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Abstract
Conventional Knowledge Graph Reasoning
(KGR) models learn the embeddings of KG
components over the structure of KGs, but their
performances are limited when the KGs are
severely incomplete. Recent LLM-enhanced
KGR models input KG structural information
into LLMs. However, they require fine-tuning
on open-source LLMs and are not applicable to
closed-source LLMs. Therefore, in this paper,
to leverage the knowledge in LLMs without
fine-tuning to assist and enhance conventional
KGR models, we propose a new three-stage
pipeline, including knowledge alignment, KG
reasoning and entity reranking. Specifically, in
the alignment stage, we propose three strate-
gies to align the knowledge in LLMs to the
KG schema by explicitly associating uncon-
nected nodes with semantic relations. Based
on the enriched KGs, we train structure-aware
KGR models to integrate aligned knowledge
to original knowledge existing in KGs. In the
reranking stage, after obtaining the results of
KGR models, we rerank the top-scored entities
with LLMs to recall correct answers further.
Experiments show our pipeline can enhance
the KGR performance in both incomplete and
general situations.

1 Introduction

Knowledge Graph (KG) is widely used to store
enormous human knowledge or objective facts in
the real world. Conventional embedding-based
KGR models learn structural embeddings for KG
components. Recently, path-based KGR models
exploit the logical knowledge underlying the paths
connecting the head and tail. All these models treat
entities and relations as symbolized identifications
without actual semantics and thus heavily rely on
reasoning over the KG structures. However, even
full-size KG datasets cannot fully cover the massive
real-world knowledge and suffer from incomplete-
ness, which naturally restricts KGR performances.
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Figure 1: (a) Conventional KGR models reason over
original KGs, suffering from incompleteness. (b) Our
proposed pipeline without fine-tuning includes three
steps: align LLMs to the KG schema (the aligned edges
are in red), reason over the enriched KGs and rerank the
results with LLMs. Our pipeline achieves better results.

Although LLMs show exciting abilities, it is a
challenge for them to singly act as entity reason-
ers for KGR task due to the huge KG entity space.
Tan et al. (2023) further proves that matching the
prediction of LLMs with entity names by postpro-
cessing could easily fail. Recently, KGT5 (Sax-
ena et al., 2022) and CSProm-KG (Chen et al.,
2023a) have explored to learn KG structure by
fine-tuning LLMs. However, on the one hand, for
closed-source LLMs like ChatGPT, we can not
access the parameters and thus can not combine
its knowledge with KGs by fine-tuning; on the
other hand, fine-tuning open-source LLMs, such
as LLAMA3-70B 1, for a single task is relatively
expensive. Therefore, how to assist KGR by in-
corporating the rich knowledge in LLMs and the
structured information in KGs without fine-tuning

1https://github.com/meta-llama/llama3
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becomes a remaining problem.

Relying on the instruction-following capability
of LLMs, we propose to use LLMs from two views
to enhance KGR performance without fine-tuning.
First, many entity pairs in KGs lack necessary se-
mantic relations because of the incompleteness of
KGs. From the view of knowledge alignment, we
align the knowledge in LLMs to the KG schema to
mitigate the incompleteness of KGs before reason-
ing and then add the aligned knowledge into KGs in
the form of edges, which preserves KG structures
and enriches KG connections. Formally, we input a
pair of entities into LLM and have it predict their re-
lation. Based on the enriched KGs, we can adopt ar-
bitrary structure-aware KGR models to conduct the
entity prediction task. Second, after obtaining KG
reasoning results, from the view of entity reranking,
we leverage LLMs to rerank the top-scored entities
of KGR models for further recalling the correct
answers. Finally, these two views of using LLMs
to enhance KGR performance are not exclusive and
together form our proposed three-stage pipeline for
KGR: alignment, reasoning and reranking.

Moreover, in the alignment stage, we present
three knowledge alignment strategies, including
the closed domain strategy, the open domain strat-
egy and the semi-closed domain strategy. They
represent three kinds of approaches for inducing
knowledge in LLMs to be outputted according to
the KG schema. Specifically, to directly align the
knowledge to the manually predefined relations
while constructing KGs, the closed domain strat-
egy constrains LLMs to select one of the prede-
fined relations in the form of multiple-choice ques-
tions. Since the relations between entities in the
real world go beyond the predefined ones, the open
domain strategy does not restrict the output con-
tent, making less loss of information from LLMs.
To provide explainable knowledge alignment for
humans, in the semi-closed domain strategy, we
map the output of LLMs in the open domain back
to the predefined relations by semantic matching.

To verify the effectiveness of our pipeline in in-
complete and general situations, we conduct exper-
iments on WN18RR and FB15K-237 with different
sparse-level and full-size versions. Additionally,
we compare the accuracy and stability of the three
alignment strategies to illustrate the quality of the
generated relations. We further demonstrate the
diverse influences of aligned edges on the origi-
nal knowledge by analysing the LLMs output in

the case study, which reveals that, when applying
the open domain knowledge alignment, LLMs gen-
erate correct and fine-grained semantics beyond
the predefined KG relations. This may explain the
mechanism of performance enhancement.

In summary, our contributions are tri-fold:
• To solve the remaining challenges of LLMs in

KGR, we propose a three-stage pipeline to assist
and enhance conventional KGR models without
fine-tuning: alignment, reasoning and reranking.

• In the knowledge alignment stage, we present
three alignment strategies in the closed, open
and semi-closed domains and we further analyse
the accuracy and stability of the three strategies.

• Extensive experiments show the effectiveness of
our pipeline and the case study reveals the mech-
anism of how the knowledge alignment works.

2 Related Work

2.1 Conventional KG Reasoning
Traditional KGR models can be categorized into
embedding-based and path-based models (Liang
et al., 2022). The embedding-based models encode
the KG entities and relations into low-dimension
representations. RotatE (Sun et al., 2019) uses a
rotation-based method with complex-valued em-
beddings. Tucker Decomposition is first introduced
in KGR by TuckER (Balazevic et al., 2019). Then,
HAKE (Zhang et al., 2020) models the semantic
hierarchy based on the polar coordinate space and
HousE (Li et al., 2022) involves a novel parameter-
ization based on Householder transformations. The
backbone of path-based models is reinforcement
learning (Das et al., 2018). MultiHopKG (Lin
et al., 2018) does multihop reasoning and provides
KG paths to support predictions. CURL (Zhang
et al., 2022) separates the KGs into different
clusters according to the entity semantics and then
fine-grains the path-finding procedure into two-
level. JOIE (Hao et al., 2019) models all triples in
the same zero-curvature Euclidean space, omitting
the hierarchical and cyclical structures of KGs.
CAKE (Niu et al., 2022) further extracts common-
sense entity concepts from factual triples and can
augment negative sampling by jointing common-
sense and conducting fact-view link prediction.

2.2 Fine-tuning LLMs for KG Reasoning
By modelling KGR task as a sequence-to-sequence
problem, GenKGC (Xie et al., 2022) and KG-
S2S (Chen et al., 2022) utilize encoder-decoder
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pre-trained language models to generate target
entity names. Lee et al. (2023) unifies KG facts
into linearized sentences and guides LLMs to
output the answers in texts directly. Following
them, fine-tuning open-source LLMs by fusing
the accessible KG structures for the KGR task
has enjoyed lots of interest. KG-LLaMA (Yao
et al., 2023) makes the first step to applying
LLaMA (Touvron et al., 2023) in KG link
prediction by instruction tuning. KoPA (Zhang
et al., 2023c) further leverages prefix tuning and
projects KG embeddings into textual token space.

2.3 Exploration of LLMs without Fine-tuning

By prompting LLMs, MPIKGC (Xu et al., 2024)
generates descriptions of components in the KGs
and sends the enriched information into description-
based KGR models. However, MPIKGC is based
on description-based KGR models and can not deal
with unconnected entities, which we can handle.
KICGPT (Wei et al., 2023) reranks the top retrieved
entities, but it is centred on prompt engineering and
focuses on analysing the effect of several designed
knowledge prompts on the ranking quality. Besides,
the KGR models KICGPT used are unoptimized.
Our proposed pipeline is centred on optimizing
KGR models and focuses on assisting reasoning
from two perspectives: alignment and reranking.

3 Methodology

In this section, we describe the concrete implemen-
tation methodology of the new pipeline without
fine-tuning. First, we propose three knowledge
alignment strategies and the corresponding ways
to convert the textual output of LLMs into KG
schema. Second, we train conventional structure-
aware KGR models over the enriched KGs. Finally,
we further leverage LLMs to rerank the top-scored
entities of KGR models, recalling correct answers.

3.1 Knowledge Alignment

To obtain the knowledge related to the queried two
entities in LLMs, we induce the output of LLMs via
different prompts. Considering the trade-off of the
KG schema and the flexible but controllable output
of LLMs, we propose the following three align-
ment strategies, which explicitly enrich KGs with
the knowledge in LLMs in three different manners.
The prompts are shown in Appendix B. We find
whether neighbour edges of entities are included
in prompts has little effect on the output of LLMs.

3.1.1 Closed Domain Strategy
The test-like format of multiple-choice questions
is generally used in the evaluation of the ability of
LLMs in the fields of law (Cui et al., 2023), health-
care (Wang et al., 2023a) and finance (Zhang
et al., 2023a). In this alignment strategy, we utilize
LLMs to select the most likely relation for the
head and tail entities. Specifically, we add the
names of predefined KG relations to the prompts
as candidates and explicitly instruct LLMs to
generate the capital letter before the correct option.
LLMs are induced to fully conform to the original
KG schema; thus, their knowledge is aligned with
KGs at both the semantic and structural levels.

3.1.2 Open Domain Strategy
Actually, the relations between different entities
are diverse and fine-grained. However, researchers
abstract the KG relations into several representative
ones for unification and convenience during the KG
construction. We aim to leverage the knowledge
in LLMs relevant to the KG domains between two
entities to augment the omitted information.

Specifically, in the open domain strategy, we
adopt prompts in the form of short answer ques-
tions to induce knowledge in LLMs. We do not
restrict their output to necessarily follow the prede-
fined KG relations and only imply what aspects of
knowledge LLMs should focus on. The description
of KG domains in prompts ensures that LLMs do
not generate aimlessly. All the outputs are added
into KGs as enriched relations on edges, without
discarding any semantic information in LLMs.

3.1.3 Semi-Closed Domain Strategy
In the closed domain strategy, LLMs directly
generate the option, so we have no insight into how
LLMs understand the KG relations and why LLMs
make the final decision. As for the open domain
strategy, the output of LLMs exactly reflects the
knowledge about the two entities. However, LLMs
are unable to voluntarily abstract these concrete
relations into the structural format as humans do.

Therefore, the semi-closed domain knowledge
alignment strategy arises, where we map the output
of LLMs in the open domain strategy back to the
KG schema. Specifically, we leverage Sentence-
BERT (Reimers and Gurevych, 2019) to calculate
the semantic similarity between the output and all
the predefined relations. The output is eventually
converted to the relation with the highest similarity
score. This alignment strategy provides an inter-
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pretable knowledge alignment for humans between
the two forms of knowledge in LLMs and KGs.
Through the similarity scores, we can intuitively
understand the reasons for the aligned results.

3.2 KG Reasoning

In the closed domain strategy and semi-closed do-
main strategy, since we align the knowledge in
LLMs to the predefined KG relations, we do not
need to modify the modelling way of conventional
structure-aware KGR models. In the open domain
strategy, since the aligned knowledge is added to
KGs as sentences, we use word2vec (Mikolov et al.,
2013) to initialize the embeddings for words in all
the output of LLMs and update them while training.
Specifically, we take the mean of all embeddings
of words in the corresponding sentence as the em-
bedding of an enriched KG edge. In this way, the
downstream KGR models can be trained over the
enriched KGs and take advantage of two forms of
knowledge in LLMs and KGs at the same time.
Based on the predicted entities of KGR models
over the enriched KGs, we further improve the per-
formance in the next entity reranking stage.

3.3 Entity Reranking

After the reasoning of the KGR models, we will
get a list of entities sorted by the scores calculated
by scoring functions. Traditional structure-aware
KGR models mainly reason over the KG connec-
tions. In this stage, we recall the correct answers
using the reranking ability of LLMs based on the
predicted entities of KGR models. Specifically, we
input the names of top-k candidate entities with
the highest scores into prompts (see Appendix C)
and utilize the knowledge in LLMs to rerank them
based on the probability of semantically holding.
Therefore, the entity reranking stage further im-
proves KGR performance by leveraging semantic
knowledge along with structural prediction results.

4 Experiments

4.1 Experimental Setup

We adopt the gpt-3.5-turbo version of ChatGPT
because of its flexibility and shorter API call time.
We also deploy LLAMA3-70B in one 24G Tesla
V100 as the representative of open-source LLMs.

For each dataset, the ratio of new facts enriched
by LLMs and existing facts in the original dataset
is 1:10, i.e., 8684 new facts for the four versions of
WN18RR and 27212 new facts for the four versions

Dataset Entity Relation Fact
Degree

Mean Median

WN18RR-10% 12,388 11 8,684 1.4 1
WN18RR-40% 20,345 11 34,734 1.7 1
WN18RR-70% 25,831 11 60,785 1.9 1

WN18RR-100% 40,945 11 86,835 2.2 2

FB15K-237-10% 11,512 237 27,212 4.7 3
FB15K-237-40% 13,590 237 108,846 11.2 7
FB15K-237-70% 13,925 237 190,481 14.5 9
FB15K-237-100% 14,505 237 272,115 19.7 14

Table 1: Statistics of our datasets with full-size and
different sparse-level versions by randomly retaining.

of FB15K-237. Specifically, for each fact to be
added, we make a single LLM call and process the
LLM response to the corresponding form in each
knowledge alignment strategy.

In the sparse datasets, we randomly select entity
pairs which are not connected. Note that, to avoid
the information leakage of the KG connections,
there is no requirement for these entity pairs to
be connected or not in the corresponding full-size
KGs. In addition, besides predefined relations, we
also allow LLMs to generate or select “no relation”
in the corresponding alignment strategy.

For enriched edges, we include all the generated
answers into KGs without filtering, even though
some of them may conflict with the KG ground
truth. The reason is that what we are interested
in is the full picture and unprejudiced knowledge
of LLMs, so any sort of LLM output evaluation
can not be introduced. In other words, regardless
of the answers of LLMs being right or wrong, it
is a manifestation of its knowledge and should be
considered in the downstream KG reasoning.

The maximum token length of input texts is less
than 4096. The generated maximum token length
is set to 128. For ChatGPT, the temperature param-
eter is set to 0.3 in the knowledge alignment stage
which can increase diversity and set to 0 in the en-
tity reranking stage which can guarantee reliability.
In the entity reranking stage, we rerank top-k en-
tities with k ∈ {10, 20}. The optimal k is 20 in
all datasets. For WN18RR, the optimal alignment
strategy is in the open domain. For FB15K-237, the
optimal alignment strategy is in the closed domain.

4.2 Datasets
We use WN18RR (Dettmers et al., 2017) and
FB15K-237 (Toutanova and Chen, 2015) for our
experiments. Datasets with varying degrees of spar-
sity can simulate several incomplete situations and
full-size datasets can simulate the general situation.
In experiments, to study the consistency and uni-
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WN18RR-10% WN18RR-40% WN18RR-70% WN18RR-100%

MRR Hits@3 MRR Hits@3 MRR Hits@3 MRR Hits@3

RotatE 0.176 19.3 0.205 23.5 0.220 25.5 0.431 44.2
MultiHopKG 0.164 17.7 0.191 21.4 0.178 20.0 0.433 44.8

ChatGPTzero−shot - 19.8 - 20.6 - 20.2 - 21.1
LLAMA3-70Bzero−shot - 22.3 - 20.5 - 21.0 - 20.3

Our Pipeline

ChatGPT+
RotatE

Alignment, Reasoning 0.241 27.3 0.252 28.7 0.266 30.6 0.476 49.5
Reasoning, Reranking 0.235 26.7 0.253 31.3 0.258 30.2 0.495 51.6

Alignment, Reasoning, Reranking 0.283 35.5 0.299 37.1 0.321 37.6 0.514 59.2

LLAMA3-70B+
RotatE

Alignment, Reasoning 0.235 27.2 0.249 29.4 0.271 31.6 0.507 52.2
Reasoning, Reranking 0.232 26.2 0.255 31.9 0.266 31.5 0.498 51.6

Alignment, Reasoning, Reranking 0.292 37.0 0.297 36.7 0.337 38.9 0.521 60.7

ChatGPT+
MultiHopKG

Alignment, Reasoning 0.218 25.2 0.222 26.1 0.213 24.7 0.465 49.1
Reasoning, Reranking 0.201 23.1 0.217 24.8 0.231 26.7 0.481 52.5

Alignment, Reasoning, Reranking 0.257 28.0 0.265 31.0 0.286 32.7 0.508 56.7

LLAMA3-70B+
MultiHopKG

Alignment, Reasoning 0.207 24.5 0.228 26.3 0.259 28.8 0.481 52.7
Reasoning, Reranking 0.210 23.9 0.214 23.3 0.219 24.3 0.475 49.3

Alignment, Reasoning, Reranking 0.248 27.7 0.256 29.7 0.291 33.1 0.483 55.6

Table 2: Overall results of our pipeline under the optimal settings in WN18RR. The best results are in bold.

FB15K-237-10% FB15K-237-40% FB15K-237-70% FB15K-237-100%

MRR Hits@3 MRR Hits@3 MRR Hits@3 MRR Hits@3

RotatE 0.118 12.4 0.179 18.5 0.189 20.1 0.276 30.6
MultiHopKG 0.110 11.3 0.223 23.9 0.245 26.3 0.294 32.3

ChatGPTzero−shot - 24.3 - 26.5 - 26.0 - 27.3
LLAMA3-70Bzero−shot - 26.9 - 23.3 - 27.5 - 29.1

Our Pipeline

ChatGPT+
RotatE

Alignment, Reasoning 0.157 16.9 0.206 22.2 0.207 22.3 0.294 32.5
Reasoning, Reranking 0.163 17.1 0.199 21.7 0.204 23.1 0.347 38.0

Alignment, Reasoning, Reranking 0.247 26.3 0.276 29.6 0.290 31.1 0.403 43.4

LLAMA3-70B+
RotatE

Alignment, Reasoning 0.169 18.8 0.207 22.0 0.226 23.9 0.361 37.8
Reasoning, Reranking 0.158 17.6 0.194 22.4 0.216 24.1 0.327 37.9

Alignment, Reasoning, Reranking 0.248 26.7 0.265 28.4 0.295 30.1 0.398 43.6

ChatGPT+
MultiHopKG

Alignment, Reasoning 0.184 19.5 0.255 27.4 0.258 28.0 0.343 38.0
Reasoning, Reranking 0.133 14.3 0.221 25.4 0.233 27.6 0.350 39.8

Alignment, Reasoning, Reranking 0.205 21.4 0.259 28.7 0.268 30.1 0.397 41.4

LLAMA3-70B+
MultiHopKG

Alignment, Reasoning 0.173 18.7 0.240 26.5 0.275 29.1 0.355 39.2
Reasoning, Reranking 0.144 16.9 0.213 25.0 0.226 25.5 0.349 39.1

Alignment, Reasoning, Reranking 0.194 21.7 0.254 29.3 0.279 29.7 0.381 40.5

Table 3: Overall results of our pipeline under the optimal settings in FB15K-237. The best results are in bold.

versality of the knowledge stored in LLMs for KGs
in a variety of incomplete situations, besides full-
size dataset WN18RR (WN18RR-100%), we con-
struct three sparse versions, i.e., WN18RR-10%,
WN18RR-40% and WN18RR-70%, by randomly
retaining 10%, 40% and 70% triples of WN18RR.
The same goes for the dataset FB15K-237. The
statistics of all the datasets are listed in Table 1.

4.3 Baselines

For LLMs as reasoners, ChatGPTzero−shot and
LLAMA3-70Bzero−shot mean that, given the
queries, we let them directly predict several pos-

sible answers according to the possibility. They
can not calculate MRR due to the limited text
generation space. We leverage two representative
SOTA models as conventional KGR models in our
pipeline: embedding-based model RotatE and path-
based model MultiHopKG. The results based on
more KGR models are shown in Appendix A.

4.4 Overall Results

From Table 2 and 3, all the baselines underperform
our pipeline. It is difficult for ChatGPTzero−shot

and LLAMA3-70Bzero−shot to directly generate
the correct entity names.

In our experiments, knowledge alignment be-
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WN18RR-10% WN18RR-40% WN18RR-70% WN18RR-100%

MRR Hits@3 MRR Hits@3 MRR Hits@3 MRR Hits@3

Upper Performance Bounds 0.283 33.2 0.303 33.8 0.317 35.3 - -
Lower Performance Bounds 0.176 19.3 0.205 23.5 0.220 25.5 0.431 44.2

RotatE Closed Domain 0.177 19.1 0.207 24.0 0.221 25.6 0.465 49.2
Semi-Closed Domain 0.203 22.6 0.215 24.7 0.231 26.6 0.476 49.4

Open Domain 0.241 27.3 0.252 28.7 0.266 30.6 0.476 49.5

Upper Performance Bounds 0.242 27.8 0.258 29.7 0.265 29.8 - -
Lower Performance Bounds 0.164 17.7 0.191 21.4 0.178 20.0 0.433 44.8

MultiHopKG Closed Domain 0.176 19.4 0.193 21.9 0.191 22.1 0.443 46.4
Semi-Closed Domain 0.205 23.4 0.210 24.1 0.206 24.1 0.451 46.7

Open Domain 0.218 25.2 0.222 26.1 0.213 24.7 0.465 49.1

Table 4: KGR performance and our proposed three knowledge alignment strategies under ChatGPT in four versions
of WN18RR. Numbers in bold are the best results of the three alignment strategies.

FB15K-237-10% FB15K-237-40% FB15K-237-70% FB15K-237-100%

MRR Hits@3 MRR Hits@3 MRR Hits@3 MRR Hits@3

Upper Performance Bounds 0.190 20.2 0.219 23.4 0.226 24.3 - -
Lower Performance Bounds 0.118 12.4 0.179 18.5 0.189 20.1 0.276 30.6

RotatE Closed Domain 0.157 16.9 0.206 22.2 0.207 22.3 0.294 32.5
Semi-Closed Domain 0.152 16.1 0.203 21.8 0.204 22.0 0.293 32.3

Open Domain 0.126 13.5 0.194 20.8 0.197 21.1 0.289 31.7

Upper Performance Bounds 0.204 21.7 0.272 29.5 0.272 29.4 - -
Lower Performance Bounds 0.110 11.3 0.223 23.9 0.245 26.3 0.294 32.3

MultiHopKG Closed Domain 0.184 19.5 0.255 27.4 0.258 28.0 0.343 38.0
Semi-Closed Domain 0.177 18.4 0.251 27.2 0.248 26.6 0.323 35.6

Open Domain 0.142 14.8 0.244 26.1 0.246 26.5 0.315 34.0

Table 5: KGR performance and our proposed three knowledge alignment strategies under ChatGPT in four versions
of FB15K-237. Numbers in bold are the best results of the three alignment strategies.

fore reasoning (Alignmnet, Reasoning) and entity
reranking after reasoning (Reasoning, Reranking)
can individually improve reasoning performance.
Concatenating these two views, our pipeline (Align-
mnet, Reasoning, Reranking) obtains the best per-
formance enhancement. The improvements in full-
size datasets indicate that LLMs provide additional
information beyond the well-constructed structural
knowledge in KGs. In sparse datasets, KGR mod-
els suffer from limited training data, whereas our
pipeline achieves considerable and consistent en-
hancement. The gaps in sparse datasets are greater
than those in full-size datasets, illustrating our ef-
fectiveness under incomplete situations. Further-
more, ChatGPT and LLAMA3-70B show com-
parable results, confirming the amazing abilities
of our pipeline together with recent open-source
LLAMA3-70B and closed-source ChatGPT.

4.5 Comparative Study on Knowledge
Alignment

In this section, we compare the different impacts of
the three knowledge alignment strategies in detail.

In Table 4 and 5, the lower bounds are the KGR
results without alignment. The upper bounds are
the highest results obtained by randomly adding
edges with ground truth to KGs and running KGR
models multiple times. In full-size datasets, the
selected entity pairs do not have golden labels, so
we can not acquire the upper performance bounds.

Combining all the results in Table 4 and 5, com-
pared to the lower bounds, there is performance en-
hancement in all three knowledge alignment strate-
gies for both RotatE and MultiHopKG. This result
suggests that explicitly enriching KGs by aligning
knowledge in LLMs to KG schema does translate
the knowledge into performance enhancement.
All the results can not exceed the upper bounds
because there is still some deviation between the
two forms of knowledge in LLMs and KGs.

For the two kinds of KG datasets, the results
of three knowledge alignment strategies show dif-
ferent trends. In Table 4, the improvement in the
open domain strategy is the most prominent, fol-
lowed by the improvement in the semi-closed do-
main strategy, and the performance improvement
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in the closed domain strategy is relatively unap-
parent. By analysing the output content of LLMs
and KG schema, we find that there are only eleven
high-level relations in WN18RR, and LLMs can
generate more detailed descriptions of semantics
between words in the open domain. In Table 5, the
trend of the three alignment strategies for FB15K-
237 is the opposite of the trend for WN18RR. The
best performance is achieved with the closed do-
main. The reason may be that the LLM output
contents in the open domain strategy for FB15K-
237 have much redundant knowledge about the
two entities themselves rather than the expected
relations between them. Therefore this informa-
tion becomes noise that needs to be handled. In
contrast, having the LLM output aligned with the
KG schema in the closed and semi-closed domain
avoids this situation.

4.6 Accuracy of Knowledge Alignment

To intuitively illustrate the effectiveness of the
knowledge in LLMs, we calculate the accuracy
of the three knowledge alignment strategies from
the perspective of relation prediction. Specifically,
when there is a golden label of the relation in KGs,
we check if LLMs pick up the correct option (au-
tomatic evaluation in the closed and semi-closed
domain strategies) or if the output and the golden la-
bel semantically overlap (manual evaluation in the
open domain strategy). When there are no golden
labels, we make judgments based on the real world.

From Figure 2, we find all the accuracy rates
of ChatGPT directly answering relations between
entities are relatively high, which is the source of
effectiveness of our proposed knowledge alignment.
The accuracy is also stable in the same alignment
strategy at different sparsity levels. This indicates
knowledge in LLMs is well induced according to
the KG schema in our experiments. Moreover,
for relatively abstract relations in WN18RR, the
highest accuracy is achieved in the open domain
strategy, while for relatively concrete relations in
FB15K-237, the highest accuracy is achieved in the
closed domain strategy. These two phenomena are
consistent with the performance enhancement in
Section 4.5. The semi-closed domain strategy loses
some information in the process of transforming
linguistic forms for the sake of interpretability, and
thus achieves the median accuracy in all datasets.
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Figure 2: The accuracy that ChatGPT correctly outputs
the relations between entities in three alignment strate-
gies for two datasets at different sparsity levels.

Figure 3: Impacts of the number of aligned edges on the
stability of the three knowledge alignment strategies.

4.7 Stability of Knowledge Alignment
The stability of knowledge alignment seeks to eval-
uate whether enriching KGs by aligning LLMs with
KG schema in the three strategies will impact the
original knowledge stored in KGs. We introduce
the Knowledge Stability (KS@k) metric, indicat-
ing the ratio of entities that are correctly predicted
by KGR models both before alignment and after
alignment. We calculate KS@k as follows:

KS@k =

∑
rank (Alignment,Reasoning)≤ k∑

rank (Reasoning)≤ k
,

where
∑

rank (Reasoning)≤ k signifies the
count of rank value under k predicted by KGR mod-
els before alignment, i.e., original KGR results;∑

rank (Alignment,Reasoning)≤ k denotes
the count of rank value under k predicted by KGR
models after alignment, i.e., enhanced KGR results.

The insight is that if the score rankings of cor-
rect answers in this dataset maintain less than k
after alignment, the aligned knowledge in the three
alignment strategies is stable. However, for some
specific queries, the prediction may be worse due to
the introduced wrong facts, resulting in our pipeline
changing its prediction from a correct answer to a
wrong one and then KS@k declines.

In Figure 3, we employ the number of aligned
edges ranging from 2% to 10%, with an interval of
1%, and measure stability by KS@3 for RotatE. We
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observe that the closed and semi-closed domains,
which add predefined relations into KGs, have sta-
ble performance for both datasets. However, the
open domain strategy sees varying degrees of de-
cline. We attribute this to KGR models paying
more focus on the diverse output and then resulting
in the dilution of original KG knowledge.

4.8 Case Study of the Aligned Knowledge

To further explore the positive and negative influ-
ence of LLM output in the open domain strategy
on different datasets, we list some typical output
of ChatGPT and LLAMA3-70B in Appendix D
and carry out error analysis in Appendix E. We
find the LLM output usually goes beyond the pre-
defined KG relations and provides fine-grained
information. However, LLMs may also provide
"redundant correct information" as shown below.

Positive Influence. LLMs in the open domain
usually generate the relationship in plain and accu-
rate language, without using professional linguistic
vocabulary. For instance, LLMs output “Tubercu-
losis is a type of infectious disease”, which is in
line with the definition of “hypernym”. We visual-
ize the embeddings of predefined KG relations and
keywords generated in the open domain strategy
learned by RotatE. Figure 4 shows two cases which
explicitly illustrate their positions in the embed-
ding space. Close points in the space indicate that
RotatE successfully captures their similar seman-
tics and then these newly generated words are well
integrated into the KG schema. The eleven prede-
fined relations can be seen as abstractions of the
concrete output of LLMs. Therefore, KGR models
indeed understand and benefit from our proposed
open-domain knowledge alignment strategy.

Negative Influence. In contrast, although the
LLM output is consistent with the objective world,
it may contain “redundant correct information”. In
FB15K-237, when asked about the relation be-
tween “Robert Ridgely” and “USA”, besides cor-
rectly answering “Robert Ridgely was an Amer-
ican”, ChatGPT and LLAMA3-70B also output
his occupation, which is a redundant entity prop-
erty. This “redundant correct information” would
somewhat interfere with the downstream training.
Compared with the open domain strategy, align-
ing knowledge in LLMs with the KG schema of
FB15K-237 in the other two strategies introduces
less noise. Therefore, in summary, LLMs con-
sistently improve the KGR performance under all

Figure 4: The positions of the predefined relations in
WN18RR and keywords generated by ChatGPT in the
open domain alignment strategy in the embedding space.
We can see the predefined relations have overlapping
and more delicate semantics, which LLMs realize.

ChatGPT LLAMA3-70B
Top-10 Top-20 Top-10 Top-20

Hits@3 Imp. Hits@3 Imp. Hits@3 Imp. Hits@3 Imp.

W
N

18
R

R 10% 33.2 +5.8 35.5 +8.2 33.0 +7.8 37.0 +9.7
40% 35.2 +5.5 37.1 +8.4 36.6 +9.3 36.7 +7.3
70% 35.4 +4.7 37.6 +7.0 34.5 +5.9 38.9 +7.3

100% 56.6 +3.9 59.2 +9.7 55.4 +4.2 60.7 +8.5

FB
15

K
-2

37 10% 23.3 +4.5 26.3 +9.4 24.2 +5.4 26.7 +7.9
40% 27.0 +4.3 29.6 +7.4 28.0 +5.9 28.4 +6.4
70% 28.0 +4.0 31.1 +8.8 29.9 +6.0 30.1 +6.2

100% 42.5 +3.4 43.4 +10.9 43.1 +4.3 43.6 +5.8

Table 6: The results of LLMs as reranker for top-10 and
top-20 entities. Imp. is the improvement of the entity
reranking stage after alignment and reasoning.

three proposed strategies, while showing different
characteristics and influence in various scenarios.

4.9 Effects of Reranking Entity Numbers

Table 6 shows conspicuous performance enhance-
ment of LLMs as rerankers, which suggests the
effectiveness of our proposed pipeline. The sparser
the datasets, the more significant the enhancement
of the entity reranking stage and the top-20 sce-
nario gives better results than the top-10 scenario
because LLMs have more chances to recall correct
answers from candidates. These results prove
that after the knowledge alignment stage, LLMs
can further enhance the KGR performance based
on the semantic differences between candidate
entities. Moreover, LLAMA3-70B and ChatGPT
have competitive overall results (Hits@3) and per-
formance improvement (Imp.) in all the datasets,
showing the generalizability of our pipeline.

5 Conclusion

This paper introduces a new pipeline for LLMs
to assist and enhance KGR models without fine-
tuning. We propose three knowledge alignment
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strategies to enrich KGs before reasoning and
leverage LLMs as rerankers to recall correct an-
swers. Experiments illustrate the effectiveness of
our pipeline, both in incomplete and general situa-
tions, and the accuracy and stability of the proposed
knowledge alignment. The case study reveals the
various outputs of LLAMA3-70B and ChatGPT.

Limitations and Future Work

During the use of LLMs, we cannot anticipate
whether the output is valuable before the call of
LLMs, resulting in the quality of each answer of
LLMs can not be controlled. Moreover, the error
analysis in Table 9 also shows that there are some
imperfections in the output of LLMs. Therefore,
in the future, we can add a module to make further
corrections using the ability of KGR models while
KG reasoning.

Additionally, our proposed pipeline is scalable.
The rapidly evolving RAG technology (Gao
et al., 2024) may further improve the quality of
knowledge alignment and reranking. We also
hope the pipeline can inspire more thinking about
how to utilize closed-source LLMs to enhance the
performance of other KG-related tasks from the per-
spectives of knowledge alignment and reranking.

Ethics Statement

In this paper, we use datasets WN18RR and
FB15K-237, including eight versions of them. The
data is all publicly available. Our task is knowledge
graph reasoning, which is performed by finding
missing entities given existing knowledge. This
work is only relevant to NLP research and will not
be put to improper use by ordinary people. We
acknowledge the importance of the ACM Code of
Ethics and totally agree with it. We ensure that
this work is compatible with the provided code, in
terms of publicly accessed datasets and models.

Risks and harms of LLMs include the genera-
tion of harmful, offensive, or biased content. These
models are often prone to generating incorrect in-
formation, sometimes referred to as hallucinations.
The ChatGPT used in this paper was licensed under
the terms of OpenAI. We are not recommending
the use of our proposed pipeline for alignment or
ranking tasks with social implications, such as job
candidates or products, because LLMs may exhibit
racial bias, geographical bias, gender bias, etc., in
the reasoning results. In addition, the use of LLMs

in critical decision-making sessions may pose un-
specified risks.
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Appendix

A Results based on more KGR models

In this section, in order to demonstrate the general-
izability of the proposed pipeline, we list the results
of our pipeline using RPJE (Niu et al., 2019) in Ta-
ble 7. From Table 7, we find RPJE is a powerful
baseline. The combination of RPJE and our pro-
posed pipeline further confirms our contributions.

FB15K-237-100%
MRR

RPJE 0.470
RPJE+our pipeline (ChatGPT) 0.519

RPJE+our pipeline (LLAMA3-70B) 0.526

Table 7: Results of our pipeline with RPJE.

B Prompts for knowledge alignment

Currently, many works are trying to explore how
to incorporate structural information stored in KGs
into the knowledge in LLMs (Chepurova et al.,
2023). They either explicitly linearize the neigh-
bourhood edges and use LLMs as answer genera-
tors, or fine-tune LLMs by incorporating the struc-
tured KG embedding into the input of LLMs. As
mentioned in the introduction, our motivation is
the opposite of the recent papers. We want to fig-
ure out whether the knowledge stored in the LLMs
itself can be aligned with the predefined schema of
KGs. Therefore, for our designed prompts input
into LLMs, we should not introduce any structural
information, such as neighbourhoods, paths or sub-
graphs. Following the conclusions of (Min et al.,
2022), we design several prompts and select the
best in our experiments.

To make LLMs better understand the semantics
of relations, we randomly choose some triple exam-
ples of relations and expect LLMs to capture their
meanings. We also include a description of KG
domains, since the relations are highly correlated
with it.

Figure 5, Figure 6, Figure 7 and Figure 8 rep-
resent four prompts in our proposed knowledge
alignment settings for two datasets.

C Prompts for LLMs as reranker

Inspired by LLMs as rerankers in Information
Retrieval (IR) (Zhu et al., 2024), we design two
prompts for LLMs as rerankers in Figure 9 and
Figure 10.

Figure 5: Prompt in the closed-domain knowledge align-
ment setting for WN18RR.

Figure 6: Prompt in the open-domain knowledge align-
ment setting for WN18RR.

Figure 7: Prompt in the closed-domain knowledge align-
ment setting for FB15K-237.

1377



Figure 8: Prompt in the open-domain knowledge align-
ment setting for FB15K-237.

Figure 9: Prompt of LLMs as Reranker for WN18RR.

Figure 10: Prompt of LLMs as Reranker for FB15K-
237.

D Some case studies of the aligned
knowledge

Table 8 shows some cases of the output of ChatGPT
and LLAMA3-70B.

E Error analysis

We analyse the incorrect output of LLMs in the
open domain. Errors fall into the following three
categories: error type 1) generating fabricated or
misplaced facts (hallucination of LLMs); error type
2) outputting “not related” for those entity pairs
that should have relations; and error type 3) out-
putting incorrectly formatted or meaningless sen-
tences. We show some cases in the Table 9. These
inconsistencies can be solved through further in-
consistency detection and knowledge consistent
alignment (Wan et al., 2024; Guan et al., 2023;
Zhang et al., 2023b).

F Experimental detail

Our experiments use one 24G Tesla V100 GPU
with Pytorch 1.8. The KG reasoning process needs
3h to 12h, depending on the sparsity level of the
datasets. The implementation code of KGR models
is obtained from their original papers. We use the
optimal parameter reported in the original papers
and code. All the results were mean values from
multiple runs.

The keys of ChatGPT API were bought from
the official channel. Each call time was about 0.5s
to 2s. All the input and output of ChatGPT is in
English. The collection of the output of ChatGPT
was done by the authors. Since the used datasets
are well constructed, there are no offensive content
and identifiers. While collecting the output of Chat-
GPT, we still manually checked to anonymise the
offensive content and identifiers in the output by
removing them.

G Differences between our work with
works of KG construction and works
introducing the external knowledge

Currently, KG construction is mainly based on the
ability of LLMs to extract the given text. For in-
stance, Univeral IE (Lu et al., 2022) was fine-tuned
for different information extraction domains re-
spectively; InstructionUIE (Wang et al., 2023b)
further utilized instruction fine-tuning to unify mul-
tiple information extraction tasks at the output side
and achieved better performance. On the other
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hand, in order to understand if LLMs contain real-
world knowledge, given head entities and relations,
LAMA (Petroni et al., 2019) answered queries
structured as "fill-in-the-blank" cloze statements
to answer tail entities and found that LLMs can
recover missing entities to some extent. In contrast,
our proposed pipeline leveraged LLMs to answer
missing relations and enriched KGs with predicted
relations by LLMs, leading to the improvement
of KGR models. However, constructing KG with
LLMs is not our ultimate goal, our goal is to make
the enriched new edges serve KGR models better.

In order to conduct KGC tasks, the researchers
explored several ways of enriching KG informa-
tion, including, KG text descriptions (Chen et al.,
2023b), lifelong reasoning (Chen et al., 2023d),
and the use of Meta-Learning (Chen et al., 2023c).
Since LLMs are currently believed to contain a
wealth of real-world knowledge, we want to know
whether the knowledge of LLMs is effective for
KGR models, and thus this exploratory work pro-
posed two ways of using LLMs to help KGR, and
formed a pipeline: firstly, introducing the knowl-
edge of LLMs into KGs, and then using the knowl-
edge of LLMs to rerank the results of KGR. Note
that currently only LLMs can provide both two
capabilities together for the KGR task.

H The choice of three knowledge
alignment strategies

The results of our proposed strategies are related
to the abstraction degree of the relations in KGs.
We try to give a qualitative description: For KGs
with abstract relations, Open Domain Strategy is
the best; for KGs with concrete relations, Closed
Domain Strategy is the best. Specifically, from Sec-
tion 4.8, we find 1) the relations in WN18RR are
high-dimensional and abstract (for instance: hyper-
nym, derivationally related from). 2) the relations
in FB15K-237 are concrete and non-subdivisible
(for instance: award, has nationality). Because of
the powerful generative and understanding capa-
bilities of LLMs, for WN18RR, the LLM output
usually goes beyond the predefined KG relations
and provides fine-grained information, leading to
the best performance in the Open Domain Strategy.
In contrast, FB15K-237 contains detailed relations,
so it is the best choice to correspond the knowledge
of LLMs to the original relations in FB15K-237.
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Datasets Head Entity Tail Entity Golden Label ChatGPT Outputs

Sesame Family Genus Martynia member meronym Sesame family is a higher-level taxonomic
grouping that includes the genus martynia.

WN18RR Tuberculosis Infectious Disease hypernym Tuberculosis is a type of infectious disease.

Prettify Beauty derivationally related form Prettify is a verb that means to make
something more attractive or beautiful.

Star Trek Nemesis Jerry Goldsmith /film/film/music
Star Trek Nemesis is a 2002 science
fiction film directed by Stuart Baird,

with music composed by Jerry Goldsmith.

FB15K-237 White American Sylvia Plath /people/ethnicity/people White American is the ethnicity of
Sylvia Plath, an American poet and novelist.

Robert Ridgely USA /people/person/nationality
Robert Ridgely was an American actor.

He was active in the American film
industry until his death in 1997.

Datasets Head Entity Tail Entity Golden Label LLAMA3-70B Outputs

Sesame Family Genus Martynia member meronym
Genus Martynia is a part of the Sesame Family (Pedaliaceae),

meaning Martynia is a genus
within the Pedaliaceae family.

WN18RR Tuberculosis Infectious Disease hypernym

Tuberculosis is a type of infectious disease, meaning that
it is a disease caused by the bacterium

Mycobacterium tuberculosis and is contagious, spreading from
person to person through the air.

Prettify Beauty derivationally related form
Prettify is a verb that means to make

something or someone more beautiful or attractive,
so it is a means to achieve Beauty.

Star Trek Nemesis Jerry Goldsmith /film/film/music Jerry Goldsmith composed the original score
for the 2002 film Star Trek: Nemesis.

FB15K-237 White American Sylvia Plath /people/ethnicity/people
Sylvia Plath was a White American, meaning

she was an American of European descent and therefore
a member of the White American ethnic group.

Robert Ridgely USA /people/person/nationality

Robert Ridgely was an American ornithologist,
which means he was a citizen of the United

States of America (USA) and made significant
contributions to the field of bird study in the country.

Table 8: Some cases of ChatGPT and LLAMA3-70B output in the two datasets. Golden Label is the predefined KG
relations. It is very interesting to note that there are indeed two Americans, both named Robert Ridgely. One is an
actor and the other is an ornithologist. So ChatGPT and LLAMA3-70B both correctly complete the relationship
between the two entities. Meanwhile, they also have the same problem: providing "redundant correct information".
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Datasets WN18RR

Error Type 1: Generating fabricated or misplaced facts (hallucination of LLMs) .

Gloden Label (genus dieffenbachia, _member_meronym, motherinlaw)
ChatPT Outputs Mother-in-law plant is a common name for genus dieffenbachia.

LLAMA3-70B Output The genus Dieffenbachia is commonly known as "Mother-in-Law".

Error Type 2: Outputting “not related” for those entity pairs that should have relations.

Gloden Label (bolt, _synset_domain_topic_of, politics)
ChatPT Outputs Bolt and politics are not related.

LLAMA3-70B Output Usain Bolt is a Jamaican sprinter who has no direct relation to politics.

Error Type 3: Outputting incorrectly formatted or meaningless sentences.

Gloden Label (close, _derivationally_related_form, shutting)
ChatPT Outputs close: verb group -> shutting: verb.

Gloden Label (righteous, _also_see, innocent)
LLAMA3-70B Outputs Righteous and innocent are related, the former often encompassing the latter, but not always vice versa.

Datasets FB15K-237

Error Type 1: Generating fabricated or misplaced facts (hallucination of LLMs).

Gloden Label (Canada, /olympic /participating_country/athletes./olympic_athlete/affiliation, 1994 Winter Olympics)
ChatPT Outputs The 1994 Winter Olympics were held in Canada.

Gloden Label (Philip Glass, /education/educational_institution/students_graduates./education/education/student, University of Chicago)
LLAMA3-70B Output Philip Glass, the renowned American composer, attended the University of Chicago.

Error Type 2: Outputting “not related” for those entity pairs that should have relations.

Gloden Label (Cabbage, /food/nutrition_fact/nutrient, Iron)
ChatPT Outputs Cabbage and iron are not related.

Gloden Label (Japan, /film/film/release_date_s./film/film_regional_release_date/film_release_region, Iron)

LLAMA3-70B Outputs
There is no direct relation between Japan and Insidious, as Insidious is a 2011 American

supernatural horror film and Japan is a country located in East Asia.

Error Type 3: Outputting incorrectly formatted or meaningless sentences.

Gloden Label (Drums, /music/instrument/instrumentalists, Jack White)
ChatPT Outputs Drums and Jack White are associated as musicians and instruments.

Gloden Label (Canada, /olympic /participating_country/athletes./olympic_athlete/affiliation, 1994 Winter Olympics)
LLAMA3-70B Outputs Canada did not host the 1994 Winter Olympics, which were held in Lillehammer, Norway, from February 12 to February 27, 1994.

Table 9: Some error cases in the two datasets. Golden Label is the predefined KG schema. Error Types are described
in Appendix E.
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