
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 14600–14615
November 12-16, 2024 ©2024 Association for Computational Linguistics

Small Agent Can Also Rock! Empowering Small Language Models as
Hallucination Detector

Xiaoxue Cheng1∗, Junyi Li2∗, Wayne Xin Zhao1†, Hongzhi Zhang4,
Fuzheng Zhang4, Di Zhang4, Kun Gai4 and Ji-Rong Wen1,3

1Gaoling School of Artificial Intelligence, Renmin University of China
2Department of Computer Science, National University of Singapore

3School of Information, Renmin University of China 4Kuaishou
chengxiaoxue@ruc.edu.cn junyi_cs@nus.edu.sg batmanfly@gmail.com

Abstract

Hallucination detection is a challenging task for
large language models (LLMs), and existing
studies heavily rely on powerful closed-source
LLMs such as GPT-4. In this paper, we pro-
pose an autonomous LLM-based agent frame-
work, called HaluAgent, which enables rel-
atively smaller LLMs1 (e.g., Baichuan2-Chat
7B) to actively select suitable tools for detect-
ing multiple hallucination types such as text,
code, and mathematical expression. In HaluA-
gent, we integrate the LLM, multi-functional
toolbox, and design a fine-grained three-stage
detection framework along with memory mech-
anism. To facilitate the effectiveness of HaluA-
gent, we leverage existing Chinese and English
datasets to synthesize detection trajectories for
fine-tuning, which endows HaluAgent with the
capability for bilingual hallucination detection.
Extensive experiments demonstrate that only
using 2K samples for tuning LLMs, HaluA-
gent can perform hallucination detection on
various types of tasks and datasets, achieving
performance comparable to or even higher than
GPT-4 without tool enhancements on both in-
domain and out-of-domain datasets. We release
our dataset and code at https://github.com/
RUCAIBox/HaluAgent.

1 Introduction

Recently, large language models (LLMs) (Zhao
et al., 2023) have demonstrated exceptional capa-
bilities across a variety of tasks within the field of
natural language processing. However, hallucina-
tion (Ji et al., 2023; Rawte et al., 2023; Zhang et al.,
2023; Huang et al., 2023; Ye et al., 2023) in text
generated by LLMs remains an underlying concern,
impeding the application of LLMs in real-world
scenarios (Kaddour et al., 2023). Xu et al. (2024)
have indicated that, despite the existence of some

∗Equal contributions
†Corresponding author

1 “Smaller” in this work is relative to larger language
models (e.g., over 100B).

effective hallucination mitigation strategies, the oc-
currence of hallucinations in LLMs is inevitable.
Therefore, reliable and effective hallucination de-
tection methods are necessary and urgent.

Existing hallucination detection methods can be
roughly categorized into two primary approaches.
One line of work relies on the internal knowl-
edge of LLMs to directly identify hallucinations
via prompts (Li et al., 2023; Lei et al., 2023) or
evaluating the semantic consistency among multi-
ple responses to the same question generated by
LLMs (Manakul et al., 2023). However, these meth-
ods are usually constrained not only by LLMs’ in-
ternal knowledge but also by their abilities to utilize
knowledge. Another line of work extends the detec-
tion ability of LLMs by employing external tools
(e.g., search engine) to obtain supporting evidence
for hallucination detection (Chern et al., 2023; Wei
et al., 2024; Min et al., 2023). However, these ap-
proaches mostly depend on closed-source powerful
LLMs such as GPT-4. Moreover, their detection
process is usually pre-determined by human, mak-
ing it difficult for the model to autonomously and
effectively execute the hallucination detection.

To address these issues, in this paper, we pro-
pose the HaluAgent, an autonomous LLM-based
agent framework for hallucination detection. This
agent is based on smaller open-source models (i.e.,
Baichuan2-Chat 7B and 13B (Yang et al., 2023a))
and capable of bilingual hallucination detection in
Chinese and English. The motivations are twofold:
(1) designing autonomous detection agents that can
actively make decisions and judgements, without
human assistance; (2) enabling relatively smaller
models to effectively perform complex detection,
without reliance on close-sourced LLM APIs. To
achieve this, we make three major technical con-
tributions. First, we extend the LLM’s capability
to detect a broader range of hallucination forms
such as text, code, math expression, or their com-
bination by curating a multi-functional toolbox,

14600

https://github.com/RUCAIBox/HaluAgent
https://github.com/RUCAIBox/HaluAgent

Methods Base
Model

Task
Agnostic

Tool
Usage

Fine
Grained

Extensi-
bility

SelfCheckGPT ChatGPT
SAFE GPT-4
FacTool GPT-4
HaluAgent Baichuan2-Chat

Table 1: Comparison of different methods. Task Ag-
nostic means whether the method is designed to spe-
cific tasks; Fine Grained describes whether providing
detailed hallucination sentences; Extensibility means
whether the method can extend to more tasks and tools.

in contrast to previous work only focused on tex-
tual hallucination or limited tools (Manakul et al.,
2023; Min et al., 2023). Second, we design a fine-
grained three-stage detection framework along with
memory mechanism, including sentence segmenta-
tion, tool selection and verification, and reflection.
Third, we leverage existing hallucination datasets
to synthesize detection trajectories for fine-tuning
the LLM, where we first employ GPT-4 to execute
the above three stages until obtaining detection
results consistent with the ground-truth label and
then synthesize the instruction data. We compare
HaluAgent and previous work in Table 1.

To verify the effectiveness, we evaluate HaluA-
gent on both in-domain and out-of-domain datasets
at response- and sentence-level granularities. After
fine-tuning with only 2K trajectories, the detec-
tion performance of HaluAgent has been improved
significantly (e.g., overall accuracy increases from
46.44% to 79.70% in four in-domain datasets and
from 49.50% to 78.43% in two out-of-domain
datasets), reaching a level comparable to or even
higher than GPT-4 without tool enhancement. In
the sentence-level detection experiments, HaluA-
gent also achieved substantial improvements, par-
ticularly with F1 scores on the math and science
datasets increasing from 19.51% to 68.80% and
from 17.54% to 94.16%, respectively.

2 Approach

In this section, we introduce HaluAgent, our pro-
posed autonomous agent for detecting hallucina-
tions across various text types. The core of our
HaluAgent framework is a well-instructed LLM,
which can autonomously leverage tools to detect
a broader range of hallucination types. First, we
define several tasks for hallucination detection and
then design a toolbox with supporting tools to ex-
tend the LLM’s capability. To enable step-by-step
detection, we design a three-stage detection frame-

work equipped with memory mechanism. Finally,
we synthesize high-quality detection trajectory data
to fine-tune open-source LLMs. We present the
overall architecture of HaluAgent in Figure 1.

2.1 Task Definition

Hallucination refers to seemingly plausible yet fac-
tually unsupported content (Huang et al., 2023).
Unlike previous work that mostly focused on de-
tecting text-based hallucinations (Manakul et al.,
2023; Yehuda et al., 2024), we consider a broader
range of hallucination forms such as text, code, and
mathematical expression. Hence, in this work, we
conduct hallucination detection in five tasks as:

• Knowledge-based QA involves generating an-
swers to the input question (Lan et al., 2021), and
we aim to identify misinformation from the answer
text such as incorrect historical dates, misattributed
quotes, or false scientific facts.

• Conditional Text Generation focuses on tasks
with specific requirements given in the input in-
structions (Dathathri et al., 2020) such as generat-
ing text with particular length, format, or translat-
ing a paragraph into special language. We aim to
detect hallucinations that deviate from the given
instructions or include irrelevant information.

• Semantic Consistency is not specific to any
particular type of text or task. We define hallucina-
tion in semantic consistency as those irrelevant or
self-contradictory content in the responses.

• Math Problem Solving is related to generating
a series of mathematical expressions to solve the
math problem (Hendrycks et al., 2021), while the
expressions may contain computational errors, e.g.,
arithmetic or calculation mistakes.

• Code Generation aims to generate code snip-
pets for the input query (Chen et al., 2021). We
define hallucinations as code snippets that are syn-
tactically incorrect, fail to execute as intended, or
contain logical flaws and missing dependencies.

Note that in real-world scenarios the responses
from LLMs may contain a mixture of these halluci-
nation types, and we aim to develop a general and
versatile hallucination detection agent that can deal
with a broader range of hallucinations.

2.2 Toolbox for Hallucination Detection

Since detecting texts with a mix of hallucination
types is challenging, we design a comprehensive
toolbox to enhance the hallucination detection ca-
pability of LLMs following previous work (Chern

14601

Fine-tuning

High-quality Trajectory Data

QUERY: Which city is farther north, Oslo or
Helsinki? RESPONSE:Helsinki is farther north than
Oslo.
......
THOUGHT: ... I will use the fact-checking tool ...
ACTION:web_search(sentence="Oslo latitude")
......
OBSERVATION: No.

HaluAgent

Detection

Hallucination Detection Framework

Sentence
Segmentation

Evidence-1
Evidence-2
Evidence-3
......

Tool
Selection

Sentence-1

Sentence-2

Evidence-2

Tool
Output

Match

Multi-type Texts

Sentence-1
Sentence-2
Sentence-3
......

Toolbox

HaluAgent

Nihilism is a philosophical
viewpoint that suggests...

What is nihilism？

I need to split the
provided text...

Reflection

Figure 1: The overview of our proposed HaluAgent. The left part shows the process of fine-tuning open-source
models and detecting hallucinations. The right part illustrates the hallucination detection pipeline of HaluAgent.

et al., 2023; Gou et al., 2024). Based on the halluci-
nation types discussed in Section 2.1, we incorpo-
rate five types of external tools, i.e., search engine,
calculator, code interpreter, condition verifier, and
semantic checker, and two internal system tools:

• Search Engine is utilized to retrieve support-
ing evidence from the web for identifying factually
incorrect content, defined as web_search. We use
Google Programmable Search Engine API2 to im-
plement this tool. Considering the relevance be-
tween retrieved documents and the output text, we
only use the top-5 documents as the most relevant
retrieval results for hallucination detection.

• Calculator is used to verify inaccurate math-
ematical calculations in the model responses, tar-
geting math-related hallucinations, defined as cal-
culator. We implement calculator via the scientific
computing library SymPy (Meurer et al., 2017).

• Code Interpreter can be used to validate code
snippets by executing the snippets in a program-
ming environment, defined as code_interpreter, en-
suring that the code is syntactically correct and
functions as intended. We implement the code in-
terpreter tool following CRITIC (Gou et al., 2024).

• Condition Verifier aims to detect hallucina-
tions for conditional text generation by assess-
ing whether the text is consistent with the given
condition. For example, we utilize word counter
(word_counter) to compute the number of words
in a length-constrained generation scenario.

• Semantic Checker mainly addresses halluci-
nation types such as irrelevant responses and self-
contradictions, which is defined as match. We
leverage GPT-4 to examine the consistency and

2https://developers.google.com/custom-search

relevance of semantics, primarily handling the se-
mantic matching scenario.

• System Tools are developed to support the ba-
sic manipulation operations for hallucination detec-
tion, including sentence segmentation (split_text)
and returning detection results (get_answer).

All tools are defined as functions in a unified
way and we present the whole toolbox in Table 5 in
Appendix A.2. It is worth noting that the toolbox
is not limited to the existing tools and can be easily
extended, e.g., adding more task-specific tools.

2.3 HaluAgent Framework
Inspired by prior work on complex reasoning (Jiang
et al., 2024), we consider the hallucination detec-
tion process as an agent task. Specifically, HaluA-
gent includes three stages: sentence segmentation,
tool selection and verification, and reflection, along
with memory mechanism. Below, we outline the
workflow and components of our HaluAgent frame-
work.

Sentence Segmentation. Since the responses of
LLMs are usually the combination of facts, opin-
ions, and various types of texts, we first segment
the responses into several independent detection
units. To be specific, we utilize the system tool,
split_text, to perform sentence segmentation. This
tool requires the agent to split the input text into a
set of sentences and complete any incomplete se-
mantic information within the sentences, e.g., pro-
nouns and omitted content. Sentence segmentation
reduces the complexity of hallucination detection
tasks and allows HaluAgent to tailor its detection
strategies for individual sentences, ensuring more
accurate and fine-grained results by minimizing

14602

interference from unrelated content.

Tool Selection and Verification. Next, HaluA-
gent verifies each sentence separately by selecting
the appropriate tool from the toolbox based on the
type of sentence content (e.g., web_search for fact
statements and calculator for mathematical expres-
sions). HaluAgent compares each sentence with
the execution results of the selected tool to iden-
tify any inconsistencies or inaccuracies, thereby
detecting hallucinations. To prevent the agent from
forgetting intermediate detection results and sup-
port the subsequent reflection, HaluAgent stores
the detection result of each sentence as a triple,
i.e., (sentence, hallucination label, supporting evi-
dence). If the sentence is identified as containing
hallucinations, it will be labeled “1”, otherwise “0”.
These useful information will be stored based on
a memory mechanism, allowing HaluAgent to re-
fer to historical results and maintain a consistent
understanding of the text veracity throughout the
detection process.

Reflection. After individually examining all the
sentences, HaluAgent can obtain preliminary detec-
tion results. However, due to the limited capacity of
each tool and potential errors in their outputs, these
detection results might not be fully accurate. To ad-
dress this, HaluAgent performs the final reflection
to double-check whether the previous detection
results are correct from local and global perspec-
tives. At the local level, HaluAgent will match
each sentence with the corresponding evidence to
ensure the local correctness of hallucination detec-
tion. However, different sentences may influence
each other. Therefore, at the global level, HaluA-
gent will determine whether the current sentence is
incorrect based on the context of other sentences.
For instance, if the calculation result in a preceding
sentence is incorrect, any subsequent steps based
on this result should be considered incorrect, even
if these steps are correct when checked in isolation.
Any detection mistakes will be corrected and the
detection results (i.e., hallucination label and sup-
porting evidence) stored in memory are updated
accordingly. After reflection, HaluAgent invokes
a system tool, get_answer, to output the final de-
tection result. If any hallucinations are detected,
HaluAgent outputs the specific sentences and sup-
porting evidence from the detection tools.

Throughout the above process, HaluAgent first
segments the input text into a set of semantically

Datasets #Train #Filtered Trajectory #Test

WebQA 900 675 100
Ape210K 500 334 100
HumanEval 100 100 63
WordCnt 100 100 100
HaluEval-QA 900 808 100

All 2500 2017 463

Table 2: Statistics of synthetic detection trajectories.

complete sentences, then selects tools to check each
sentence individually, and finally reflects on the
detection results to further correct mistakes. To
support this process, we use memory mechanism to
store useful information such as historical detection
trajectories and current detection results.

2.4 Bilingual Agent Tuning

Previous studies mostly depended on closed-source
LLMs (e.g., GPT-4) to detect hallucinations (Chern
et al., 2023; Wei et al., 2024). To empower smaller
language models as effective hallucination detec-
tors, we aim to perform supervised fine-tuning on
smaller LLMs (e.g., Baichuan2-Chat 7B). Given
the powerful agent capability, we leverage GPT-4
to synthesize high-quality hallucination detection
trajectory data in Chinese and English following
the detection framework in Section 2.3.

2.4.1 Trajectory Generation

Data Source. To curate high-quality trajectory
data covering diverse hallucination types, we se-
lect and construct five datasets, i.e., HaluEval (Li
et al., 2023) and WebQA (Li et al., 2016) for
knowledge-based QA, Ape210K (Zhao et al., 2020)
for math word problem, HumanEval (Chen et al.,
2021) for code generation, and WordCnt for con-
ditional text generation. Among them, HaluE-
val and HumanEval are English datasets, and We-
bQA, Ape210K, and WordCnt are Chinese datasets,
which enable bilingual detection capabilities of
HaluAgent. In our experiments, we use GPT-4 to
synthesize WordCnt which is targeted at generating
text with a specified length. Besides, we obtain the
ground-truth hallucination labels for WebQA and
Ape210K by ChatGPT and human annotators. We
provide details of each dataset in Appendix A.3.

Trajectory Format. Based on our datasets, we
employ GPT-4 to execute the detection process in
Section 2.3 and generate corresponding trajectory
data following the ReAct format (Yao et al., 2023).
We begin by feeding the detection instruction and

14603

the text to be detected as input for GPT-4. At each
turn, the agent receives an observation, makes its
plans and thoughts as thought, and invokes corre-
sponding tools through action. The results from
these tools are formulated as a new observation for
the next turn. By iterating the above process, we
can obtain a complete detection trajectory compris-
ing the input instruction, detected text, intermediate
steps (i.e., observations, thoughts, actions), and the
final detection result. To ensure the accuracy of
the trajectories, we remove those samples that in-
clude wrong tool invocation, formatting errors, and
inconsistency between the detection result and the
ground-truth hallucination label. Finally, we pro-
duce 2,017 high-quality trajectories for supervised
fine-tuning. We present an example in Figure 3 and
the statistics of trajectory data in Table 2.

2.4.2 Trajectory Tuning
Based on the above formatted bilingual trajec-
tory data, we perform supervised fine-tuning on
Baichuan2-Chat 7B and 13B (Yang et al., 2023a),
which are much smaller than the backbone mod-
els in previous studies (Chern et al., 2023; Wei
et al., 2024). Formally, the hallucination detection
trajectory for each sample can be represented as
⟨o0, t1, a1, o1, t2, a2, . . . , on−1, tn, an, on⟩, where
oi, ti, and ai denote the observation, thought, and
action at the i-th turn, respectively. Specifically,
o0 denotes the initial observation consisting of the
input instruction and detected text, and on denotes
the final detection result. At each turn, based on
the historical trajectory ci = ⟨o0, t1, a1, . . . , oi−1⟩,
the agent aims to generate thought ti and action ai.
Therefore, during the trajectory fine-tuning process,
we only compute the cross-entropy loss for ti and
ai while masking oi:

L = − log
n∑

i=1

Pr(ti, ai|ci). (1)

2.5 Comparison to Previous Work
To clarify the differences between HaluAgent and
other hallucination detection methods, we aim to
address the following two questions:

• What are the benefits of designing an au-
tonomous hallucination detection agent? Hal-
lucination detection is fundamental to related re-
search. Most previous work either relied on the in-
ternal knowledge of LLMs (might be limited) (Co-
hen et al., 2023) or performed coarse-grained detec-
tion process (Manakul et al., 2023). Designing an

agent for hallucination detection offers a flexible
alternative that can effectively extend the detection
capability of LLMs through tool utilization. Exist-
ing agent-based detection methods do not consider
tool utilization or only employ limited tools such
as search engine for hallucination detection in long
texts (Lei et al., 2023; Wei et al., 2024). In contrast,
HaluAgent develops a comprehensive and exten-
sible toolbox and performs fine-grained reasoning
process for hallucination detection, providing a
more adaptable and robust solution.

• Can smaller language models perform well
in challenging hallucination detection? Existing
methods (Chern et al., 2023; Manakul et al., 2023;
Dhuliawala et al., 2023) heavily depended on pow-
erful closed-source LLMs such as GPT-4, which
leads to high computational costs and poses un-
avoidable limitations for the practical deployment
of these technologies. Moreover, relying on closed-
source models makes the detection results difficult
to reproduce. Our work demonstrates that by incor-
porating the agent capabilities and tool integration,
smaller language models can also effectively han-
dle challenging hallucination detection tasks. This
way can provide a more viable and economical
choice, significantly reducing the need for closed-
source LLMs.

3 Experiments

3.1 Experimental Setup

In-domain/Out-of-domain Tasks. We evaluate
HaluAgent on both in-domain and out-of-domain
datasets. As described in Section 2.4.1, we select
HaluEval-QA, WebQA, Ape210K, HumanEval,
and WordCnt as in-domain datasets. For out-of-
domain datasets, we use a Chinese dataset, Hal-
luQA (Cheng et al., 2023), and an English dataset,
HaluEval 2.0 (Li et al., 2024), which cover diverse
hallucination detection scenarios including knowl-
edge, math, science texts. All datasets are associ-
ated with ground-truth response-level hallucination
labels. We present the details in Appendix B.1.

Sentence-level Tasks. HaluAgent performs fine-
grained hallucination detection by segmenting sen-
tences and provides sentence-level detection results.
We use FacTool (Chern et al., 2023) with annotated
claim-level hallucination labels to evaluate the fine-
grained detection capability. We consider each
claim as a sentence and concatenate all claims as
the input text. FacTool contains five sub-datasets:

14604

Types Datasets
GPT-4 Baichuan2-Chat HaluAgent

prompt pipeline 7B 13B 7B 13B

In-domain
Datasets

WebQA 82.00/35.71 91.00/57.14 51.00/14.04 54.00/61.67 80.00/54.55 82.83/51.43
Ape210K 72.33/74.21 76.63/75.10 49.00/7.27 51.33/58.29 72.00/72.55 73.40/73.68
HumanEval 71.43/79.07 93.44/94.12 34.92/49.38 47.62/19.51 93.44/94.12 93.44/94.12
WordCnt 56.00/66.15 100.00/100.00 43.00/16.00 46.00/59.70 100.00/100.00 100.00/100.00
HaluEval-QA 62.00/42.42 77.53/75.61 53.19/46.34 60.00/67.74 67.00/67.33 71.00/72.38

Overall 69.76/71.66 85.10/83.12 46.44/32.20 52.70/55.58 79.70/79.50 81.86/80.69

Out-of-domain
Datasets

HalluQA 61.00/74.84 85.11/89.23 33.00/12.99 56.00/67.16 67.48/76.09 78.16/83.75
HaluEval 2.0 63.00/74.13 85.71/87.36 54.00/69.33 43.00/46.73 75.00/76.19 79.00/78.79

Overall 62.00/74.50 85.25/88.76 43.50/50.22 49.50/58.10 69.97/76.12 78.43/82.45

Table 3: Evaluation results at Accuracy and F1 score on in-domain and out-of-domain datasets. Bold denotes the
best methods among open-source models; underline denotes the best methods among closed-source models.

Chinese-QA, KB-QA, math problems, code gen-
eration, and scientific literature review. Since the
code generation sub-dataset is collected from Hu-
manEval and overlaps with our training data, we
conduct sentence-level detection experiments on
the other four sub-datasets.

Baselines. Unlike previous work relied on power-
ful closed-source models like GPT-4, HaluAgent
is built upon relatively smaller language model by
performing fine-tuning on hallucination detection
trajectory data. Hence, we compare HaluAgent
with two kinds of baselines: (1) Closed-source
models: GPT-4 prompt and GPT-4 pipeline em-
ploy GPT-4 with simple task description prompts
and our proposed detection pipeline, respectively;
(2) Open-source models: Baichuan2-Chat (7B and
13B), which is the backbone model of HaluAgent.
For other detection methods without comparison
in this work, they are either implemented based on
ChatGPT/GPT-4 (an unfair comparison) or focus
solely on specific tasks, making it difficult to adapt
to other tasks, as shown in Table 1.

Metrics. Hallucination detection is essentially a
binary classification task. Consequently, we adopt
Accuracy and F1 score as metrics for response-
level detection evaluation. Considering the imbal-
anced hallucination data distribution at the sentence
level, we adopt Accuracy, Precision, Recall, and
F1 score for sentence-level detection.

3.2 Response-level Detection

We present the evaluation results on in-domain and
out-of-domain datasets in Table 3.

First, by comparing GPT-4 and Baichuan2-Chat,
we can observe a large performance gap between

closed-source and open-source models when de-
tecting hallucinations solely based on their internal
knowledge. In Table 3, GPT-4 achieves detection
accuracies of 82.00% and 72.33% on WebQA and
Ape210K respectively, whereas Baichuan2-Chat
only achieves 51.00% and 49.00%. This under-
scores the considerable difference in hallucination
detection capabilities between these models.

Second, implementing a fine-grained detection
framework and incorporating extensive tools can
enhance the hallucination detection performance
of LLMs across various tasks. Compared to GPT-4
prompt, GPT-4 pipeline consistently yields better
detection results across all datasets. Especially
for tasks that require tools to detect the hallucina-
tions such as WordCnt, our tool-assistant frame-
work boosts the detection accuracy of GPT-4 from
56.00% to 100.00%. This demonstrates that guid-
ing the model to utilize appropriate tools tailored to
the specific text is an effective strategy to enhance
hallucination detection capabilities.

Finally, based on trajectory fine-tuning, smaller
open-source models can be effective autonomous
agents for hallucination detection, narrowing the
gap with closed-source models. As can be observed
from Table 3, HaluAgent consistently improves de-
tection performance across in-domain datasets com-
pared to Baichuan2-Chat. For instance, on WebQA
and HaluEval-QA datasets, HaluAgent 7B and
13B improve the detection accuracy from 51.00%,
60.00% to 80.00%, 71.00%, respectively. Further-
more, substantial performance improvements are
observed on out-of-domain datasets, with accuracy
increasing from 33.00% to 67.48% (7B) for Hal-
luQA and from 43.00% to 79.00% (13B) for HaluE-
val 2.0. With tool utilization and agent capabilities,

14605

Models Chinese-QA KB-QA Math Science

GPT4-prompt 54.93/59.40/33.17/42.57 75.97/39.29/50.00/44.00 55.27/49.25/23.74/32.04 59.14/64.71/81.82/72.26
GPT4-pipeline 79.76/64.71/50.00/56.41 84.12/85.31/93.21/89.09 91.61/79.66/78.33/78.99 95.72/96.77/98.04/97.40
Baichuan2-Chat 7B 65.15/15.02/29.17/19.83 49.77/38.78/19.59/26.03 68.07/17.91/21.43/19.51 24.19/9.80/83.33/17.54
Baichuan2-Chat 13B 56.82/21.70/22.67/22.17 65.41/30.77/30.00/30.38 70.97/13.85/20.93/16.67 18.82/1.31/100.00/2.58
HaluAgent-7B 73.57/32.96/55.97/41.49 83.33/41.82/82.14/55.42 85.39/81.13/59.72/68.80 90.27/94.77/93.55/94.16
HaluAgent-13B 75.47/33.80/56.25/42.23 81.97/62.07/85.71/72.00 87.50/64.52/72.73/68.38 92.39/96.05/94.81/95.42

Table 4: Evaluation results of sentence-level detection on the four subsets of FacTool.

Figure 2: The usage rate of new tools and the proportion
of successful detection.

HaluAgent achieves performance comparable to
or even higher than GPT-4 prompt across all tasks,
showing strong generalization capability.

3.3 Sentence-level Detection

In our framework, HaluAgent is capable of de-
tecting hallucinations for each individual sentence.
Thus, we evaluate the accuracy of HaluAgent in
identifying hallucinations at the sentence level.

The sentence-level detection results are shown in
Table 4. As we can see, HaluAgent achieves much
higher F1 score compared to Baichuan2-Chat, es-
pecially for those tasks where the detection results
can be precisely judged via tools. For example,
HaluAgent 13B achieves an accuracy of 87.50%
on the math dataset, and F1 score of 95.42% on the
scientific literature review dataset, approaching the
performance of the GPT-4 pipeline. We attribute
this improvement to the fine-grained design of the
HaluAgent framework and its capability to store
and reflect on detection results for each sentence.

3.4 Further Analysis

Extensibility Study. To verify the extensibility of
our HaluAgent framework, we introduce new tools
to the fine-tuned models and test their abilities to
use these tools for hallucination detection. Specif-
ically, we incorporate a translator and a calendar
tool into the HaluAgent toolbox for handling texts

related to translation and date calculations. We pro-
vide instructions and two examples as in-context
demonstrations to guide the model to use these new
tools. For evaluation, we employ ChatGPT to gen-
erate 100 samples involving translation and date
calculation. Instruction and dataset details can be
found in Appendix B.3.

We measure the proportion of correct tool usage
and successful task completion rate by HaluAgent
in Figure 2. As we can see, HaluAgent 7B and 13B
achieve a usage rate of over 95% for the transla-
tor tool, and the usage rate for the calendar tool is
100%. Due to the models’ inherent multilingual
capabilities, they sometimes directly assess the ac-
curacy of the translation result instead of invoking
the translator tool. With the assistance of the ap-
propriate tools, HaluAgent achieves a success rate
of 100% in hallucination detection for date calcu-
lation and over 90% success rate for translation
task. These experimental results indicate that with
instructions and demonstrations, HaluAgent can
effectively use new tools to complete hallucination
detection tasks without additional fine-tuning.

Case Study. To qualitatively demonstrate the ef-
fectiveness of HaluAgent, we present a case study
about average speed calculation, which involves
both commonsense knowledge and mathematical
calculations. We compare HaluAgent with two hal-
lucination detection methods based on GPT-4 with
simple prompts and search engine tool, as shown in
Figure 3. As we can see, GPT-4 fails to detect the
minor calculation errors (i.e., 3 hours + 0.5 hours
+ 1.5 hours = 4 hours) when only provided with
a simple prompt of task description. Meanwhile,
GPT-4 with a search engine tool can only verify the
formula for average speed in the response but can-
not check the correctness of each calculation step.
Consequently, both methods yield incorrect detec-
tion results. In contrast, HaluAgent autonomously
plans and selects suitable tools for different parts of
the text (i.e., search engine for knowledge checks
and calculator for calculation checks), allowing for

14606

simple prompt

THOUGHT: I need to split the provided text into individual sentences to begin the hallucination detection process.
ACTION: split_text(text="To find the average speed for the entire trip, you need to ...").
OBSERVATION: ["To find the ...", "Total distance = ...", "Total time = ...", "Average speed = Total distance / Total time ..."]

THOUGHT: Fact-check the first sentence using the search tool to find relevant factual information.
ACTION: web_search(sentence="To find the average speed for the entire trip, you need to calculate the total distance traveled and divide it by the total
time taken.")
OBSERVATION: "The average speed formula is: AverageSpeed(s) = total elapsed time / total distance."

THOUGHT: There are no contradictions between the first sentence and the retrieved fact, label = 0. Fact-check the second sentence using the calculator
tool to get the answer to the formula.
ACTION: calculator(formula="200+150")
OBSERVATION: 200+150 = 350

THOUGHT: The result of the formula in the second sentence is right, label = 0. Fact-check the third sentence using the calculator tool to get the answer
to the formula.
ACTION: calculator(formula="3+0.5+1.5")
OBSERVATION: 3+0.5+1.5 = 5

THOUGHT: The result of the formula in the third sentence is wrong, label = 1.
......

THOUGHT: The result of the formula in the fourth sentence is right, label = 0. All test results are correct and do not require correction. Detection ended.
ACTION: get_answer()
OBSERVATION: Yes. { "sentence": "Total time = 3 hours + 0.5 hours + 1.5 hours = 4 hours.", "fact": "3+0.5+1.5=5"}

Question: You drive 200 miles in 3 hours before stopping for 30 minutes for lunch and gas. After lunch you travel 150 miles in an hour and a half. What was your average speed for the trip?
Answer: To find the average speed for the entire trip, you need to calculate the total distance traveled and divide it by the total time taken. Total distance = 200 miles + 150 miles = 350 miles.

 Total time = 3 hours + 0.5 hours + 1.5 hours = 4 hours. Average speed = Total distance / Total time = 350 miles / 4 hours = 70 mph.

User: You are a hallucination detection agent.
Given a question and its corresponding
response, please determine whether there is
any incorrect or unsatisfactory content within
the response. If there is, output "Yes"; if there
is not, output "No".
Assistant: No.

Assistant: I will use the search engine tool to
get relevant information.
web_search("To find the average speed for the
entire trip, you need to calculate ..."

Retrieved Eesult: The average speed formula
is: AverageSpeed(s) = total elapsed time /
total distance.

There are no contradictions between the
response and the retrieved fact.

No.

single tool HaluAgent

Figure 3: Case study between GPT-4 with a simple prompt and single tool, and the HaluAgent framework.

accurate verification of the content. This highlights
HaluAgent’s capability to effectively verify com-
plex texts with mixed types of hallucinations.

4 Related Work

Hallucination Detection. Hallucination Detection
in LLMs is a pivotal concern due to its role in iden-
tifying inaccuracies or falsehoods within model
responses. Most existing methods for hallucina-
tion detection are implemented based on powerful
LLMs (Luo et al., 2024). One category of these
methods relies on the internal knowledge and con-
sistency of LLMs to detect hallucinations, by break-
ing down the detection process (Dhuliawala et al.,
2023) or comparing multiple responses to the same
query (Manakul et al., 2023). However, these ap-
proaches are inherently limited by the knowledge
boundaries of LLMs. Another category of meth-
ods leverages external tools for hallucination detec-
tion (Chern et al., 2023; Wei et al., 2024). While
tool utilization can compensate for the knowledge
limitations of LLMs (Wang et al., 2024), existing
methods often require manually designing specific
tools tailored to particular text types. In contrast,
HaluAgent is equipped with a versatile and ex-
pandable toolbox, enabling small language models
to autonomously select appropriate tools for fine-
grained detection.

Agent Tuning. Recently, the surprising planning
and reasoning capabilities of LLMs have inspired
research into their application as agents for spe-
cific tasks. Previous research (Yao et al., 2023;

Nakano et al., 2021; Singh et al., 2023; Yang et al.,
2023b) has predominantly relied on prompting to
use LLMs as agents, but this method demands ad-
vanced instruction-following capabilities that open-
source LLMs typically do not match with API-
based LLMs. To break this restriction, AgentTun-
ing (Zeng et al., 2023) first fine-tunes open-source
LLMs on agent interaction trajectories generated
by powerful LLMs. Moreover, Agent-FLAN (Chen
et al., 2024) goes a step further by decomposing and
redesigning the training corpus. Besides general
agents, KG-Agent (Jiang et al., 2024) fine-tunes
LLaMA-7B model to achieve an agent specialized
in reasoning over knowledge graphs. Similarly,
HaluAgent is fine-tuned on trajectory data of hal-
lucination detection tasks, thereby enhancing the
detection capabilities of open-source LLMs.

5 Conclusion

In this work, we proposed an autonomous agent
framework, HaluAgent, which is capable of bilin-
gual hallucination detection in Chinese and English.
In our approach, we first curated a multi-functional
toolbox to extend the LLM’s capability to detect
hallucinations. Next, we designed a fine-grained
three-stage detection framework along with mem-
ory mechanism, including sentence segmentation,
tool selection and verification, and reflection. Then,
we leveraged existing datasets to synthesize detec-
tion trajectories by employing GPT-4 to execute the
detection process following the HaluAgent frame-
work. Finally, we fine-tuned Baichuan2-Chat 7B
and 13B on the synthesized trajectories. The Halu-

14607

Agent models achieved notable improvements on
both in-domain and out-of-domain datasets, with
performance comparable to or even higher than
GPT-4 without tool enhancements. Due to its high
flexibility and adaptability, HaluAgent can effec-
tively serve as a hallucination detector when human
users interact with LLMs in real-world scenarios.
In future work, we will extend our method to deal
with more types of tools and hallucinations.

Limitations

Although HaluAgent significantly enhances the
performance of small open-source models in hal-
lucination detection tasks, our approach still has
some limitations. First, we use only Baichuan2-
Chat as the backbone LLM and do not compare it
with other models of comparable parameter size,
such as Llama2-7B (Touvron et al., 2023), Mistral-
7B (Jiang et al., 2023), and Qwen-7B (Bai et al.,
2023). Second, our work focuses on hallucination
detection tasks and does not propose corresponding
mitigation strategies. Third, we focus on detect-
ing hallucinations that contain errors and contra-
dictions, lacking consideration for hallucinations
related to identity recognition and ethical issues. Fi-
nally, the training process of HaluAgent uses only
correct trajectory data for supervised fine-tuning,
without fully leveraging failed trajectory data or
incorporating other types of data. In the future,
we will further refine the HaluAgent framework to
cover more hallucination types and fully leverage
failed data to train the model. We also consider
developing improved mitigation strategies based
on HaluAgent.

Acknowledgements

This work was partially supported by Beijing Natu-
ral Science Foundation under Grant No. 4222027
and L233008, National Natural Science Founda-
tion of China under Grant No. 62222215. Xin
Zhao is the corresponding author.

References
Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,

Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang
Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian
Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi

Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang,
Yichang Zhang, Zhenru Zhang, Chang Zhou, Jin-
gren Zhou, Xiaohuan Zhou, and Tianhang Zhu. 2023.
Qwen technical report. CoRR, abs/2309.16609.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Pondé de Oliveira Pinto, Jared Kaplan,
Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. CoRR,
abs/2107.03374.

Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei
Zhang, Jiangning Liu, Dahua Lin, Kai Chen, and
Feng Zhao. 2024. Agent-flan: Designing data and
methods of effective agent tuning for large language
models. CoRR, abs/2403.12881.

Qinyuan Cheng, Tianxiang Sun, Wenwei Zhang, Siyin
Wang, Xiangyang Liu, Mozhi Zhang, Junliang He,
Mianqiu Huang, Zhangyue Yin, Kai Chen, and
Xipeng Qiu. 2023. Evaluating hallucinations in chi-
nese large language models. CoRR, abs/2310.03368.

I-Chun Chern, Steffi Chern, Shiqi Chen, Weizhe Yuan,
Kehua Feng, Chunting Zhou, Junxian He, Graham
Neubig, and Pengfei Liu. 2023. Factool: Factual-
ity detection in generative AI - A tool augmented
framework for multi-task and multi-domain scenar-
ios. CoRR, abs/2307.13528.

Roi Cohen, May Hamri, Mor Geva, and Amir Glober-
son. 2023. LM vs LM: detecting factual errors via
cross examination. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2023, Singapore, December 6-
10, 2023, pages 12621–12640. Association for Com-
putational Linguistics.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane
Hung, Eric Frank, Piero Molino, Jason Yosinski, and
Rosanne Liu. 2020. Plug and play language models:
A simple approach to controlled text generation. In
8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net.

Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu,
Roberta Raileanu, Xian Li, Asli Celikyilmaz, and
Jason Weston. 2023. Chain-of-verification reduces

14608

https://doi.org/10.48550/ARXIV.2309.16609
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://doi.org/10.48550/ARXIV.2403.12881
https://doi.org/10.48550/ARXIV.2403.12881
https://doi.org/10.48550/ARXIV.2403.12881
https://doi.org/10.48550/ARXIV.2310.03368
https://doi.org/10.48550/ARXIV.2310.03368
https://doi.org/10.48550/ARXIV.2307.13528
https://doi.org/10.48550/ARXIV.2307.13528
https://doi.org/10.48550/ARXIV.2307.13528
https://doi.org/10.48550/ARXIV.2307.13528
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.778
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.778
https://openreview.net/forum?id=H1edEyBKDS
https://openreview.net/forum?id=H1edEyBKDS
https://doi.org/10.48550/ARXIV.2309.11495

hallucination in large language models. CoRR,
abs/2309.11495.

Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong shen,
Yujiu Yang, Nan Duan, and Weizhu Chen. 2024.
CRITIC: Large language models can self-correct
with tool-interactive critiquing. In The Twelfth Inter-
national Conference on Learning Representations.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset. In Thirty-
fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2).

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting
Liu. 2023. A survey on hallucination in large lan-
guage models: Principles, taxonomy, challenges, and
open questions. CoRR, abs/2311.05232.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of halluci-
nation in natural language generation. ACM Comput-
ing Surveys, 55(12):1–38.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Jinhao Jiang, Kun Zhou, Wayne Xin Zhao, Yang Song,
Chen Zhu, Hengshu Zhu, and Ji-Rong Wen. 2024.
Kg-agent: An efficient autonomous agent framework
for complex reasoning over knowledge graph. CoRR,
abs/2402.11163.

Jean Kaddour, Joshua Harris, Maximilian Mozes, Her-
bie Bradley, Roberta Raileanu, and Robert McHardy.
2023. Challenges and applications of large language
models. CoRR, abs/2307.10169.

Yunshi Lan, Gaole He, Jinhao Jiang, Jing Jiang,
Wayne Xin Zhao, and Ji-Rong Wen. 2021. A sur-
vey on complex knowledge base question answering:
Methods, challenges and solutions. In Proceedings
of the Thirtieth International Joint Conference on
Artificial Intelligence, IJCAI 2021, Virtual Event /
Montreal, Canada, 19-27 August 2021, pages 4483–
4491. ijcai.org.

Deren Lei, Yaxi Li, Mengya Hu, Mingyu Wang, Vincent
Yun, Emily Ching, and Eslam Kamal. 2023. Chain of
natural language inference for reducing large lan-
guage model ungrounded hallucinations. CoRR,
abs/2310.03951.

Junyi Li, Jie Chen, Ruiyang Ren, Xiaoxue Cheng,
Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen.
2024. The dawn after the dark: An empirical study
on factuality hallucination in large language models.
CoRR, abs/2401.03205.

Junyi Li, Xiaoxue Cheng, Wayne Xin Zhao, Jian-Yun
Nie, and Ji-Rong Wen. 2023. Halueval: A large-
scale hallucination evaluation benchmark for large
language models. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 6449–6464.

Peng Li, Wei Li, Zhengyan He, Xuguang Wang, Ying
Cao, Jie Zhou, and Wei Xu. 2016. Dataset and
neural recurrent sequence labeling model for open-
domain factoid question answering. arXiv preprint
arXiv:1607.06275.

Junliang Luo, Tianyu Li, Di Wu, Michael Jenkin, Steve
Liu, and Gregory Dudek. 2024. Hallucination detec-
tion and hallucination mitigation: An investigation.
CoRR, abs/2401.08358.

Potsawee Manakul, Adian Liusie, and Mark J. F. Gales.
2023. Selfcheckgpt: Zero-resource black-box hal-
lucination detection for generative large language
models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, EMNLP 2023, Singapore, December 6-10, 2023,
pages 9004–9017. Association for Computational
Linguistics.

Aaron Meurer, Christopher P. Smith, Mateusz Pa-
procki, Ondřej Čertík, Sergey B. Kirpichev, Matthew
Rocklin, Amit Kumar, Sergiu Ivanov, Jason K.
Moore, Sartaj Singh, Thilina Rathnayake, Sean Vig,
Brian E. Granger, Richard P. Muller, Francesco
Bonazzi, Harsh Gupta, Shivam Vats, Fredrik Johans-
son, Fabian Pedregosa, Matthew J. Curry, Andy R.
Terrel, Štěpán Roučka, Ashutosh Saboo, Isuru Fer-
nando, Sumith Kulal, Robert Cimrman, and Anthony
Scopatz. 2017. Sympy: symbolic computing in
python. PeerJ Computer Science, 3:e103.

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis,
Wen-tau Yih, Pang Koh, Mohit Iyyer, Luke Zettle-
moyer, and Hannaneh Hajishirzi. 2023. Factscore:
Fine-grained atomic evaluation of factual precision
in long form text generation. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 12076–12100.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
Xu Jiang, Karl Cobbe, Tyna Eloundou, Gretchen
Krueger, Kevin Button, Matthew Knight, Benjamin
Chess, and John Schulman. 2021. Webgpt: Browser-
assisted question-answering with human feedback.
CoRR, abs/2112.09332.

Vipula Rawte, Amit P. Sheth, and Amitava Das. 2023.
A survey of hallucination in large foundation models.
CoRR, abs/2309.05922.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Man-
ish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori,

14609

https://doi.org/10.48550/ARXIV.2309.11495
https://openreview.net/forum?id=Sx038qxjek
https://openreview.net/forum?id=Sx038qxjek
https://doi.org/10.48550/ARXIV.2311.05232
https://doi.org/10.48550/ARXIV.2311.05232
https://doi.org/10.48550/ARXIV.2311.05232
https://doi.org/10.48550/ARXIV.2307.10169
https://doi.org/10.48550/ARXIV.2307.10169
https://doi.org/10.24963/IJCAI.2021/611
https://doi.org/10.24963/IJCAI.2021/611
https://doi.org/10.24963/IJCAI.2021/611
https://doi.org/10.48550/ARXIV.2310.03951
https://doi.org/10.48550/ARXIV.2310.03951
https://doi.org/10.48550/ARXIV.2310.03951
https://doi.org/10.48550/ARXIV.2401.03205
https://doi.org/10.48550/ARXIV.2401.03205
https://doi.org/10.48550/ARXIV.2401.08358
https://doi.org/10.48550/ARXIV.2401.08358
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.557
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.557
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.557
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
http://arxiv.org/abs/2112.09332
http://arxiv.org/abs/2112.09332
https://doi.org/10.48550/ARXIV.2309.05922

Wenhan Xiong, Alexandre Défossez, Jade Copet,
Faisal Azhar, Hugo Touvron, Louis Martin, Nico-
las Usunier, Thomas Scialom, and Gabriel Synnaeve.
2023. Code llama: Open foundation models for code.
CoRR, abs/2308.12950.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit
Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox,
Jesse Thomason, and Animesh Garg. 2023. Prog-
prompt: Generating situated robot task plans using
large language models. In 2023 IEEE International
Conference on Robotics and Automation (ICRA),
pages 11523–11530. IEEE.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Yuhao Wang, Ruiyang Ren, Junyi Li, Wayne Xin
Zhao, Jing Liu, and Ji-Rong Wen. 2024. Rear: A
relevance-aware retrieval-augmented framework for
open-domain question answering. arXiv preprint
arXiv:2402.17497.

Jerry Wei, Chengrun Yang, Xinying Song, Yifeng Lu,
Nathan Hu, Dustin Tran, Daiyi Peng, Ruibo Liu,
Da Huang, Cosmo Du, and Quoc V. Le. 2024. Long-
form factuality in large language models. CoRR,
abs/2403.18802.

Ziwei Xu, Sanjay Jain, and Mohan S. Kankanhalli. 2024.
Hallucination is inevitable: An innate limitation of
large language models. CoRR, abs/2401.11817.

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang,
Ce Bian, Chao Yin, Chenxu Lv, Da Pan, Dian Wang,
Dong Yan, Fan Yang, Fei Deng, Feng Wang, Feng
Liu, Guangwei Ai, Guosheng Dong, Haizhou Zhao,
Hang Xu, Haoze Sun, Hongda Zhang, Hui Liu,
Jiaming Ji, Jian Xie, Juntao Dai, Kun Fang, Lei
Su, Liang Song, Lifeng Liu, Liyun Ru, Luyao Ma,
Mang Wang, Mickel Liu, MingAn Lin, Nuolan Nie,
Peidong Guo, Ruiyang Sun, Tao Zhang, Tianpeng
Li, Tianyu Li, Wei Cheng, Weipeng Chen, Xian-
grong Zeng, Xiaochuan Wang, Xiaoxi Chen, Xin
Men, Xin Yu, Xuehai Pan, Yanjun Shen, Yiding
Wang, Yiyu Li, Youxin Jiang, Yuchen Gao, Yu-
peng Zhang, Zenan Zhou, and Zhiying Wu. 2023a.
Baichuan 2: Open large-scale language models.
CoRR, abs/2309.10305.

Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin
Lin, Ehsan Azarnasab, Faisal Ahmed, Zicheng Liu,
Ce Liu, Michael Zeng, and Lijuan Wang. 2023b.
MM-REACT: prompting chatgpt for multimodal rea-
soning and action. CoRR, abs/2303.11381.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In International Conference on Learning
Representations (ICLR).

Hongbin Ye, Tong Liu, Aijia Zhang, Wei Hua, and
Weiqiang Jia. 2023. Cognitive mirage: A review
of hallucinations in large language models. CoRR,
abs/2309.06794.

Yakir Yehuda, Itzik Malkiel, Oren Barkan, Jonathan
Weill, Royi Ronen, and Noam Koenigstein. 2024. In
search of truth: An interrogation approach to halluci-
nation detection. CoRR, abs/2403.02889.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao
Liu, Yuxiao Dong, and Jie Tang. 2023. Agenttuning:
Enabling generalized agent abilities for llms. CoRR,
abs/2310.12823.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu,
Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang,
Yulong Chen, Longyue Wang, Anh Tuan Luu, Wei
Bi, Freda Shi, and Shuming Shi. 2023. Siren’s song
in the AI ocean: A survey on hallucination in large
language models. CoRR, abs/2309.01219.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Be-
ichen Zhang, Junjie Zhang, Zican Dong, Yifan Du,
Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao
Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang
Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen.
2023. A survey of large language models. CoRR,
abs/2303.18223.

Wei Zhao, Mingyue Shang, Yang Liu, Liang Wang, and
Jingming Liu. 2020. Ape210k: A large-scale and
template-rich dataset of math word problems. arXiv
preprint arXiv:2009.11506.

14610

https://doi.org/10.48550/ARXIV.2308.12950
https://doi.org/10.48550/ARXIV.2403.18802
https://doi.org/10.48550/ARXIV.2403.18802
https://doi.org/10.48550/ARXIV.2401.11817
https://doi.org/10.48550/ARXIV.2401.11817
https://doi.org/10.48550/ARXIV.2309.10305
https://doi.org/10.48550/ARXIV.2303.11381
https://doi.org/10.48550/ARXIV.2303.11381
https://doi.org/10.48550/ARXIV.2309.06794
https://doi.org/10.48550/ARXIV.2309.06794
https://doi.org/10.48550/ARXIV.2403.02889
https://doi.org/10.48550/ARXIV.2403.02889
https://doi.org/10.48550/ARXIV.2403.02889
https://doi.org/10.48550/ARXIV.2310.12823
https://doi.org/10.48550/ARXIV.2310.12823
https://doi.org/10.48550/ARXIV.2309.01219
https://doi.org/10.48550/ARXIV.2309.01219
https://doi.org/10.48550/ARXIV.2309.01219
https://doi.org/10.48550/ARXIV.2303.18223

A HaluAgent Framework

A.1 Instructions

During the trajectory generation phase, we provide
detailed instructions for the HaluAgent framework
to prompt GPT-4 to generate the required detection
trajectories. The English and Chinese prompts are
shown in Figure 4 and Figure 5, respectively.

A.2 Toolbox

HaluAgent includes both verification tools and sys-
tem tools. The tool names and their usage instruc-
tions are summarized in Table 5.

A.3 Data Source

We introduce the data sources for trajectory gener-
ation here, which include five datasets: HaluEval,
WebQA, Ape210K, HumanEval, and WordCnt.

• HaluEval (Li et al., 2023) is a benchmark for
evaluating hallucinations in LLMs across various
tasks. We select 1,000 samples from the QA subset,
with 900 samples used for trajectory generation
and 100 samples for testing.

• WebQA (Li et al., 2016) is a QA dataset
collected from the Baidu Zhidao platform. This
dataset contains a large number of questions and
corresponding answers. We sample 1,000 ques-
tions from the training set of WebQA and generate
answers for each question using ChatGPT. Then,
human annotators evaluate these answers by com-
paring them to the correct ones to determine if they
contain hallucinations. We use 900 questions for
generating detection trajectories and reserve 100
samples as the testset.

• Ape210K (Zhao et al., 2020) is a large-scale
math word problem dataset, containing 210,000
Chinese primary school-level math problems. Each
problem includes a gold answer and the equations
needed to derive the answer. Solving Ape210K
requires not only natural language understanding
but also commonsense knowledge. We select 700
data samples from the training set of Ape210K for
mathematical calculation. As with the WebQA pro-
cessing method, we first use ChatGPT to generate
answers for each question, and then human anno-
tators label the responses. We reserve 100 data
samples as the testset, and use the remaining 600

Category Tool Name Tool Usage Instruction

Verification
Tools

web_search Input: sentence: str → Output: fact
Conduct a web search and return factual information.

calculator Input: formula: str → Output: result
Perform calculations based on the input formula and return the
result.

code_interpreter Input: code: str → Output: label
Execute code and return a label indicating whether the execution
was successful.

word_count Input: length: int, text: str → Output: count, label
Count words in the text and provide a label indicating whether the
requirement is met.

match Input: sentence: str, context: str → Output: label
Match a sentence with the given context and return a label indicat-
ing whether semantic matching is successful.

System
Tools

split_text Input: text: str → Output: sentences
Split text into individual sentences.

get_answer Input: → Output: result(, evidence)
Return the detection answer with optional evidence.

Table 5: Instructions of the toolbox in HaluAgent.

14611

samples for trajectory generation.
• HumanEval (Chen et al., 2021) dataset con-

tains 164 programming problems, including func-
tion names, comments, specific implementations,
and multiple unit tests. It is widely used to test
the code generation capabilities of LLMs. We use
CodeLlama-34b-Instruct-hf (Rozière et al., 2023)
to generate code for the HumanEval dataset, using
100 samples for trajectory generation and the rest
for testing.

• WordCnt is a newly constructed dataset, rep-
resenting conditional text generation tasks in sce-
narios when users interact with LLMs. Specifi-
cally, we create WordCnt by prompting GPT-4 to
generate a set of text generation instructions with
specific length requirements and the corresponding
responses for each instruction. WordCnt consists of
200 samples, with 100 samples used for trajectory
generation and 100 samples for testing.

B Experiment Setup

B.1 Out-of-domain Datasets

We present the details of the out-of-domain datasets
here.

• HalluQA is a Chinese Hallucination Question-
Answering benchmark covering misleading ques-
tions like identity awareness and knowledge-based
questions. Each question includes one correct an-
swer and several answers with hallucinations. We
conduct experiments on 206 knowledge-related
samples from the dataset, randomly selecting one
answer from the correct answer and hallucinated
answers for evaluation.

• HaluEval 2.0 is a hallucination evaluation
benchmark that contains large-scale questions from
five domains: biomedicine, finance, science, educa-
tion, and open domain. We evenly sample 100 of
HaluEval 2.0 for hallucination detection evaluation.

B.2 Baselines

In the experiment section, we compare the halluci-
nation detection performance of GPT-4, Baichuan2-
Chat, and HaluAgent. The detailed baseline set-
tings are explained below.

• GPT-4 prompt involves providing GPT-4 with
a simple description of the hallucination detection
task, enabling the model to determine whether there
are hallucinations in the text. The model’s response
is either “Yes” or “No”, indicating the presence or
absence of hallucinations. The detailed prompt is
shown in Figure 6.

• GPT-4 pipeline guides GPT-4 through the hal-
lucination detection process following the HaluA-
gent framework, which includes steps such as sen-
tence segmentation and tool invocation. In addition
to providing a “Yes” or “No” answer, it identifies
the location of the hallucinations and provides sup-
porting evidence. The instructions are shown in
Figure 4 and Figure 5.

• Baichuan2-Chat (7B and 13B) do not have the
capability to follow the HaluAgent detection frame-
work. Therefore, we evaluate these models using
the same simple hallucination detection prompt as
used for GPT-4.

• HaluAgent (7B and 13B) are models fine-
tuned with trajectory data. We evaluate them using
HaluAgent instructions in a zero-shot setting, simi-
lar to the evaluation of the GPT-4 pipeline.

B.3 Implementation Details of Scalability
Study

B.3.1 Constructed Dataset
We construct a new dataset for translation and data
calculation tasks via ChatGPT by providing exam-
ples. Our goal is to create a dataset specifically
for evaluating these new tools, so the questions in
the dataset are straightforward. We present some
examples below:

• Translate the following Spanish into Chinese:
¡Hola! ¿Cómo estás?

• How many days are there from 2014-02-06 to
2014-05-21?

B.3.2 Instructions of New Tools
To guide HaluAgent in using the new tools, we
include descriptions and usage examples of these
tools in the instructions. The detailed prompt is
shown in Figure 7.

14612

You are an agent tasked with detecting hallucinations in reply texts using a specific framework.

Below is a detailed explanation of the detection framework:

Firstly, you need to determine whether to split the input reply text into a list of sentences using a

sentence segmentation tool. If required, you should check each sentence individually; otherwise,

the entire text should be checked as a whole. You can choose an appropriate fact-checking tool to

obtain relevant information and knowledge for verification, and then use the matching tool to output

the judgment results, or directly output the judgment results. If you do not use the match tool and

directly output the judgment results, you need to output the label in your thought. If there is an error,

output "label = 1"; if there is no error, output "label = 0". After the verification is completed, you

need to reflect on all detection results and output the label in your thought, then call get_answer()

to produce the final detection result.

Sentence Segmentation Tool:
split_text(text: str) -> sentence_list
This function splits the text into a list of sentences.

Fact-Checking Tools:
web_search(sentence: str) -> fact
This function uses a search engine to find information related to the sentence.

calculator(sentence: str, formula: str) -> result, label
This function uses a calculator to obtain the result of a formula and checks if the result matches

the sentence. If they match, the label is 0; otherwise, it is 1. Valid operators include +, -, *, /, and

parentheses. For instance, a valid input could be“(1 + 2) * 3”. If the input is an equation, it needs

to be converted to a formula without unknowns.

word_count(length: int, text: str) -> count, label
This function calculates the word count of a text and outputs the count. If the word count does not

meet the specified length, the label is 1; otherwise, it is 0.

code_interpreter() -> label
This function checks whether the code can execute correctly. If it executes correctly, the output

label is 0; otherwise, it is 1.

Matching Tool:
match(sentence: str, context:str) -> label
This function checks a sentence against its context, which might include content from questions

and replies around the detected sentence. It looks for irrelevant or contradictory answers. If any are

found, the label is 1; otherwise, it is 0. If you think the output of match is wrong, you can correct

the label in thought. For example, if you think the "label = 0" output by match is wrong, you can

correct the answer and output "label = 1" in thought.

Every time it’s your turn to respond, you must strictly follow this format to present your thoughts

and actions: "THOUGHT: Your thought process. ACTION: Tool call, e.g., match(sentence="...",

context="...")". After each tool invocation, I will provide the output as follows: "OBSERVATION:

Tool output".

表 1: Instructions of HaluAgent framework in English.Figure 4: Instructions of HaluAgent framework in English.

14613

!

你是一个通过特定的框架检测回复文本中的幻象的智能体。下面是检测框架的详细说

明。

首先，你需要判断是否要将输入中的回复文本拆分为句子列表。你可以使用拆分句子

的工具。如果需要拆分，需要对每个句子逐一进行核查；否则就对整个回复文本进行核

查。你可以选择适当的事实核查工具来获取用于核查的相关信息和知识然后使用匹配

工具输出判断结果或者直接输出判断结果。如果不使用 match工具而直接输出判断结

果，则需要在思考中输出 label。存在错误输出"label = 1"；不存在错误输出"label = 0"。核

查完毕后，你需要在思考中反思所有检测结果并输出 label，在行为中调用 get_answer()

输出最终的检测结果，如果存在幻象一并输出幻象内容和证据。

分句工具：
split_text(text: str) -> sentence_list
输入是文本，该函数将文本分割成句子列表。

事实核查工具：
web_search(sentence: str) -> fact
输入是一个句子，该函数使用搜索引擎来搜索相关信息。调用 web_search后必须接着

调用 match工具来判断回复与检索到的信息是否匹配。

date(date1, date2) -> days
该函数接收两个日期作为输入，输出两个日期之间的天数差。

calculator(sentence: str, formula: str) -> result, label
输入是需要检查的公式，此函数使用计算器来获取计算结果并判断得到的结果是否与

句子匹配。如果匹配 label为 0，否则为 1。有效的运算符有 +、-、*、/和 (,)。例如，合

法的输入可以是“(1 + 2) * 3”。如果输入为方程，需要将其转换为不含未知数的算式。

word_count(length: int, text: str) -> count, label
输入文本的指定字数和一段文本。该函数计算这段文本的字数并输出为 count。如果字

数不符合要求，输出 label为 1，否则为 0。

code_interpreter() -> label
该函数检查代码是否能够正确执行。如果能正确执行，输出标签为 0，否则为 1。

translate(text, target_language) -> translated_text
该函数输入一段文本和目标语言，输出翻译后的文本。

匹配工具：
match(sentence: str, context:str) -> label
输入是一个句子以及相应的上下文。上下文可以是问题和回复中的检测句子之前的内

容。该函数检查句子中是否存在答非所问或自相矛盾的情况。如果有，则输出标签为

1，否则为 0。如果你认为 match的输出是错误的，可以在思考中修正 label，例如如果

你认为 match输出的"label = 0"是错误的，可以在思考中输出"label = 1"。

每次轮到你回复时，你必须严格遵循以下格式给出你的思考和行为：“思考：你的思考

过程。行为：工具调用。如 match(sentence="...", context="...")”，其中思考部分是你的

规划内容，行为部分必须为一个工具调用指令。每次你调用工具后，我会以这种格式

为你提供结果：“观察：工具的输出结果”。

Figure 5: Instructions of HaluAgent framework in Chinese.
14614

You are a hallucination detection agent. Given a question and its corresponding response,

please determine whether there is any incorrect or unsatisfactory content within the response.

If there is, output "Yes"; if there is not, output "No".

你是一个检测回复文本中的幻象的智能体。给定一个问题和对应的回复，请你判断这

段回复中是否有不正确或不符合要求的内容。如果有，请输出“是”；如果没有，输出

“否”。

表 1: Description of new tools.

!

你是一个通过特定的框架检测回复文本中的幻象的智能体。下面是检测框架的详细说

明。

首先，你需要判断是否要将输入中的回复文本拆分为句子列表。你可以使用拆分句子

的工具。如果需要拆分，需要对每个句子逐一进行核查；否则就对整个回复文本进行核

查。你可以选择适当的事实核查工具来获取用于核查的相关信息和知识然后使用匹配

工具输出判断结果或者直接输出判断结果。如果不使用 match工具而直接输出判断结

果，则需要在思考中输出 label。存在错误输出"label = 1"；不存在错误输出"label = 0"。

核查完毕后，你需要在思考中输出 label并调用 get_answer()输出最终的检测结果，如

果存在幻象一并输出幻象内容和证据。

分句工具：
split_text(text: str) -> sentence_list
输入是文本，该函数将文本分割成句子列表。

事实核查工具：
web_search(sentence: str) -> fact
输入是一个句子，该函数使用搜索引擎来搜索相关信息。调用 web_search后必须接着

调用 match工具来判断回复与检索到的信息是否匹配。

date(date1, date2) -> days
该函数接收两个日期作为输入，输出两个日期之间的天数差。

calculator(sentence: str, formula: str) -> result, label
输入是需要检查的公式，此函数使用计算器来获取计算结果并判断得到的结果是否与

句子匹配。如果匹配 label为 0，否则为 1。有效的运算符有 +、-、*、/和 (,)。例如，合

法的输入可以是“(1 + 2) * 3”。如果输入为方程，需要将其转换为不含未知数的算式。

word_count(length: int, text: str) -> count, label
输入文本的指定字数和一段文本。该函数计算这段文本的字数并输出为 count。如果字

数不符合要求，输出 label为 1，否则为 0。

code_interpreter() -> label
该函数检查代码是否能够正确执行。如果能正确执行，输出标签为 0，否则为 1。

translate(text, target_language) -> translated_text
该函数输入一段文本和目标语言，输出翻译后的文本。

匹配工具：
match(sentence: str, context:str) -> label
输入是一个句子以及相应的上下文。上下文可以是问题和回复中的检测句子之前的内

容。该函数检查句子中是否存在答非所问或自相矛盾的情况。如果有，则输出标签为

1，否则为 0。如果你认为 match的输出是错误的，可以在思考中修正 label，例如如果

你认为 match输出的"label = 0"是错误的，可以在思考中输出"label = 1"。

每次轮到你回复时，你必须严格遵循以下格式给出你的思考和行为：“思考：你的思考

过程。行为：工具调用。如 match(sentence="...", context="...")”，其中思考部分是你的

规划内容，行为部分必须为一个工具调用指令。每次你调用工具后，我会以这种格式

为你提供结果：“观察：工具的输出结果”。

2

Figure 6: Simple description of the hallucination detection task in English and Chinese.

translate(text, target_language) -> translated_text

该函数输入一段文本和目标语言，输出翻译后的文本。

问题：将以下西班牙语翻译成中文: £Dónde está la tienda más cercana? 回复：最近的商

店在哪里？

思考：这个问题涉及将西班牙语翻译成中文，我需要调用 translate工具进行检查。

行为：translate(text="£Dónde está la tienda más cercana?", target_language="zh-cn")

观察：最近的商店在哪里？

思考：回复中的"最近的商店在哪里？"与翻译器得到的"最近的商店在哪里？"含义相

匹配，label = 0。检测结束。调用 get_answer()来输出最终的检测结果。

行为：get_answer()

观察：否。

date(date1, date2) -> days

该函数接收两个日期作为输入，输出两个日期之间的天数差。

问题：2024-01-01到 2024-06-05共有多少天？回复：2024-01-01到 2024-06-05共有 150

天

思考：这个问题涉及计算两个日期之间的天数，我需要调用 date工具进行检查。

行为：date(date1="2024-01-01", date2="2024-06-05")

观察：156天

思考：回复与计算得到的天数不匹配，label = 1。检测结束。调用 get_answer()来输出

最终的检测结果。

行为：get_answer()

观察：是。"sentence": "2024-01-01到 2024-06-05共有 150天", "fact": "156天"

表 1: Description of new tools.

3

Figure 7: Description and usage example of new tools.

14615

