that circuits play a crucial role in implement-
ing most ICL in LLMs. One pivotal insight from
Olsson et al. (2022) presented comprehensive ar-
guments supporting their hypothesis that induction
heads may serve as the primary mechanistic source
of ICL in a significant portion of LLMs, particu-
larly those based on transformer architectures.

Later, Edelman et al. (2024) extended Olsson
et al. (2022) by introducing a Markov Chain se-
quence modeling task, where demonstrations are
sampled from a Markov chain. They showed that
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Work Key Words Models Tasks

Theoretical Perspective

(Elhage et al., 2021) Mechanistic Interpretability Transformer† -
(Olsson et al., 2022) Mechanistic Interpretability Transformer -
(Edelman et al., 2024) Mechanistic Interpretability Transformer† Markov Chain modeling
(Swaminathan et al., 2023) Mechanistic Interpretability Transformer Next token prediction
(Todd et al., 2024) Mechanistic Interpretability Llama 2, GPT‡ Antonym, etc.
(Bai et al., 2023) Mechanistic Interpretability Transformer† Regression
(Garg et al., 2022) Regression Function Learning Transformer† Regression
(Li et al., 2023b) Regression Function Learning Transformer† Regression
(Li et al., 2023a) Regression Function Learning Transformer† Regression
(Akyürek et al., 2023) Regression Function Learning Transformer† Regression
(Guo et al., 2024) Regression Function Learning GPT‡ Representation Regression
(Dai et al., 2023) Gradient Descent, Meta-Optimization GPT‡ Classification
(von Oswald et al., 2023a) Gradient Descent, Meta-Optimization Transformer† Regression
(von Oswald et al., 2023b) Gradient Descent, Meta-Optimization Transformer† Regression
(Deutch et al., 2024) Gradient Descent, Meta-Optimization Transformer† Classification
(Shen et al., 2024) Gradient Descent, Meta-Optimization LLaMa, GPT‡ Classification
(Fu et al., 2024) Gradient Descent, Meta-Optimization Transformer, LSTM Regression
(Xie et al., 2022) Bayesian Inference Transformer†, LSTM Next token prediction
(Wang et al., 2023b) Bayesian Inference GPT‡ Classification
(Wies et al., 2023) Bayesian Inference - -
(Jiang, 2023) Bayesian Inference GPT† Sythetic Generation
(Zhang et al., 2023b) Bayesian Inference Transformer† -
(Panwar et al., 2024) Bayesian Inference Transformer Regression
(Jeon et al., 2024) Bayesian Inference Transformer† Regression
(Bigelow et al., 2024) Bayesian Inference GPT‡ Sequence generation

Empirical Perspective

(Shin et al., 2022) DATA Domain GPT-3 Classification, etc.
(Han et al., 2023) DATA Domain, DATA Distribution OPT‡ Classification
(Raventós et al., 2023) Task Diversity GPT-2 Regression
(Razeghi et al., 2022) DATA Term frequency GPT‡ Reasoning
(Kandpal et al., 2023) DATA Term frequency GPT-3‡ Question Answering
(Chan et al., 2022) DATA Distribution Transformer Classification
(Yadlowsky et al., 2023) DATA Distribution GPT-2‡ Regression
(Hendel et al., 2023) Task Diversity LLaMA Translation, etc.
(Wei et al., 2022b) Model Scale GPT-3‡ Classification
(Schaeffer et al., 2023) Model Scale, Evaluation Metric GPT-3‡ Classification
(Tay et al., 2023) Pre-training Objective UL2‡ Classification, etc.
(Kirsch et al., 2024) Model Architecture Transformer† Classification
(Singh et al., 2023) Model Architecture LLaMA † Synthetic generation
(Yousefi et al., 2024) Embeddings Llama, Vicuna Regression
(Akyürek et al., 2024) Model Architecture Transformer, LSTM, etc. Language learning
(Lu et al., 2022) Demonstration Order GPT‡ Classification
(Liu et al., 2024) Demonstration Order GPT-3.5‡ Question Answering
(Zhao et al., 2021) Demonstration GPT‡ Classification, IE, IR
(Liu et al., 2022) Demonstration Order GPT-3 Classification, QA, etc.
(Min et al., 2022) Input-Label Mapping GPT‡ Classification, etc.
(Yoo et al., 2022) Input-Label Mapping GPT‡ Classification
(Wei et al., 2023) Input-Label Mapping GPT-3‡ Classification, QA, etc.
(Pan et al., 2023) Input-Label Mapping GPT-3‡ Classification, etc.
(Lin and Lee, 2024) Input-Label Mapping Llama, LSTM, etc. Classification, etc.
(Kossen et al., 2024) Input-Label Mapping LLaMA‡ Classification
(Tang et al., 2023) Input-Label Mapping GPT‡ Classification
(Si et al., 2023) Input-Label Mapping GPT-3‡ Classification, QA, etc.
(Wang et al., 2023a) Input-Label Mapping GPT2-XL Classification

Table 1: Summary of research studies on the interpretation of ICL. QA stands for Question Answering. DATA refers
to pre-training data. The symbol † denotes specifically designed models. The ‡ denotes that either various models or
models from different families were used.

transformers learn statistical induction heads to
approach the Bayes-optimal by computing the cor-
rect posterior probability of the next token, given
all previous occurrences of the prior token. On
the contrary, Swaminathan et al. (2023) adopted
an alternative approach to elucidate the principles
underpinning the mechanisms of ICL by study-
ing clone-structured causal graphs (CSCGs), a
sequence-learning model. They demonstrated that
LLMs and CSCGS share similar mechanisms un-
derlying ICL, which consist of: (a) learning tem-
plate circuits for pattern completion, (b) retrieving

relevant templates, and (c) rebinding novel tokens
within the templates. Following on, Todd et al.
(2024) measured causal mediators across a distri-
bution of different tasks to identify the information
transported by the attention heads in ICL. They
discovered function vectors (FVs), a small num-
ber of attention heads transport information of the
demonstrations within the Transformer’s hidden
states during ICL. Bai et al. (2023) unveiled a gen-
eral mechanism, in-context algorithm selection, to
interpret ICL from a statistical viewpoint. They
first demonstrated that transformers can implement
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a broad class of standard machine learning algo-
rithms, such as least squares, ridge regression, and
Lasso. Then, they theoretically demonstrated that
transformers can adaptively select from these algo-
rithms to learn more complex ICL tasks.
3.2 Regression Function Learning
Several research studies posited that the emergence
of ICL can be attributed to the intrinsic capability
of models to approximate regression functions for
a novel task query Q based on the task demonstra-
tion D. Garg et al. (2022) first formally defined
ICL as a problem of learning functions and ex-
plored whether Transformers can be trained from
scratch to learn simple and well-defined function
classes, such as linear regression functions. To
achieve this, they derived D = {(xi, f(xi))}ni=1

using a function f sampled from a linear func-
tion class and trained models to predict the func-
tion value A = {f(qj)}mj=1 for the corresponding
Q = {qj}mj=1. Their empirical findings revealed
that Transformers exhibited ICL abilities, as they
manifested to “learn” previously unseen linear func-
tions from examples, achieving an average error
comparable to that of the optimal least squares
estimator. Furthermore, Garg et al. (2022) demon-
strated that ICL can be applied to more complex
function classes, such as sparse linear functions
and decision trees. They posited that the capability
to learn a function class through ICL is an inherent
property of the model Fθ. Later, Li et al. (2023b)
extended Garg et al. (2022) to interpret ICL from
a statistical perspective. They derived generaliza-
tion bounds for ICL, considering two types of input
examples: sequences that are independently and
identically distributed (i.i.d.) and trajectories origi-
nating from a dynamical system. They established
a multitask generalization rate for both types of
examples, addressing temporal dependencies by
associating generalization to algorithmic stability
and framing ICL as an algorithm learning problem.
They found that Transformers can implement near-
optimal algorithms on classical regression prob-
lems and proved that self-attention has favourable
stability properties by quantifying the influence of
individual tokens on one another.

At the same time, Li et al. (2023a) took a fur-
ther step from the work of (Garg et al., 2022) to
gain a deeper understanding of the role of the soft-
max unit within the attention mechanism of LLMs.
They sought to mathematically interpret ICL based
on the softmax regression formulation represented
as minx || ⟨exp(Ax),1n⟩−1 exp(Ax)−b||2. They

established the upper bounds for data transforma-
tions effected by a single self-attention layer and
theoretically demonstrated that LLMs perform ICL
in a way that is highly similar to gradient descent
(GD). Akyürek et al. (2023) took a different ap-
proach by delving into the process through which
ICL learns linear functions, rather than analysing
the types of functions that ICL can learn. Through
an examination of the inductive biases and algorith-
mic attributes inherent in Transformer-based ICL,
they discerned that ICL can be understood in algo-
rithmic terms, and linear learners within the model
may essentially rediscover standard estimation al-
gorithms. They showed that trained in-context
learners (ICLs) closely align with the predictors
derived from GD, ridge regression, and exact least-
squares regression. While the transition between
these predictors varies with model depth and train-
ing set noise, they will converge to Bayesian estima-
tors at large hidden sizes and depths. Additionally,
Akyürek et al. (2023) provided a theoretical proof
demonstrating that Transformers can implement
learning algorithms for linear models using GD
and closed-form ridge regression.

To understand ICL in a more complex scenario,
Guo et al. (2024) studying ICL in the setting of
learning with representations. They extended Garg
et al. (2022) to consider a more general task demon-
stration D = {(xi,Φ⋆(xi))}ni=1 where the label
depends on the instance x through representation
function Φ⋆(x) rather than f . They theoretically
demonstrated the existence of Transformers that
can implement an approximately optimal ICL algo-
rithm with mild depth and size. Furthermore, Guo
et al. (2024) trained Transformers to analyzing ICL
with various mechanisms, such as copying (Ols-
son et al., 2022) and post-ICL representation se-
lection (Bai et al., 2023). Their empirical results
showed that lower layers transform the dataset and
upper layers perform linear ICL.

3.3 Gradient Descent & Meta-Optimization

In the realm of gradient descent (GD), Dai et al.
(2023) adopted a perspective of viewing LLMs as
meta-optimizers and interpreting ICL as a form of
implicit fine-tuning. They first conducted a qualita-
tive analysis of Transformer attention, representing
it in a relaxed linear attention form, and identified
a dual relationship between it and GD. Through a
comparative analysis between ICL and explicit fine-
tuning, Dai et al. (2023) interpreted ICL as a meta-
optimization process. They further provided evi-

14368



dence that the Transformer attention head possesses
a dual nature similar to GD (Irie et al., 2022), where
the optimizer produces meta-gradients based on the
provided examples for ICL through forward com-
putation. Concurrently, von Oswald et al. (2023a)
also proposed a connection between the training
of Transformers on auto-regressive objectives and
gradient-based meta-learning formulations. They
examined how Transformers define a loss function
based on the given examples and the mechanisms
by which Transformers assimilate knowledge using
the gradients of this loss function. Their findings
suggest that ICL may manifest as an emergent prop-
erty, approximating gradient-based ICL within the
forward pass of the model.

Following on, von Oswald et al. (2023b) ex-
tended von Oswald et al. (2023a) to uncover under-
lying gradient-based mesa-optimization algorithms
driving model predictions by reverse-engineering
autoregressive Transformers trained on sequence
modeling tasks. They showed that these models
exhibit ICL capability enabled by the mesa-layer, a
novel attention layer that efficiently solves a least-
squares optimization problem. On the contrary,
Deutch et al. (2024) revisited the hypothesis that
GD approximates ICL and highlighted core issues
in the evaluation metrics and baselines of Dai et al.
(2023). Their findings suggested a weak correlation
between ICL and GD and revealed major discrep-
ancies in the flow of information throughout the
model between ICL and GD. In a similar vein, Shen
et al. (2024) highlight that prior studies verify their
hypothesis by training models explicitly for ICL,
which differs from practical setups in real model
training. They showed that the hand-constructed
weights used in these studies possess properties that
do not match those in real world scenarios. Further-
more, they observed that ICL and GD have differ-
ent sensitivities to the order in which they observe
demonstrations in natural settings. Fu et al. (2024)
also presented evidence showing that Transformers
learn to perform ICL by implementing a higher-
order optimization rather than GD. They theoret-
ically demonstrated that Transformer circuits can
efficiently implement Newton’s method (Gautschi,
2011) and empirically showed that Transformers
achieve the same convergence rate as Newton’s
method while being exponentially faster than GD.

3.4 Bayesian Inference

Xie et al. (2022) were the first to interpret ICL
through the lens of Bayesian inference, positing

that LLMs have the capability to perform implicit
Bayesian inference via ICL. Specifically, they syn-
thesized a small-scale dataset to examine how ICL
emerges in Transformer models during pre-training
on text with extended coherence. Their findings
revealed that Transformers are capable of inferring
latent concepts to generate coherent subsequent
tokens during pre-training. Additionally, these
models were shown to perform ICL by identify-
ing a shared latent concept among examples during
the inference process. Their theoretical analysis
confirms that this phenomenon persists even when
there is a distribution mismatch between the exam-
ples and the data used for pre-training, particularly
in settings where the pre-training distribution is
derived from a mixture of Hidden Markov Models
(HMMs) (Baum and Petrie, 1966).

Following on, Wang et al. (2023b) and Wies
et al. (2023) expanded the investigation of ICL by
relaxing the assumptions made by Xie et al. (2022).
Wies et al. (2023) assumed that there is a lower
bound on the probability of any mixture compo-
nent, alongside distinguishable downstream tasks
with sufficient label margins. They proved that ICL
is guaranteed to happen when the pre-training dis-
tribution is a mixture of downstream tasks. Wang
et al. (2023b) posited that ICL in LLMs essentially
operates as a form of topic modeling that implicitly
extracts task-relevant information from examples
to aid in inference. They characterized the data
generation process using a causal graph and im-
posed no constraints on the distribution or quan-
tity of samples. Their theoretical investigations
revealed that ICL can approximate the Bayes op-
timal predictor when a finite number of samples
are chosen based on the latent concept variable.
At the same time, Jiang (2023) also introduced a
novel latent space theory extending the idea of Xie
et al. (2022) to explain ICL in LLMs. Instead of
focusing on specific data distributions generated
by HMMs, they delved into general sparse data
distributions and employed LLMs as a universal
density approximator for the marginal distribution,
allowing them to probe these sparse structures more
broadly. They also demonstrated that ICL in LLMs
can be ascribed to Bayesian inference operating on
the broader sparse joint distribution of languages.

To shed light on the significance of the attention
mechanism for ICL from a Bayesian view, Zhang
et al. (2023b) defined ICL as the task of predicting
a response that aligns with a given covariate based
on examples derived from a latent variable model.
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They demonstrated that certain attention mecha-
nisms converge towards the conventional softmax
attention as the number of examples goes to infinity.
These attentions, due to their encoding of Bayesian
Model Averaging (BMA) algorithm (Wasserman,
2000) within their structure, empower the Trans-
former model to perform ICL. Panwar et al. (2024)
extended the previous setup in (Garg et al., 2022;
Akyürek et al., 2023) by testing the Bayesian hy-
pothesis for ICL over both linear and nonlinear
function families. They found that Transformers
mimic the Bayesian predictor to perform ICL, in-
cluding generalizing new function classes not seen
during pre-training. Furthermore, they demon-
strated that the simplicity bias in ICL arises from
the pre-training distribution and provided empirical
evidence that Transformers solve mixtures of tasks,
suggesting the Bayesian perspective could offer a
unified understanding of ICL.

Concurrently, Jeon et al. (2024) took a differ-
ent approach to revisit ICL as Bayesian infer-
ence without restrictive assumptions by introducing
information-theoretic tool. They decomposed error
for the Bayes optimal predictor into meta-learning
error and intra-task error, and derived an in-context
error upper bound of log(N)/τ for the sparse mix-
ture of transformers, where N is the number of
mixture components and τ is the in-context length.
To analyze ICL as Bayesian model selection in a
practical setting, Bigelow et al. (2024) modeled
latent concepts evoked in LLMs by different con-
texts. They adopted random binary sequences as
context and examined dynamics of ICL by manip-
ulating properties of the data, such as sequence
length, based on the cognitive science of human
randomness perception. They defined subjective
randomness to investigate model behaviour and
demonstrated sharp phase changes, where LLMs
suddenly shift from one pattern of behaviour to
another during text generation, supporting the the-
ories of ICL as model selection.

4 Empirical Analysis of ICL

4.1 Pre-training Data

There has been controversy among researchers re-
garding the effect of pre-training data properties
on the performance of ICL. To analyze the correla-
tion between the domain of a corpus and ICL per-
formance, Shin et al. (2022) evaluated LLMs pre-
trained with subcorpora from diverse sources (e.g.,
blog, community website, news articles) within
the HyperCLOVA corpus (Kim et al., 2021). They

found that the corpus sources significantly influ-
enced ICL performance; however, a pre-training
corpus aligned with the downstream task’s domain
does not always guarantee competitive ICL perfor-
mance. For instance, while LLMs trained on sub-
corpora from blog posts exhibited superior ICL per-
formance, a model trained on news-related dataset
did not sustain this superiority in ICL scenarios.
Han et al. (2023) found that the effectiveness of
pre-training data for ICL is not necessarily tied to
its domain relevance to downstream tasks. By us-
ing MAUVAE score (Pillutla et al., 2021) to quan-
tify information divergence between pre-training
data and target task data, they observed that pre-
training data containing low-frequency tokens and
long-tail information tend to have greater impact on
ICL. Conversely, Razeghi et al. (2022) and Kand-
pal et al. (2023) identified a positive correlation
between ICL performance and the term frequency
within pre-training data, suggesting the memoriza-
tion capabilities can significantly influence ICL.

By the manipulation of pre-training tasks to be a
uniform distribution, Raventós et al. (2023) identi-
fied a diversity threshold - quantified by the number
of tasks seen during pre-training - that indicates the
emergence of ICL. They empirically demonstrated
that LLMs cannot perform a new task through ICL
if the diversity of the pre-training task falls be-
low the threshold. Chan et al. (2022) have identi-
fied three critical distributional properties of pre-
training data that drive ICL: 1) the training data
exhibits bursty distribution (Sarkar et al., 2005),
where tokens appear in clusters rather than being
uniformly distributed over time; 2) the marginal dis-
tribution across tokens is highly skewed, exhibiting
a high prevalence of infrequently occurring classes,
following a ZipFian distribution (Zipf, 1949); 3)
the token meanings or interpretations are dynamic
rather than fixed, where a token can have multiple
interpretations (e.g., polysemy) or multiple tokens
may correspond to the same interpretation.

Yadlowsky et al. (2023) explored the impact of
pre-training data composition on the ability ICL.
Building on the setup of Garg et al. (2022), they
showed empirical evidence that the Transformers
can perform model selection among pre-trained
function classes during ICL with minimal addi-
tional cost. However, there was no evidence that
the models were able to generalize beyond their
pre-training data through ICL. To shed light on the
mechanisms of ICL, Hendel et al. (2023) investi-
gated the relationship between demonstrations and
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the parameters of functions in certain hypothesis
classes by examining the top tokens in the output
distribution. They revealed that ICL functions by
compressing training data into a task vector, which
then guides Transformers to generate outputs.

4.2 Pre-training Model

The attributes of pre-training models have been
shown to be significant factors affecting ICL. Wei
et al. (2022b) focused on training computation (e.g.,
FLOPs (Hoffmann et al., 2022)) and model size(e.g,
number of model parameters). They analyzed the
emergent manner in which ICL manifests with the
scaling of LLMs and highlighted the positive cor-
relation between the model’s scale and ICL per-
formance. On the contrary, Schaeffer et al. (2023)
empirically analyzed the effect of the choice of
evaluation metric on the emergence of ICL abil-
ity. By controlling for factors such as downstream
task, model family, and model outputs, they found
that this ability appears due to the choice of met-
ric, rather than as a result of fundamental changes
in models with scaling. At the same time, Tay
et al. (2023) have suggested that the pre-training
objective is a pivotal factor influencing ICL perfor-
mance. They observed that continued pre-training
with varied objectives enables robust ICL perfor-
mance. Kirsch et al. (2024) have posited that as-
pects of model architecture, such as the dimension
of the hidden size, play a more critical role than
model size in the emergence of ICL.

Singh et al. (2023) suggested that the emergence
of ICL should be viewed as a transient rather than
a persistent phenomenon. They demonstrated that
ICL may not persist as the model continues to be
trained. By examining model sizes, pre-training
data size, and domain, they found that ICL first
emerges, then disappears, giving way to in-weights
learning (IWL). Yousefi et al. (2024) introduced a
neuroscience-inspired framework to empirically an-
alyze how LLM embeddings and attention represen-
tations change following ICL. They measured the
ratio of attention information over parameterized
probing classifiers based on representational simi-
larity analysis (RSA) and found a meaningful cor-
relation between improvements in behaviour after
ICL and changes in both embeddings and attention
weights across LLM layers. Akyürek et al. (2024)
proposed a novel dataset, REGBENC, to systemat-
ically study in context language learning (ICLL) in
the setting of regular languages, the class of formal
languages generated by finite automata (Hopcroft,

1971). They investigated ICLL in relation to model
classes and mechanisms by examining essential
features such as structured outputs, probabilistic
predictions, and compositional reasoning about in-
put data. They found that Transformers are the
most efficient and can develop higher-order vari-
ants of induction heads (Olsson et al., 2022).

4.3 Demonstration Order

The order of the demonstrations has a significant
impact on the ICL. Lu et al. (2022) designed
demonstrations containing four samples with a bal-
anced label distribution and conducted experiments
involving all 24 possible permutations of sample or-
ders. Their experimental results demonstrated that
the ICL performance varies across different permu-
tations and model sizes. In addition, they found
that effective prompts are not transferable across
models, indicating that the optimal order is model-
dependent, and what works well for one model does
not guarantee good results for the other models.
Both Zhao et al. (2021) and Liu et al. (2024) iden-
tified a similar phenomenon where LLMs tend to
repeat answers found at the end of provided demon-
strations in ICL. Their results indicated that ICL
performs optimally when the relevant information
is positioned at the beginning or end of the demon-
strations and the performance degraded when the
LLMs are compelled to use information from the
middle of the input. Liu et al. (2022) delved deeper
and analyzed the underlying reasons for how the
order of demonstration influences ICL. They pro-
posed retrieving examples semantically similar to
a test example for creating its demonstration and
found that the demonstration order appears to be
dependent on the specific dataset in use.

4.4 Input-Label Mapping

Some studies have explored the impact of input-
label mappings on the performance of ICL in
LLMs. Min et al. (2022) empirically showed that
substituting the ground-truth labels in demonstra-
tions with random ones results in a marginal per-
formance decrease across various tasks. This in-
dicates that ICL exhibits a low sensitivity to the
accuracy of labels in the demonstration. This find-
ing contradicts the conclusions in Yoo et al. (2022),
Wei et al. (2023), and Kossen et al. (2024), who
argued that LLMs rely significantly on accurate
input-label mappings to perform ICL. For exam-
ple, Yoo et al. (2022) highlighted that averaging
performance across multiple datasets fails to ac-
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curately reflect the insensitivity observed within
specific datasets. They introduced two novel met-
rics label correctness sensitivity and ground-truth
label effect ratio, to extensively quantify the impact
of ground-truth labels on ICL performance. Their
empirical findings confirmed that ground-truth la-
bel significantly influences ICL, revealing a strong
correlation between sensitivity to label correctness
and the complexity of the downstream task.

To investigate the effect of semantic priors and
input-label mappings on ICL, Wei et al. (2023)
discovered that LLMs can prioritize input-label
mappings from demonstrations over pre-training
semantic priors, leading LLMs to drop below ran-
dom guessing when all the labels in the demonstra-
tions are flipped. Additionally, their research indi-
cated that smaller models predominantly utilize the
semantic meanings of labels rather than the input-
label mappings presented in ICL demonstrations.
Pan et al. (2023) investigated how ICL leverages
demonstrations by characterizing task recognition
and task learning in LLMs. They reported that
LLMs exhibit a significantly better ability to learn
input-label mappings through ICL when compared
to smaller models. Moreover, they observed that
the ability of ICL to discern tasks from demonstra-
tions does not substantially improve with increased
model size. Following on, Lin and Lee (2024) ex-
tended Pan et al. (2023) by introducing multiple
task groups and task-dependent input distributions
to investigate the factor of pre-training data. They
showed that ICL demonstrations with biased labels
contain sufficient information to retrieve a correct
pretrained task. Tang et al. (2023) revealed that
LLMs may rely on shortcuts in ICL demonstrations
for downstream tasks. These shortcuts consist of
spurious correlations between ICL examples and
their associated labels.

Si et al. (2023) identified that LLMs exhibited
feature bias when provided with underspecified
ICL demonstrations in which two features are
equally predictive of the labels. Their experiment
suggested that interventions such as employing in-
structions or incorporating semantically relevant
label words could effectively mitigate bias in ICL.
To understand the underlying mechanism behind
LLMs performing ICL from an information flow
perspective, Wang et al. (2023a) discovered that
semantic information is concentrated within the
representations of label words in the shallow com-
putation layers. Furthermore, they showed that the
consolidated information within label words acts

as a reference for LLMs’ final predictions, high-
lighting the importance of label words in ICL.

5 Open Questions

Despite ongoing endeavours to interpret and anal-
yse ICL, we are still far from fully understanding
it due to the open-ended nature of some questions.
For example, while Elhage et al. (2021) and Olsson
et al. (2022) contribute to our understanding of ICL
by probing the internal architecture of LLMs, it
is important to note that their findings represent
initial steps towards the comprehensive reverse-
engineering of LLMs. It becomes particularly in-
tricate when dealing with LLMs characterized by
complex structures comprising hundreds of lay-
ers and spanning billions to trillions of parameters.
This complexity introduces significant challenges.
Similarly, although studies have provided theoreti-
cal proofs and empirical evidence on the relation of
ICL and regression function learning (Garg et al.,
2022; Akyürek et al., 2023; Li et al., 2023a,b), gra-
dient descent or meta-optimization (von Oswald
et al., 2023a; Dai et al., 2023), and Bayesian infer-
ence (Xie et al., 2022; Wang et al., 2023b; Wies
et al., 2023; Jiang, 2023; Zhang et al., 2023b), their
conclusions are limited to simplified model archi-
tectures and controlled synthetic experimental set-
tings. This raises the open question of whether
these findings hold in the context of standard model
architectures without approximations and if they
can be directly applied to real-world scenarios.

On the other hand, there are contradictory find-
ings from researchers analysing the factors affect-
ing ICL. For instance, while Razeghi et al. (2022)
and Kandpal et al. (2023) identified a positive rela-
tion between ICL performance and term frequency
in pre-training data, Han et al. (2023) found that
pre-training data with long-tail and rarely occur-
ring tokens contribute more significantly to ICL.
Additionally, while Min et al. (2022) suggested
that ICL exhibits low sensitivity to labels in the
demonstrations, other studies revealed that accu-
rate input-label mappings play an important role in
performing ICL (Yoo et al., 2022; Wei et al., 2023;
Kossen et al., 2024). One of the core challenges in
analysing ICL empirically lies in the necessity of
controlling for numerous relevant variables, lead-
ing most existing conclusions to typically rely on
correlations rather than causal relations. This raises
open questions about the reliability of these find-
ings and the extent to which confounding factors
may influence the results.
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6 Future Directions

Correlation vs Causation Most existing studies
have interpreted ICL in LLMs primarily through
correlational analyses, leading to biased conclu-
sions that may not be broadly applicable. One core
challenge lies in various underlying factors that in-
teract with each other and influence ICL (Wei et al.,
2022b; Lu et al., 2024). A potential approach in-
volves designing qualitative and quantitative analy-
sis for ICL by systematically accounting for a range
of potential factors. For example, Biderman et al.
(2023) controlled for training variables including
model architecture, training scale, model check-
points, hyper-parameters, and source libraries to
investigate the influence of data frequency on ICL
and bias behaviour in LLMs. Another key chal-
lenge is the absence of benchmark datasets that
effectively justify the causal effects of the inves-
tigating factors on ICL (Zhang et al., 2023a; Jin
et al., 2024). One possible solution is to generate
synthetic datasets with domain-specific expertise
and develop methods in causal discovery and in-
ference (Swaminathan et al., 2023; Kıcıman et al.,
2024) for interpreting ICL through a causal lens.

Evaluation Current research efforts typically
measure ICL by assessing task performance or opti-
mizing criteria such as gradient (von Oswald et al.,
2023a) and token loss (Olsson et al., 2022) during
the pre-training stage. However, Schaeffer et al.
(2023) have recently argued that emergent abilities
(e.g., ICL) discussed in some prior studies appear
to be mirages, due to the researchers’ choice of
evaluation metrics. Their hypothesis is that choos-
ing a metric that nonlinearly or discontinuously
deforms per-token error rates and the limited size
of test datasets may not provide an accurate esti-
mation of the performance of smaller models. The
core challenge is that aggregated performance met-
rics do not adequately assess ICL ability across
various scenarios or predict their behaviour in new
tasks alongside data distributions drifting. Ded-
icated criteria explicitly designed for the assess-
ment of ICL are currently lacking. In addition, the
evaluation process typically encompasses multiple
models with a distinct objective in existing LLM
paradigms, such as reinforcement learning from hu-
man feedback (RLHF) (Christiano et al., 2017). A
potential solution involves identifying and address-
ing specific capability gaps to enhance predictions
of model performance on novel tasks. For exam-
ple, Burden et al. (2023) incrementally inferred the

capability of LLMs with subsets of tasks before
assessing more complex dependencies.

Demonstration Selection While research explor-
ing the relationship between demonstration and
ICL is expanding (Min et al., 2022; Xiang et al.,
2024), it is mostly limited to interpretation based
on a finite number of demonstrations. The core
challenge lies in the exponential growth of possible
demonstrations with the increase in examples. A
potential approach is to formalize the demonstra-
tion selection as a sequential decision-making prob-
lem (Zhang et al., 2022), aiming to learn an approx-
imation of the expected reward from demonstra-
tions to identify those most beneficial for control
experiments. Other potential solutions can include
disentangling features supportive for performing
ICL on downstream tasks, and controlling for these
features in demonstrations (Si et al., 2023).

Trustworthiness Trustworthiness issues such as
fairness, truthfulness, robustness, bias, and toxic-
ity are significant concerns for LLMs. Exploring
these properties within ICL in LLMs is particularly
challenging due to their unanticipated nature (Ken-
thapadi et al., 2023). It is difficult to analyze the
relationship between various aspects of ICL and
factors relating to trustworthiness when LLM train-
ing objectives and downstream tasks are inconsis-
tent. Safety concerns have also become one of the
most pressing issues. Studies (Perez and Ribeiro,
2022; Bai et al., 2022) have shown that LLMs can
be manipulated to perform harmful and danger-
ous ICL through exposure to toxic demonstrations.
Understanding ICL could play a crucial role in ad-
dressing the trustworthiness and safety issues asso-
ciated with LLMs. For example, knowledge of how
LLMs incorporate biases during ICL can guide the
development of debiasing models. Furthermore,
insights gained from studying how LLMs respond
to toxic demonstrations can inform the design of
countermeasures aimed at detecting and filtering
out harmful input.

7 Conclusion
This paper presents a comprehensive review of cur-
rent research efforts focused on interpreting and an-
alyzing ICL in LLMs. We organize these advance-
ments into theoretical and empirical perspectives,
highlighting existing challenges and discussing po-
tential avenues for further research in this area. We
believe this survey will serve as a valuable resource
for encouraging further exploration into the inter-
pretation of ICL of LLMs.
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Limitation

While we referenced numerous studies to inter-
pret and analyze in-context learning, many of them
are only briefly described due to space limitations.
Our aim was to provide an overview of existing
research efforts into ICL interpretation, and to or-
ganize previous research within a principled frame-
work. Moreover, the survey primarily focuses on
the ICL ability, which has been extensively investi-
gated in previous studies. Nevertheless, there are
other intriguing capabilities that have emerged in
LLMs, such as chain-of-thought (Chu et al., 2024;
Feng et al., 2023) and instruction following (Wei
et al., 2022a; Chung et al., 2024; Ouyang et al.,
2022), which are not included in this survey.
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