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Abstract

Word Usage Graphs (WUGs) represent hu-
man semantic proximity judgments for pairs
of word uses in a weighted graph, which can
be clustered to infer word sense clusters from
simple pairwise word use judgments, avoiding
the need for word sense definitions. SemEval-
2020 Task 1 provided the first and to date
largest manually annotated, diachronic WUG
dataset. In this paper, we check the robust-
ness and correctness of the annotations by con-
tinuing the SemEval annotation algorithm for
two more rounds and comparing against an es-
tablished annotation paradigm. Further, we
test the reproducibility by resampling a new,
smaller set of word uses from the SemEval
source corpora and annotating them. Our work
contributes to a better understanding of the
problems and opportunities of the WUG anno-
tation paradigm and points to future improve-
ments.

1 Introduction

In recent years, a new annotation paradigm for
word senses has emerged under the name of Word
Usage Graphs (WUGs, Schlechtweg et al., 2020,
2021d). In this paradigm, humans provide se-
mantic proximity judgments of pairs of word uses
(also known as Word-in-Context, WiC), which are
then represented in a weighted graph and clus-
tered with a graph clustering algorithm, as dis-
played in Figure 1 showing a selection of clus-
tered graphs from multiple WUG datasets. In this
way, word sense clusters can be inferred from sim-
ple pairwise word use judgments, avoiding the
need for a sense inventory, which can be tedious
to create. While, up to now, this approach has
been applied mainly within the field of Lexical Se-
mantic Change Detection (LSCD) (e.g. Kurtyigit
et al., 2021; Zamora-Reina et al., 2022; Chen et al.,
2023), it can be applied generally in a Word Sense
Induction (WSI) setting (Aksenova et al., 2022)
or for Word Sense Disambiguation (WSD) when

combined with a sense labeling procedure for
word sense clusters (cf. Giulianelli et al., 2023).

As a recent approach to the study of word
senses, the WUG annotation paradigm brings
many open questions and uncertainties relating
to reduction of annotation load (see Section 4.1),
clustering of the annotated graphs as well as the
stability and reproducibility of the resulting clus-
ters. In this paper, we try to answer some of
these questions relying on the first large WUG
dataset created in the SemEval-2020 Task 1 on
Unsupervised Lexical Semantic Change Detection
(Schlechtweg et al., 2020). We add additional
rounds of annotation to the English, German and
Swedish datasets, to more densely populate the
graphs and make the inferred sense clusters and
semantic change scores more reliable. This allows
a comparison against the earlier inferred clusters
and scores. We also compare the inferred clusters
over annotation rounds against an external gold
standard of sense definition annotations in German
(Schlechtweg et al., 2024c). In this way, we test
the validity of previous clusterings. We also eval-
uate cluster robustness by measuring the cluster-
ing variance with different degrees of noise intro-
duced to the annotation. Further, to test the repli-
cability of the SemEval data, we completely re-
sample and annotate a small new set of word uses
from the SemEval source corpora. We hope this
paper contributes to a better understanding of the
problems and opportunities of the WUG annota-
tion paradigm and points to future improvements
in the process. We summarize our contributions
going beyond previous work: (i) Our work adds
thousands of additional judgments to the datasets
created by Schlechtweg et al. (2021d) and Kur-
tyigit et al. (2021) and thus makes them much
more densely annotated.1 These datasets can be
1 The updated datasets can be found at
www.ims.uni-stuttgart.de/data/wugs. The
updated datasets are DWUG EN/DE/SV V3.0.0, DWUG
EN/DE/SV resampled V1.0.0 and DiscoWUG V2.0.0.
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used to tune and evaluate models for a multitude of
tasks, such as WiC, WSI and LSCD (Schlechtweg
et al., 2024a). (ii) We resample and annotate
data from the same sources as Schlechtweg et al.
(2021d) providing an independent replication of
their results (word sense clusters, change labels),
which can serve as a comparison and a way to
evaluate reliability and accuracy of the original
dataset. (iii) We are the first to provide a solid
way to validate the cluster derivation approach de-
fined by Schlechtweg et al.: We compare the ob-
tained clusters to clusters obtained by an indepen-
dent (more traditional) annotation approach. Ad-
ditionally, we propose to evaluate the clusters from
earlier rounds to the clusters obtained on the full
data. Both approaches show that the original data
was not optimal, quality improves over rounds and
that the final datasets created by us have near to
optimal quality.

The paper is structured as follows: Next, we
introduce related work on word sense annotation
approaches. Then, we introduce the datasets we
will extend or replicate followed by a description
of our annotation procedure. We then describe a
number of experiments on the resulting datasets
testing validity, robustness and replicability of the
derived sense clusters. This is followed by con-
cluding remarks and an outlook to future work.

2 Related Work

Existing word sense annotation procedures can be
distinguished into three main categories: (i) use-
sense, (ii) lexical substitution and (iii) use-use an-
notation (cf. Erk et al., 2013). (i), use-sense anno-
tation, has a long tradition within the task of WSD
(Weaver, 1949/1955). Annotators usually choose
the best-fitting word sense definition for a word
use as in this example:

use: [. . . ] taking a knife from her pocket, she
opened a vein in her little arm.

sense1: a human limb

sense2: weapon system

In annotation of lexical substitutes, annotators are
presented only with a single word use and asked
to provide other words which could be substituted
for the target word (McCarthy and Navigli, 2009).
Consider this example:

use: And those who remained at home had
been heavily taxed to pay for the arms, am-

munition; fortifications, and all the other end-
less expenses of a war.

Possible substitutes for arms in this use would be
weapons or guns. Although it is not a widespread
approach, it is possible to represent such lexical
substitutes as vectors, to derive similarities from
these and to represent them in a weighted graph
which can be clustered (McCarthy et al., 2016).

In use-use annotation, typically pairs of uses are
judged according to their semantic proximity (i.e.,
relatedness or similarity):

use1: [. . . ] taking a knife from her pocket,
she opened a vein in her little arm.

use2: It stood behind a high brick wall, its
back windows overlooking an arm of the sea.

Related approaches obtain pairwise judgments us-
ing a comparative annotation framework (Abdalla
et al., 2023), or infer them through spatial ar-
rangement (Majewska et al., 2021), sentence sort-
ing (Ramsey, 2022), use-sense judgments (Pile-
hvar and Camacho-Collados, 2019) or difficulty
estimation (Alfter et al., 2022). Computational
modeling of use-use proximity judgments on bi-
nary or graded scales has seen a recent upsurge
under the label “Word-in-Context task” (Pilehvar
and Camacho-Collados, 2019; Armendariz et al.,
2020; Cassotti et al., 2023b).

The WUG approach builds on use-use proxim-
ity judgments by exploiting their transitive inter-
connectedness through graph representation (Mc-
Carthy et al., 2016; Schlechtweg et al., 2021d).
There are a number of recent WUG datasets for
multiple languages (Schlechtweg et al., 2021d;
Kurtyigit et al., 2021; Baldissin et al., 2022;
Zamora-Reina et al., 2022; Kutuzov et al., 2022;
Aksenova et al., 2022; Chen et al., 2023), most
of them with a diachronic component by sampling
uses from different time periods. A few studies in-
vestigate the clustering and/or edge sampling pro-
cedures (Schlechtweg et al., 2021a; Tunc, 2021;
Kotchourko, 2021). See also Schlechtweg (2023,
pp. 54–67) for an in-depth analysis of cluster er-
rors and the robustness of clusterings and change
scores derived from them. Most related to our
work are the WUG datasets created for SemEval-
2020 Task 1 (Schlechtweg et al., 2020, 2021d) as
these are used and extended for this study.
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Figure 1: WUGs from DWUG V1 (SemEval clustering) and DiscoWUG V1: English plane (left), Swedish färg
(middle) and German anpflanzen (right). Isolates were removed.

3 Word Usage Graphs

A WUG G = (U,E,W) is a weighted, undi-
rected graph, where nodes u ∈ U represent word
uses and weights w ∈ W represent the semantic
proximity of a pair of uses (an edge), (u1, u2) ∈ E
(McCarthy et al., 2016; Schlechtweg et al., 2020).
The set of uses U can be sampled from different
time periods t1, t2 ... tn, where we refer to the
time-specific use subsets as U1, U2 ... Un. In prac-
tice, semantic proximity can be measured by hu-
man annotator judgments on a scale of relatedness
(Brown, 2008; Schlechtweg et al., 2018) or simi-
larity (Erk et al., 2013). WUGs obtained from the
annotation are often sparsely observed and noisy.
This poses a very specific problem that calls for a
robust clustering algorithm. Hence, Schlechtweg
et al. (2021d) implement a variation of correlation
clustering (Bansal et al., 2004) which minimizes
the sum of cluster disagreements, i.e., the sum of
low edge weights (semantic proximity) within a
cluster plus the sum of high edge weights across
clusters. For this, one has to choose a thresh-
old h on edge weights deciding which weights
will be considered as high and which ones as low.
Schlechtweg et al. set h = 2.5. Consequently,
the weight W (e) of each edge e ∈ E in a WUG
G = (U,E,W) is shifted toW ′(e) =W (e)−2.5
(e.g. a weight of 4 becomes 1.5). Those edges e
with a weight W ′(e) ≥ 0 are referred to as posi-
tive edges PE while edges with weights W ′(e) <
0 are called negative edges NE . Let further C :
U 7→ L be some clustering on U , ϕE,C be the set
of positive (high) edges across any of the clusters
in clustering C and ψE,C the set of negative (low)
edges within any of the clusters. The algorithm
then searches for a clusteringC that minimizes the
sum of weighted cluster disagreements:

SWD(C) =
∑

e∈ϕE,C

W ′(e) +
∑

e∈ψE,C

|W ′(e)| .

That is, the sum of positive edge weights between
clusters and (absolute) negative edge weights
within clusters is minimized. Minimizing SWD is
a discrete optimization problem which is NP-hard
(Bansal et al., 2004). As most WUGs have a rela-
tively low number of nodes (≤ 200), Schlechtweg
et al. chose to approximate the global optimum
with Simulated Annealing (Pincus, 1970), a stan-
dard discrete optimization algorithm. In order to
reduce the search space, the algorithm iterates over
different values for the maximum number of clus-
ters (≤ 20). It also iterates over randomly as well
as heuristically chosen initial clustering states.2

The finally obtained clustering C : U 7→ L
maps each use u ∈ U to a cluster label l ∈ L ⊂ N.
From this, Schlechtweg et al. calculate a cluster
(sense) frequency distribution D encoding the
size of each cluster as

D = (f(L1), f(L2), ..., f(Li))

where Li < Li+1 and f(Li) is the number of
times any use from U was mapped to the clus-
ter label Li (cf. McCarthy et al., 2004; Lau et al.,
2014). Correspondingly, they obtain two distribu-
tions D1, D2 from C for the two time-specific use
sets U1, U2. D, D1 and D2 are ordered and con-
tain the frequencies for the full set of cluster la-
bels L so that the ith index always corresponds
to the same cluster label. (Note that this means
that the time-specific sense frequency distributions
are obtained from clustering the full graph.) From
the time-specific D1 and D2, Schlechtweg et al.
calculate a binary and a graded change score,
respectively as cluster gain or loss (binary) and
the Jensen-Shannon distance between D1 and D2

(graded) (Lin, 1991; Donoso and Sanchez, 2017).

2 Find their code at:
https://github.com/Garrafao/WUGs.
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4: Identical
3: Closely Related
2: Distantly Related
1: Unrelated

Table 1: The DURel relatedness scale (Schlechtweg
et al., 2018).

4 Data

We select the DWUG dataset (Schlechtweg et al.,
2021d) because it was richly annotated in multi-
ple rounds of annotation and has been widely used
(e.g. Cassotti et al., 2023a; Giulianelli et al., 2023;
Kutuzov et al., 2024). The data contains use pairs
of English, German and Swedish target words an-
notated on the scale in Table 1. For each word, the
annotations were represented in a weighted (use-
use) graph by taking the uses as nodes, use pairs
as edges and the median relatedness judgment as
edge weights. As described in Section 3, use clus-
ters were computed on each graph using the Cor-
relation Clustering algorithm and from the cluster-
ing binary and graded change scores for each word
were inferred, reflecting changes in clusters over
time. Find clustered WUG examples in Figure 1.

Additionally, we use the DiscoWUG dataset
(Kurtyigit et al., 2021) as it extends the DWUG
DE dataset by a number of target words with uses
sampled from the same time-specific corpora as
DWUG. For evaluation of the annotation qual-
ity, we use DWUG DE Sense (Schlechtweg et al.,
2024c) which annotates a subset of uses sampled
from the German DWUG dataset with traditional
use-sense annotations.3 Find an overview of the
datasets in Table 5 in Appendix A.

4.1 DWUG DE/EN/SV
The DWUG dataset of Schlechtweg et al. (2021d),
which we refer to here as DWUG V1, was created
over four rounds of annotation. (See Table 2 for
an overview of all dataset versions.) Each round of
annotation used combination and exploration sam-
pling criteria based on the WUG resulting from the
previous rounds of annotation. These criteria had
the goal of producing graphs with a faithful clus-
tering (i.e., one that approximates the clustering
that would be obtained on a fully-annotated graph)
while reducing the total number of judgments nec-
essary. The annotation of the full graph for each
word is infeasible due to the quadratic number of
3 All pre-existing datasets can be accessed at:
www.ims.uni-stuttgart.de/data/wugs

available edges. Hence, the resulting graphs are
incomplete (sparsely observed), see graphs in Fig-
ure 1. This issue was exacerbated by the rather
large number of uses per word contained in the
dataset (see Table 5 in Appendix A). Also, the an-
notation procedure had to be stopped after round
4, before the convergence criterion (all inferred
clusters connected by at least one edge) was met.
Hence, some graphs have unconnected clusters,
see färg in Figure 1.

4.2 DiscoWUG

The DiscoWUG dataset of Kurtyigit et al. (2021),
which we refer to here as DiscoWUG V1, was
created in one round of annotation. Uses were
sampled from the same corpora as the DWUG
DE data. It can thus be seen as an extension
of DWUG DE in terms of target words. How-
ever, much less uses (25+25) were sampled per
target word for DiscoWUG. Hence, the graphs are
more densely annotated and suffer less from un-
connected clusters (see Table 2). Target words
were selected partly from the top-predicted graded
change scores of computational models and partly
at random. This inhibits the datasets applicability
in model evaluation as models run the risk of be-
ing evaluated in a circular process.4 Another dif-
ference to DWUG DE is the sampling strategy for
edges: for DiscoWUG edges were sampled purely
randomly. We see this as a beneficial property of
the graphs as it allows less biased statistical infer-
ence.

4.3 DWUG DE Sense

The DWUG DE Sense dataset reannotates a sub-
sample from DWUG DE target words and uses
with binary use-sense judgments (Schlechtweg
et al., 2024c). This allows to compare sense-
related statistics inferred on DWUG DE to be eval-
uated against an independent operationalization
strategy (pp. Schlechtweg, 2023, 58–59). 24 target
words (out of 50) were randomly chosen from the
DWUG DE dataset together with extracted sense
definitions from two historical dictionaries (Paul,
2002; DWDS, 2021). Then 50 randomly sampled
uses for each target word (25 per time period from
at most 100) were annotated. Each use was anno-
tated by three annotators with the sense definition
best describing the meaning of the target word in

4 Kurtyigit et al. (2021, Table 3) observe that model correla-
tions on predicted target words are low.
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AN |J| |E| UNC AV SPR KRI Sample R Reference

DWUG DE 1.1.0 8 817.66 2.75 0.92 1.81 0.60 0.66 SemEval 1–4 (Schlechtweg et al., 2021c)
2.3.0 8 959.58 3.39 0.34 1.73 0.61 0.67 SemEval 1–5 (Schlechtweg et al., 2022b)
3.0.0 11 1256.74 4.90 0.58 1.53 0.61 0.67 SemEval 1–6 this paper

DWUG EN 1.0.0 8 816.30 2.48 2.02 1.72 0.53 0.61 SemEval 1–4 (Schlechtweg et al., 2021b)
2.0.1 9 1009.07 3.18 0.87 1.66 0.56 0.63 SemEval 1–5 (Schlechtweg et al., 2022a)
3.0.0 13 1495.76 5.09 0.85 1.49 0.55 0.63 SemEval 1–6 this paper

DWUG SV 1.0.0 5 660.61 2.15 0.86 1.56 0.62 0.68 SemEval 1–4 (Tahmasebi et al., 2021)
2.0.0 7 851.80 2.73 0.68 1.59 0.63 0.67 SemEval 1–5 this paper
3.0.0 13 1245.64 4.61 2.05 1.38 0.63 0.67 SemEval 1–6 this paper

DiscoWUG 1.1.1 8 341.75 25.25 0.07 1.09 0.64 0.58 random 1 (Kurtyigit et al., 2022)
2.0.0 11 360.91 24.82 0.00 1.18 0.62 0.57 unc. 2 this paper

resampled DE 3 670.67 44.75 0.00 1.21 0.70 0.59 SemEval 1 this paper
resampled EN 3 490.40 35.29 0.00 1.13 0.59 0.56 SemEval 1 this paper
resampled SV 6 1064.47 59.85 0.00 1.40 0.65 0.56 SemEval 1 this paper

Table 2: Overview of data statistics. Version 1 datasets include rounds 1–4 of annotation, version 2 includes rounds
1–5, and Version 3 rounds 1–6. AN = number of annotators, |J | = average of number of judged usage pairs per
word, |E| = avg. percentage of edges annotated, UNC = avg. no. of uncompared multi-cluster combinations, AV
= avg. no. of judgments per usage pair, SPR = weighted mean of pairwise Spearman, KRI = Krippendorff’s alpha,
Sample = sampling strategy, R = annotation round.

this use. The annotations were cleaned and aggre-
gated in different conditions. We use the ‘maj3’
aggregation for our experiments where all uses
are guaranteed to have perfect agreement from the
three annotators.

5 Annotation

We recruited at least three annotators per lan-
guage. Most were current students or had
university-level education. All of them were na-
tive speakers of the respective language.5 They
were instructed in a short training using a ver-
sion of the DURel guidelines (Schlechtweg et al.,
2024b). Below, we first describe for each dataset
how uses and edges were sampled for annotation.
Then, we describe how the annotated data was
postprocessed and analyzed.

5.1 DWUG DE/EN/SV additional rounds
Because the annotation process for V1 of the
DWUG datasets was stopped early, we continue
the annotation algorithm with two more rounds
of annotation. Round 5 was sampled with the
same criteria as rounds 2–4. Round 6 was sam-
pled with a similar, but simplified process us-
ing only two different sampling heuristics—the
random heuristic, which samples use pairs uni-
formly at random from the pool of edges; and the
unconnected heuristic, which samples edges
from pairs of clusters that had not yet been
compared explicitly. Round 5 was annotated in
the same way as rounds 1–4 with the use of
5 All annotators were paid according to the standard in the
country in which they were employed.

spreadsheets provided to annotators. Round 6
was annotated using the DURel annotation tool
(Schlechtweg et al., 2024b).6 For 6[unc] we
sampled at most 3 edges (use pairs) per uncon-
nected cluster. All annotators annotated the same
edges in the same order. For 6[rnd], annotators
were instructed to annotate a random sequence of
use pairs presented to them by the annotation sys-
tem for 30 minutes. The sequence was different
for each annotator. For Swedish, we excluded
words which were not used for the SemEval task
(mostly due to a high number of cannot decide
judgments and low agreement). Because of low
agreement for Swedish in the first try, the study
was repeated with new annotators. This time an-
notators had 60 minutes for the 6[rnd] portion.
The Swedish data from the repetition was then
added to the first-try data for cleaning and aggre-
gation described below.

For all languages, the dataset that considers
rounds 1–5 of annotation is called DWUG V2; that
is, DWUG V2 is DWUG V1 plus one additional
round of annotation. Likewise, DWUG V3 con-
siders rounds 1–6. See Table 2 and Figure 4 in
the appendix for an overview of each dataset with
corresponding rounds.

5.2 DiscoWUG

We annotated the latest version (1.1.1) of the Dis-
coWUG dataset using the unconnected heuris-
tic. DiscoWUG contains much less uses per word
than the other datasets (50 vs. up to 200) and

6
www.ims.uni-stuttgart.de/data/durel-tool
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|E| +|J|

DE EN SV DE EN SV

1 0.28 0.27 0.28 - - -
1–2 1.92 1.69 1.47 489 504 354
1–3 2.42 2.19 1.96 171 161 159
1–4 2.75 2.48 2.15 74 69 48
1–5 3.39 3.18 2.73 142 193 191
1–6 4.90 5.09 4.61 297 487 394

resampled 44.75 35.29 59.85 - - -

Table 3: Coverage by round. |E| = average percentage of
edges annotated in the combined datasets, +|J | = average in-
crease in number of judgments per word from the previous
round. Both statistics only include lemmas that were consid-
ered in all rounds of annotation.

hence much less unconnected clusters and suffers
much less from sparsity in general, see column
‘UNC’ in Table 2. Hence, we deemed it suffi-
cient to merely connect the few unconnected clus-
ters without using the random heuristic. The data
was annotated in the DURel annotation tool.

5.3 Resampled

For this annotation portion, we chose 15 words
randomly from each DWUG dataset. For each
word, we sampled 25 uses per SemEval time pe-
riod, resulting in 50 uses.7 These uses were then
uploaded to the DURel tool and annotators were
instructed to annotate the random sequence of use
pairs displayed to them by the system, for each
word. They were instructed to spend 60 minutes
on each word. Because of the lower number of
uses than in the original DWUG data, the resulting
graphs are more densely connected, see column
‘UNC’ in Table 2. Similar to the DWUG round
6 study described in Section 5.1, for Swedish non-
SemEval target words were excluded and the study
had to be repeated once. With the data from this
study we aim to replicate results from the DWUG
dataset.

5.4 Postprocessing and analysis

The data from the annotation rounds presented in
this paper was post-processed similarly to previ-
ous rounds. Judgments where annotators indi-
cated cannot decide were removed from the data
for agreement calculation. We de-duplicated mul-
tiple judgments by the same annotator. In the
small handful of cases where there was no self-
agreement, these judgments were removed. To

7 Note that we did not apply the SemEval constraint on sen-
tence length when sampling uses.

assess the reliability of annotations on an anno-
tator level, we computed pairwise agreement be-
tween annotators, including judgments from pre-
vious rounds of annotation, where there was over-
lap. Then, for each annotator we took an average
of the pairwise agreement scores with other anno-
tators, weighted by the number of items they over-
lapped on. Two annotators from the English data
(round 6 and resampled) and three from the
Swedish data (one from round 6 and two from both
round 6 and resampled) were excluded due to
having relatively low mean pairwise agreement.8

From the cleaned data, we computed WUGs, clus-
ters and change scores for different data versions
(see Table 2) by the procedure described in Sec-
tion 3. We use the WUG pipeline with default opt
parameters to generate graphs, cluster them and
compute statistics and change scores.

Find important statistics for major versions
(rounds of annotation) of each dataset in Table 2.
Versions accumulate data from all previous rounds
(see column ‘R’). The clusterings for each version
were hence obtained on the full data from previous
rounds. In the experiments reported in Section 6,
we use the dataset versions given in Table 2 and
split DWUG into annotation rounds as shown in
Table 3.

In summary, Table 2 shows that subsequent ver-
sions of the data not only include more annota-
tions, but cover a larger portion of the total graph.
This is especially true for the V3 datasets intro-
duced in this paper. The average number of un-
compared clusters is below 2 in all studies, though
sometimes slightly higher with more data. This
may be due to the discovery of additional clusters
as the number of judgments increases. Agreement
remains strong for all versions of data.

6 Experiments

We now evaluate the validity of the inferred clus-
ters over rounds of annotation. This is followed by
tests of the robustness of the final clusterings, and
their replicability through a complete resampling
and reannotation of data.

6.1 Validity of clusters
First, we assess what progressive rounds of an-
notation contribute to the quality of the resulting
WUGs. Naturally, the proportion of the complete
8 Mean pairwise Krippendorff’s α was −0.05 and 0.46 for
the excluded English annotators and −0.24, 0.21, and 0.26
for the excluded Swedish annotators.
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Figure 2: Left: ARI of DWUG DE clusters after each round vs. DWUG DE Sense annotation. Spreads indicate variation over
lemmas (N=19); only lemmas appearing in all WUG datasets and the sense annotation dataset are included. Right: ARI of
DWUG DE/EN/SV clusters vs. V3. Spreads indicate variation over lemmas. Only lemmas that were annotated in each round
are included. Uses that were assigned to the noise cluster round 6 were excluded from the ARI computation.

graph that was annotated rises with each succes-
sive round of annotation. That said, only a very
small fraction of the edges of the total graph were
annotated, even considering all six rounds.

Adding successive rounds of annotation, we
clustered the resulting WUGs with Correlation
Clustering (Section 5.4) where the resulting clus-
ters ideally correspond to different senses of the
word. We performed two experiments to test
the quality of the WUG clusters after each round
of annotation. Additionally, in Appendix B, we
measure the accuracy of the semantic change
scores/labels derived from the clusters (see Sec-
tion 3) to more directly estimate the reliability of
the datasets on the LSCD level.

External gold standard For German, we com-
pared the cluster assignments of uses to tradi-
tional word sense annotations present in DWUG
DE Sense, see Figure 2, left. Cluster quality is as-
sessed using the Adjusted Rand Index (ARI; see
Fahad et al., 2014), which is defined as follows:

ARI =
RI − ExpectedRI

max(RI)− ExpetedRI

Here, RI stands for the Rand Index, which mea-
sures the number of pair agreements within the
data — that is, pairs of instances (in our case
‘uses’) that are correctly placed in the same or dif-
ferent clusters. The ExpetctedRI is the expected
number of such agreements by chance, calculated
based on the distribution of the clusters, while
the max(RI) is the maximum possible value of
RI , which occurs when all pairs are classified per-
fectly.

We see that the first five rounds of annotation
have a clear positive effect on the quality of the
clusters. The median ARI increases, and just as
importantly, word-level variance goes down. This
suggests that the amount of data needed for clus-
ter quality depends a lot on the word itself, an is-
sue we explore further in Section 6.2. Moreover,
the WUGs that include all six rounds of annota-
tion (corresponding to dataset V3) are very well
correlated with the sense annotations, achieving a
median ARI of 0.81. We note, however, that the
sixth round of annotation shows only minimal im-
provement in median ARI over the fifth.

Final clustering Next, we compare the above-
described clusterings obtained on successive
rounds of annotation to the final clustering of the
WUG constructed with all six rounds of annota-
tion (Figure 2, right). The main motivation for this
experiment is to compare the cluster quality also
for of the other two languages where explicit sense
annotation does not exist. Correspondence to the
clustering of the final WUG increases as succes-
sive rounds of annotation are added, and this is
observed for all languages. Assuming (as is sug-
gested by Figure 2, left), that the final round has
the best quality clustering, this demonstrates that
collecting additional rounds of annotation with
new annotators was beneficial for the quality of
clusters across all three languages, at least up to
the amount of data represented by rounds 1–5.
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6.2 Robustness of clusters
In this section, we assess the robustness of the
clustering method to errors within the annotation
process. In particular, we conduct an experiment,
similar to Schlechtweg et al. (2021d) to assess the
resilience of our results when exposed to (non-
meaningful) variations in graph weights. In this
experiment, randomly generated annotations are
added and the edge weights are recomputed taking
into account both the original and the noisy anno-
tations. We then generate new graphs and perform
clustering on these modified graphs. We carry out
a comparative analysis of the correspondence be-
tween the clusters in the original graphs, i.e., our
ground truth, and those in the manipulated graphs.
As in Section 6.1, cluster correspondence is mea-
sured with ARI.

This investigation, which includes V1, V2, V3
and the resampled datasets as shown in Figure
3, reveals a key finding: the stability of the cluster
structure in the graphs is significantly influenced
by the number of edges. We first assess the clus-
ter variance and recalculate the clustering a second
time, i.e., adding 0% noisy annotations. Results
shows high ARI scores, ranging 0.84-0.98.9 A
drop in performance is immediately noticed when
introducing 0.01% of random annotations. How-
ever, it is important to highlight that this represent
the harshest scenario, which assumes a completely
random annotator. Increasing the number of an-
notated edges (from V1 to V2 and V3) leads to
more robust results. In fact, for the resampled
dataset, which has a much higher proportion of an-
notated edges, the ARI scores for English, German
and Swedish remain above 50% even after intro-
ducing 40% of noisy edges.

While it is necessary to generate a sufficient
number of uses (nodes) for the annotation sam-
ple to be sufficiently representative of the under-
lying corpus, the robustness analysis demonstrates
that the number of edges (of pairs of annotated
uses) also plays a fundamental role for data qual-
ity. However, there is a tension between the need
for a representative sample and the challenges of
annotating a sufficiently large number of edges be-
cause of the quadratic relationship between the
number of nodes and the corresponding number
of edges in a fully connected graph. One way to
9 The lower ARI score (0.84) is obtained for English V1
where we observe a high number of randomly clustered nodes
(Kotchourko, 2021), i.e., nodes with all incoming edges equal
to 2.5.

min avg max

DE V1 .0 .10 .28
DE V2 .0 .08 .20

EN V1 .11 .22 .45
EN V2 .0 .19 .42

SV V1 .0 .19 .48
SV V2 .0 .10 .42

Table 4: Jensen-Shannon distance between sense distribu-
tions for V1 and V2 compared to resampled.

address this issue could involve focusing more an-
notation efforts on words with a higher degree of
polysemy, while reducing effort for monosemous
words (Appendix C).

We provide a similar robustness evaluation for
change scores in Appendix B.

6.3 Replicability of clusters
We now evaluate DWUG resampled data de-
scribed in Section 5.3 against V1 and V2 in or-
der to understand how well we can replicate the
SemEval (and subsequent) annotation efforts with
a small sample of uses annotated densely with a
simple edge sampling approach (random). The
resampled datasets contains a subset of 15
words that are also found amongst the respective
V1 and V2 words, but word uses were resampled
from the source corpora and thus have a lesser
overlap with V1 and V2.10 The data was anno-
tated much more densely (cf. Table 3), result-
ing in a much denser graph; we surmise that a
denser graph will be clustered more reliably than
a sparse graph. However, through sampling vari-
ability the use samples could be less representative
in resampled than in V1 and V2.

For each word in resampled, we calculate the
Jensen-Shannon distance (JSD) between the sense
distributions in resampled and in the respective
version from DWUG. Table 4 shows the average
value over all words.11 As the number of sense
clusters may be different between datasets, we ad-
dress this issue by trimming the longer distribution
to match the shorter one.

Overall, we can observe that the distance in
sense distributions is rather low for all datasets
(between 0.08 and 0.22). The maximum distance
observed is 0.48, but for some data the maximum
distance is much lower, 0.2–0.28. The zero val-
10 The overlap between uses is 1% for English, 3% for
Swedish, 4% for German. 11 For comparability with pre-
vious results, we set the base of the logarithm to 2, which
results in a number (0–1).
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Figure 3: Robustness - ARI scores computed with respect to increasing percentages of noisy edges. The right y-axis (in red)
shows the raw number of noisy edges. The x-axis shows the percentage of perturbed edges.

ues show that some words are perfectly aligned,
thus increasing the uses up to 4 times per time pe-
riod (as in DWUG) for these words does not add
more information. The German data has gener-
ally the lowest average and maximum distances.
This suggests that it is possible to approximate the
very costly SemEval annotation result with a sim-
ple, less costly annotation procedure. For all lan-
guages, the distance to the resampled data be-
comes lower in V2. As we know from Section
6.1, V2 also improves in cluster quality, suggest-
ing that some of the distance is explained by lack
of quality in the SemEval data.

7 Conclusion

In this paper, we tested the validity, robustness and
replicability of the largest existing WUG datasets
used in SemEval-2020 Task 1. We added thou-
sands of additional judgments to the datasets mak-
ing them much more densely annotated and re-
liable. These datasets can be used to tune and
evaluate models for a multitude of tasks, such as
WiC, WSI and LSCD. Then, we reclustered the
data based on increasing amounts of annotation
and found that clustering quality increases with
annotation rounds. This also shows that the origi-
nal SemEval datasets were not optimal for evalua-
tion, and possibly results should be reconsidered.
Our robustness analysis supports this finding and
suggests that small sample sizes of uses, leading
to more densely annotated graphs as the propor-
tion of annotated edges is higher, have a consid-
erable effect on robustness of clusterings. We fur-

ther resampled and reannotated the data providing
an independent replication showing that the Se-
mEval word sense distributions can often be ap-
proximated well with smaller samples and simpler
(random) edge sampling. The main conclusion
from our work is that in future annotation stud-
ies large samples of uses should be sacrificed in
favor of large samples of edges, in order to create
more densely annotated graphs. This aligns with
and strengthens the findings of Kutuzov and Pivo-
varova (2021) and Zamora-Reina et al. (2022).

A natural hypothesis for future work is whether
the improved data quality will lead to higher per-
formance of WSI and LSCD models and whether
previous results on performance relations can be
reproduced with the more reliable data. Further
interesting questions concern the improvement of
the annotation procedure: Can we improve the
clustering quality? Can we find efficient and ro-
bust node and edge sampling strategies? What are
alternative ways of evaluating the quality of the
annotation, the clustering or the change scores?

8 Limitations

Although we tried to equalize conditions across
annotation rounds, some factors differ: In rounds
1–5, judgments were provided in simple spread-
sheets while for round 6 we used the DURel anno-
tation tool. This led to a difference how use pairs
were presented to annotators: In the spreadsheets
pairs were randomized across lemmas while in the
DURel tool annotators typically judge one lemma
at a time. The tool also suffered from minor bugs
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during the time of annotation which may have had
an influence on the data. Furthermore, uses for
the resampled study were not sampled from the
source corpora in the exact same way as in Se-
mEval as for the latter we applied a constraint on
minimum sentence length which was not applied
for the former.
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A Datasets

Find an overview of the datasets in Table 5. Figure
4 shows the correspondence between the datasets,
annotation rounds and versions.

B Change scores

Find robustness checks for change scores over
dataset versions in Figure 5. To calculate the
change score of a word between two time peri-
ods, T1 and T2, we first determine the frequency
of each cluster within these periods. This involves
counting how many instances from each cluster
appear in T1 and T2, respectively. These counts
are then used to create probability distributions p
and q, which are the cluster distribution over T1
and T2. The difference between these distribu-
tions is measured using the JSD. Results align with
those observed when assessing cluster variance in
Figure 3. Specifically, in the datasets V1, V2, and
V3, introducing 40% of noisy edges results in a
weak (0.21-0.40) or moderate (0.41-0.60) correla-
tion. However, when analyzing the resampled
datasets, the correlation remains very strong (0.81-
1.00) for German and Swedish, and strong (0.61-
0.80) for English.

Additionally, and similar to the cluster validity
evaluation in Section 6.1, we assess the correspon-
dence of change scores to the “ground truth” given
by the external gold standard and the final round of
annotation. Specifically, we evaluate the accuracy
of change labels (binary change) and the Spear-
man correlation (graded change) by comparing the
ground truth labels to those derived from various
annotation rounds. The results are shown in Fig-
ure 6. The plots on the left use the DWUG DE
sense as ground truth, while those on the right use
the V3 version of each dataset as ground truth. In
all cases, we observe upward trends, indicating a
convergence with more annotation rounds.

C Semantic change scores convergence

One of the most popular uses of WUGs is the anal-
ysis of the semantic change of words. Semantic
change scores from WUGs are usually computed
using COMPARE, the EARLIER or LATER mea-
sures (Schlechtweg et al., 2018), or the Jensen-
Shannon Distance (JSD), i.e.,

√
D(P ||M) +D(Q ||M)

2

between the probability distributions of clusters
in different historical periods P,Q, where D
is the Kullback-Leibler Divergence and M =
(P+Q)

2 (Lin, 1991; Donoso and Sanchez, 2017;
Schlechtweg et al., 2020). Words that have
changed meaning will have a higher JSD.

By examining the entropy of the cluster prob-
ability distributions, we can categorize words
into low-entropy (likely monosemous) and high-
entropy (likely polysemous) groups and explore
how these groups behave over time in the anno-
tation process. We conduct an experiment on the
resampled datasets to investigate how different
word groups (low-entropy vs. high-entropy) con-
verge towards their final semantic change scores
as more data is considered. Our hypothesis
is that low-entropy words need less annotation
(Kotchourko, 2021). For each WUG, we simulate
an incremental annotation process through multi-
ple rounds, iteratively adding a fixed percentage
of edges from the annotation to the existing graph
in steps. Each step incorporates an additional 5%
of edges relative to the previous step, resulting
in a sequence of graphs with progressively more
edges. Then, we cluster each graph in the se-
quence and compute the cluster probability distri-
bution and change score. Figure 7 shows the ab-
solute error of change scores obtained on different
proportions of data compared to the change score
obtained on the full portion of data for two cate-
gories, i.e., low- (≤ 0.2) and high- (≥ 0.8) entropy
words.12

For all words, we observe that semantic change
scores can be approximated well in the early
stages, with a difference of less than 0.25 drop-
ping below 0.10 after introducing only 20% of the
edges. However, there are clear differences be-
tween the word groups: words with higher entropy
(polysemous words) tend to show a higher error
compared to their final change score while words
with lower entropy (monosemous words) converge
much more quickly. For low-entropy words, we
can achieve a perfect approximation of the seman-
tic change score after introducing only 40% of the
edges, whereas high-entropy words require more
data for accurate approximation.

This suggests that low-entropy words, which

12 Entropy is calculated considering the cluster obtained us-
ing the graph with all the annotated edges. It is important
to note that this ground truth entropy (computed on the final
graph, i.e., with all the available annotations) is not available
in the early stages of the actual annotation process.

14391



Dataset LGS |T| N/V/A |U| t1 t2 Reference

DWUG DE 50 34/14/2 178 1800–1899 1946–1990 Schlechtweg et al. (2021d)
DWUG EN 46 40/6/0 191 1810–1860 1960–2010 Schlechtweg et al. (2021d)
DWUG SV 44 32/5/7 171 1790–1830 1895–1903 Schlechtweg et al. (2021d)

DiscoWUG DE 75 39/16/20 49 1800–1899 1946–1990 Kurtyigit et al. (2021)

DWUG Sense DE 24 16/7/1 50 1800–1899 1946–1990 Schlechtweg (2023)

DWUG resampled DE 15 10/4/1 50 1800–1899 1946–1990 this paper
DWUG resampled EN 15 14/1/0 50 1810–1860 1960–2010 this paper
DWUG resampled SV 15 10/3/2 50 1790–1830 1895–1903 this paper

Table 5: Version-independent dataset statistics. LGS = language, |T | = no. of target words, N/V/A = no. of
nouns/verbs/adjectives, |U | = avg. no. uses per word, t1/t2 = time periods for first and second corpus.

Figure 4: Overview of the datasets, annotation rounds and versions. Black dots represent manual annotation in the given
round, while gray dots represent no annotation in that round.

are likely to be monosemous, tend to stabilize in
their semantic change scores more rapidly than
high-entropy words, which are likely to be poly-
semous.
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Figure 5: Robustness - Spearman correlation of change scores computed with respect to increasing percentages of noisy edges.
The right y-axis (in red) shows the raw number of noisy edges. The x-axis shows the percentage of perturbed edges.

Figure 6: Left: Accuracy (binary change) and Spearman correlation (graded change) of DWUG DE change scores after each
round of annotation compared to DWUG DE Sense. Right: Accuracy and Spearman of DWUG DE/EN/SV change scores after
each round of annotation compared to V3. Only lemmas that were annotated in each round are included.

Figure 7: Approximation of final semantic change score in
resampled datasets considering increasing percentage of
edges. The y-axis shows the absolute difference in change
score computed at each step.
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