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Abstract

Contrastively trained vision-language mod-
els such as CLIP have achieved remarkable
progress in vision and language representation
learning. Despite the promising progress, their
proficiency in compositional reasoning over at-
tributes and relations (e.g., distinguishing be-
tween “the car is underneath the person” and
“the person is underneath the car”) remains no-
tably inadequate. We investigate the cause for
this deficient behavior is the composition attri-
bution issue, where the attribution scores (e.g.,
attention scores or GradCAM scores) for rela-
tions (e.g., underneath) or attributes (e.g., red)
in the text are substantially lower than those
for object terms. In this work, we show such
issue is mitigated via a novel framework called
CAE (Composition Attribution Enhancement).
This generic framework incorporates various
interpretable attribution methods to encourage
the model to pay greater attention to composi-
tion words denoting relationships and attributes
within the text. Detailed analysis shows that
our approach enables the models to adjust and
rectify the attribution of the texts. Extensive
experiments across seven benchmarks reveal
that our framework significantly enhances the
ability to discern intricate details and construct
more sophisticated interpretations of combined
visual and linguistic elements.

1 Introduction

The field of vision-language research has made
great advancements in recent years (Radford et al.,
2021; Jia et al., 2021b; Rombach et al., 2022;
Alayrac et al., 2022). Vision-Language founda-
tion models, such as CLIP, have exhibited remark-
able performance across a broad range of well-
established evaluation tasks (Deng et al., 2009;
Agrawal et al., 2019; Lin et al., 2014; Ramesh et al.,
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Figure 1: (Left) a) An illustrative example from the
Winoground benchmark for assessing relation under-
standing of VLMs. VLMs exhibit difficulty in accu-
rately matching the image with the correct caption (de-
noted in green). (Right) b) The issue of composition
attribution deficiency. The distribution of GradCAM-
based attribution scores for object tokens is significantly
higher than that of the composition tokens (relation and
attribute). Similar phenomena are consistently observed
across the other three attribution methods, as presented
in Appendix A.

2021), directly or indirectly fostering progress in
numerous areas, such as text-to-image generation
(Ramesh et al., 2022), video recognition (Ni et al.,
2022) and multi-modal large language models (Zhu
et al., 2023; Liu et al., 2024).

Despite these advances, a notable limitation still
persists: VLMs such as CLIP exhibit significant
challenges in understanding visio-linguistic con-
cepts beyond object nouns, in particular relations
and attributes (Thrush et al., 2022; Yuksekgonul
et al., 2022; Zhao et al., 2022). Specifically, they
struggle with understanding relations between ob-
jects, and binding correct attributes to the correct
objects. For example, as illustrated in Fig. 1 (Left),
given an image and two similar textual descriptions
(containing the same set of words but composed dif-
ferently), such as “the car is underneath the person”
and “the person is underneath the car”, humans
can effortlessly discern the contextual differences
between the two sentences. However, VLMs tend
to struggle, highlighting a significant challenge in
compositional reasoning (Thrush et al., 2022; Yuk-
sekgonul et al., 2022).
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To further investigate the factors impeding the
compositional understanding capabilities of VLMs
such as CLIP, we employ various model attribution
techniques, such as attention-based and GradCAM-
based methods (Chefer et al., 2021), to analyze the
attribution scores assigned by the model to object
and non-object words when performing image-text
matching. As shown in Fig. 1 (Right), our investi-
gation reveals a consistent pattern across four dif-
ferent attribution scores: the attribution scores for
object words are significantly higher than those for
relation and attribute words. For example, the mean
attribution score of object tokens is 0.244, which
is two times than the relation tokens (0.111). This
indicates that the model disproportionately empha-
sizes object words, neglecting fine-grained details
such as relations and attributes in the text. This
phenomenon aligns with the recent studies (Yuk-
sekgonul et al., 2022; Kamath et al., 2023) which ar-
gued the presence of shortcuts in contrastive learn-
ing pretraining. Specifically, the models distin-
guish the correct image-text pairs from distinctly
incorrect ones through simple object recognition,
without the need to comprehend finer-grained de-
tails such as relations and attributes in the texts.
In this work, we further identify that the primary
issue for compositional understanding is the unfair
attribution for relation and attribute words. We re-
fer to this as the issue of composition attribution
deficiency.

However, the existing methods to improve visio-
linguistic compositional understanding are not de-
signed to adjust the attribution for different texts.
Yuksekgonul et al. (2022) introduces captions with
perturbed word order and nearest neighboring im-
ages into each batch, to force models to distinguish
correct and hard negative samples. Doveh et al.
(2024) use LLMs for hard negative mining and
Cascante-Bonilla et al. (2023) explore using syn-
thetic datasets to compose hard negative samples.
Regardless of the methods of hard-negative min-
ing, existing methods do not endow the models
with proportionate attribution across different texts,
neglecting the attribution issues.

Inspired by our observation, we propose a novel
framework, named CAE (Composition Attribution
Enhancement), to enhance the compositional un-
derstanding of VLMs without constructing any
hard negative samples explicitly. Specifically, in
addition to a task-specific loss, CAE adds a new
loss that aligns the attribution scores distribution
of different types of text tokens during the train-

ing process. This encourages the model to pay
more attention to fine-grained details (relations or
attributes) within the text beyond object nouns. We
propose four instances of our framework: attention-
based, GradCAM-based, perturbation-based, and
gradient-based attribution. In each instance, the
model’s compositional understanding abilities is
naturally improved. Furthermore, our approach
can be easily integrated with hard negative sam-
ples, leading to additional performance gains.

We summarize our contributions as follows:

1. We introduce a simple yet effective novel
method to enhance the VLMs’ compositional
understanding without introducing any hard
negative samples explicitly.

2. Extensive experiments across four attribu-
tion methods and seven widely used vision-
language compositional benchmarks demon-
strate the effectiveness of our method.

3. Our proposed method can be seamlessly inte-
grated with hard-negative mining, thereby fur-
ther boosting the model’s capability of com-
positional understanding.

2 Related Works

Contrastive Vision-Language Models. Modern
VLMs undergo pre-training on large-scale and
noisy multimodal datasets (Radford et al., 2021;
Jia et al., 2021b; Alayrac et al., 2022; Singh et al.,
2022; Li et al., 2022), and then are applied to down-
stream tasks in a zero-shot manner, achieving re-
markable success. Among these models, CLIP
(Radford et al., 2021) stands out, which utilizes a
contrastive learning method for pretraining. Our
focus on CLIP is motivated by two primary fac-
tors. Firstly, image-text contrastive learning has
become a prevalent and highly successful strategy
for VLM pretraining (Jia et al., 2021a; Sun et al.,
2023), catalyzing a series of subsequent CLIP-like
models. Secondly, CLIP demonstrates extensive
applicability across various domains. Therefore,
enhancing CLIP can effectively extend its benefits
to a wider range of vision-language applications.

Vision-Language Compositionality. Despite
the impressive advancements achieved in VLMs,
recent studies (Zhao et al., 2022; Yuksekgonul
et al., 2022; Thrush et al., 2022) show that existing
VL models exhibit limited compositional reason-
ing abilities. Yuksekgonul et al. (2022) argue that
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Figure 2: Overview of our method.

image-text contrastive learning learns shortcuts and
does not learn enough compositional information
such as relation and attribute. To address this limita-
tion, existing approaches mostly investigate how to
augment the text captions or images in contrastive
learning to enhance the ability of compositional un-
derstanding (Yuksekgonul et al., 2022; Singh et al.,
2023; Doveh et al., 2024; Zhang et al., 2024; Doveh
et al., 2023; Sahin et al., 2024; Cascante-Bonilla
et al., 2023). Yuksekgonul et al. (2022) firstly pro-
posed a simple and straightforward fix: mining
hard negatives, which can improve the model’s
performance. Basu et al. (2023) enhances CLIP’s
visio-linguistic reasoning via introducing a distilla-
tion objective from text-to-image generative mod-
els such as Stable-Diffusion.

Enhance Models with Interpretation Methods.
In both natural language processing and computer
vision communities, some previous works have
been proposed to use interpretation methods to aug-
ment models. For instance, Ghaeini et al. (2019)
proposes a loss function to constrain the gradi-
ent values of important words in the input are
greater than zero when predicting the groundtruth
to encourage the important words in the input to
positively influence the right prediction. Huang
et al. (2021) designs a method that constrains
the model to focus more on rationales than non-
rationales. Ebrahimi et al. (2021) addresses the
issue of catastrophic forgetting in continual learn-
ing by encouraging the model to concentrate on
its initial decision-making explanations. In the
realm of medical imaging, Simpson et al. (2019)

proposes a regularization method that penalizes
visual saliency maps derived from classifier gra-
dients when these maps are inconsistent with le-
sion segmentation, thereby mitigating overfitting
issues. Furthermore, Yang et al. (2023) enhances
the model’s visual grounding capability by con-
straining visual gradient-based explanations to be
consistent with region-level annotations provided
by humans.

3 Method

Our approach employs an attribution method to
derive attribution scores on the text, subsequently
optimizing these attribution scores to enhance the
model’s capability for compositional reasoning.
Preliminary: Consider a training example consist-
ing of an image I and its corresponding caption T.
Contrastive Loss CLIP consists of a text encoder
ft : T −→ Rd and an image encoder fi : I −→ Rd

to encode image and text into embedding space Rd

separately. The image-text similarity score is com-
puted as:

S(I, T ) =
fi(I) · ft(T )

||fi(I)|| · ||ft(T )||
/τ, (1)

where temperature τ is a learnable parameter. Con-
sider a batch B consisting of N pairs of images
and texts sampled from the training dataset. The
Image-Text Contrastive (ITC) loss LITC contains
an image-to-text contrastive loss Li2t and a text-to-
image contrastive loss Li2t that

LITC = (Li2t + Li2t)/2. (2)
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The image-to-text contrastive loss Li2t and text-
to-image contrastive loss Lt2i are formulated as
follows:

Li2t =
∑

(I,T )∈B
− log

expS(I,T )

∑
Ti∈B

expS(I,Ti)
, (3)

Lt2i =
∑

(I,T )∈B
− log

expS(I,T )

∑
Ij∈B

expS(Ij ,T )
. (4)

Formulation: Firstly, we utilize a widely-used text
scene graph parser (Wu et al., 2019) to parse the
caption T, extracting the relations, attributes and
objects present within the text. With little cost, this
process effectively categorizes which tokens in T
pertain to relations or attributes, and which pertain
to objects. Note the parsing process is only applied
to the training samples. The trained CLIP is used
in the same way as the original one.

For a VLM such as CLIP, the attribution score
ai for each token Ti in the caption indicates the
contribution or importance of each token to the
output image-text similarity. A higher magni-
tude of ai signifies a greater importance of Ti

to the final output. Given our knowledge of the
positions of object tokens and relation/attribute
tokens in the text, we can obtain the attribution
scores for these tokens. For each sample, we de-
rive the object attribution score aobj by averaging
the attribution scores of all object tokens. Simi-
larly, we obtain the compositional attribution score
acomp for each sample by averaging the attribution
scores of all relation/attribute tokens. For the entire
batch, we define Aobj = [a0obj , a

1
obj , a

2
obj , ..., a

n
obj ],

Acomp = [a0comp, a
1
comp, a

2
comp, ..., a

n
comp], n is the

batch size.
The proposed CAE introduces an extra learning

objective LAttr that optimizes the text attribution
score to encourage the model to pay more atten-
tion to relation or attribute tokens. An intuitive
approach is to make the two items as close as pos-
sible, an idea that is also reflected in (Huang et al.,
2021). Therefore, we define the attribution loss as
follows:

LAttr = max(Aobj −Acomp + ϵ, 0), (5)

where ϵ denotes the margin hyper-parameter and is
set to 0 default for all our experiments. The overall
objective function is formulated as follows:

Ltotal = LITC + λ · LAttr, (6)

where λ is a hyper-parameter balancing the two
objectives.

In the following subsections, we introduce four
instances with different attribution types.

3.1 Attention-Based Attribution
In this method, for a given batch of data, we ini-
tially extract the attention matrices from each layer
of the text encoder (averaging across all heads).
Subsequently, we isolate the attention scores of the
[CLS] token with respect to the other tokens within
these matrices, designating them as the attribution
scores for the current layer. Then, we average the
attribution scores across all layers to obtain the fi-
nal attribution ai for each token in the sentence.
Finally, we compute the average attribution score
for all object tokens to get aobj and similarly for all
relation and attribute tokens to get acomp.

3.2 GradCAM-Based Attribution
In this method, we follow the attribution approach
proposed in (Chefer et al., 2021) to obtain an attri-
bution score for each text token, given the calcu-
lated image-text similarity score.

Firstly, we initialize the text attribution map R
as an identity matrix, the dimensions of which
correspond to the size of the attention matrix at
each layer of the text encoder. Subsequently, we
compute the gradients of the attention weights by
leveraging the image-text similarity computed from
paired image-text inputs and average them across
all attention heads. This procedure yields an ex-
plainability map Ēi for each layer i.

Ēi =
h∑

j=1

(∇Ai
j ⊙Ai

j)
+, (7)

where ⊙ is the Hadamard product, Ai
j denote the

attention matrix of the head j in layer i, ∇Ai
j :=

∂S(I,T )

∂Ai
j

for S(I, T ) which is the the similarity

score computed for the text T with the image I .
Finally, we aggregate the explainability maps of

all layers using the propagation rule as presented
in (Chefer et al., 2021) to derive the final text attri-
bution map.

R← R+ Ēi ·R. (8)

Then, we use the row of R that corresponds to
the [CLS] token to get the object attribution score
Aobj and compositional attribution score Acomp of
each sample similar to Attention-Based method.
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3.3 Perturbation-Based Attribution

Consider a paired image T and text I, CLIP can
compute their similarity score S(I, T ). To obtain
attribution scores for each token in T, inspired
by the "Input Marginalization" methodology (Kim
et al., 2020), we perturb the input text while keep-
ing the image fixed. Specifically, we replace a
current token with another distinct token. Given
the characteristic of our task, we further constrain
the perturbation range. For tokens representing ob-
jects, relations, or attributes, we randomly select an
alternative concept from a corresponding candidate
set as the replacement token. More details can be
found in Appendix I. The attribution score for the
current token is then defined as the average drop
in similarity score S(I, T ) resulting from multiple
perturbations:

ai = Ep[S(T, (stopgrad(I))−S(Tp, (stopgrad(I))] (9)

where Ep is the mean across multiple perturbation.
This approach allows us to calculate attribution

scores for each object, relation, or attribute token
within the sentence. Then, we compute the average
attribution score for all object tokens to get aobj and
for all relation and attribute tokens to get acomp.

3.4 Gradient-Based Attribution

The attribution score ai is defined as a function
of the gradient of the input text token xi. Specifi-
cally, we sum the absolute values of the gradients
across the input embedding dimensions to obtain
the gradient for each input text token:

ai =
d∑

j=1

∥∂S(I, T )
∂xij

∥1 (10)

where xij represents the j-th dimension of token xi,
S(I, T ) denote the image-text similarity computed
by the model for a paired text T and image I.

Subsequently, a softmax function is applied to
normalize all token gradient values. The attribution
score for each token is thus defined as the normal-
ized gradient value.

4 Experiments

Datasets. For training, we use the approximately
110k image-text pairs from MSCOCO (Lin et al.,
2014) given that its captions are less noisy and
provide a more detailed description of the relation
and attribute content in the images. For evaluation,

we use ARO (Yuksekgonul et al., 2022), Sugar-
Crepe (Hsieh et al., 2024), VL-Checklist (Zhao
et al., 2022), Winoground (Thrush et al., 2022),
VALSE (Parcalabescu et al., 2021), SVO-Probes
(Hendricks and Nematzadeh, 2021) and ComVG
(Jiang et al., 2022). The details of these seven
datasets are in the Appendix B.

Implementation Detail. We used the popular
ViT-B/32 OpenAI CLIP (Radford et al., 2021) as
our model in all the experiments using the Open-
CLIP repository (Ilharco et al., 2021). We finetune
it for 5 epochs with a batch size of 256. We use a
cosine schedule with an initial learning rate of 5e-7
and use 50 steps for warm up. AdamW (Kingma
and Ba, 2014) optimizer is used with a weight de-
cay of 0.2. All the experiments are conducted on
an NVIDIA Tesla V100 GPU. For details on the
computational budget, please refer to Appendix C.

Baseline. Our approach is mainly compared
against two distinct baselines: (i) a pre-trained
CLIP model; (ii) a CLIP model fine-tuned on
MSCOCO utilizing only the contrastive loss, de-
void of our proposed attribution optimization loss.
It is imperative to emphasize that the second base-
line, (ii), plays a critical role in mitigating the influ-
ence of image-text pairs derived from MSCOCO
during the finetuning process.

4.1 Main Results
Table 1 presents the comparative performance of
our proposed method against the baseline across
seven evaluation benchmarks comprehensively de-
signed for compositional understanding. All our
CLIP-CAE models are trained on the same dataset
and with the same training hyperparameters as
CLIP-FT. Without bells and whistles, our method,
incorporating four distinct attribution variants, con-
sistently demonstrates significant improvements
over CLIP-FT across nearly all seven benchmarks.
Notably, on the highly challenging visio-linguistic
reasoning benchmark, Winoground, our method
exhibits superior performance. For instance, the
CLIP-CAE (Attention-Based) model achieves an
average absolute improvement of 3.7% on the
Winoground image score and an average absolute
improvement of 2.5% on the Winoground group
score (most difficult average metric). Additional
results and analyses about the performance on
Winoground are available in Appendix H. We also
conduct hyperparameter ablation studies. Please
refer to Appendix E for details.

Additionally, our method demonstrates a slight
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ARO Sugar-Crepe VL-Checklist VALSE SVO-Probes ComVG Winoground

Model Relation Attribute Relation Attribute Relation Attribute Relation Relation Relation Text Image Group

Random Chance 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 25.0 25.0 16.7

CLIP (Radford et al., 2021) 58.7 62.7 68.8 70.8 63.6 67.7 66.1 79.5 66.7 31.6 11.1 9.4
SDS-CLIP (Basu et al., 2023) 53.0 62.0 - - - - - - - - -
CLIP-FT 64.7 66.3 71.1 77.5 60.8 67.4 67.4 84.1 70.7 33.1 8.8 5.5

CLIP-CAE (Attention-Based) 69.8 65.3 72.1 79.2 65.4 68.4 69.1 84.5 72.8 33.9 12.5 8.0
CLIP-CAE (GradCAM-Based) 71.0 65.3 72.7 77.8 67.0 68.4 68.2 83.6 73.4 29.6 9.8 6.8
CLIP-CAE (Perturbation-Based) 69.6 65.2 74.1 79.7 67.7 69.9 69.0 84.2 73.1 28.0 8.3 5.8
CLIP-CAE (Gradient-Based) 67.7 65.8 73.2 79.0 61.6 67.7 68.7 83.7 72.6 29.3 9.0 6.3

Table 1: Results on ARO, Sugar-Crepe, VL-Checklist, VALSE, SVO-Probes, ComVG and Winoground.
Highlighted in bold denote an improvement over CLIP-FT, while the underlined ones indicate a performance
degradation compared to CLIP-FT. Empty scores mean that the model’s code has not been released. We report the
average results of each method over five different random seeds. The variances and confidence intervals can be
found in the Appendix D.

ARO Sugar-Crepe VL-Checklist VALSE SVO-Probes ComVG Winoground

Model Relation Attribute Relation Attribute Relation Attribute Relation Relation Relation Text Image Group

Random Chance 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 25.0 25.0 16.7

CLIP 58.7 62.7 68.8 70.8 63.6 67.7 66.1 79.5 66.7 31.6 11.1 9.4
CLIP-FT with HN 80.5 71.4 73.3 79.8 71.9 70.0 75.5 83.7 70.2 29.2 8.8 5.3

CLIP-CAE (Attention-Based) 77.9 69.7 74.4 81.6 73.0 69.9 74.5 84.4 71.4 33.9 12.9 8.2
CLIP-CAE (GradCAM-Based) 80.0 68.9 74.8 80.8 74.0 70.1 74.3 84.1 73.0 26.3 9.9 5.9
CLIP-CAE (Perturbation-Based) 79.8 69.9 74.2 83.4 75.1 71.1 72.9 84.7 73.9 26.9 9.9 7.0
CLIP-CAE (Gradient-Based) 80.8 71.6 74.1 80.7 73.0 69.8 75.4 84.1 71.0 27.5 8.8 5.9

Table 2: Results on ARO, Sugar-Crepe, VL-Checklist, VALSE, SVO-Probes, ComVG and Winoground when
combined with hard negative samples. Highlighted in bold denote an improvement over CLIP-FT with HN, while
the underlined ones indicate a performance degradation compared to CLIP-FT with HN.

performance decline on ARO-Attribute compared
to CLIP-FT (though still better than pretrained
CLIP). Upon meticulous examination of certain
failure cases within the dataset, we observed that
the alignment between images and corresponding
true captions in this dataset is subtly ambiguous.
These alignments necessitate meticulous discern-
ment even for humans, thereby indicating a higher
level of difficulty and the presence of noise within
the dataset. This observation is consistent with
related works (Cascante-Bonilla et al., 2023) that
utilize hard-negative samples, also exhibiting negli-
gible performance fluctuations on ARO-Attribute.

4.2 Combined with Hard-Negative Samples
Given that our method is orthogonal to hard-sample
mining, we sought to further verify the general-
ity and efficacy of our approach by integrating it
with hard negative samples. The experiment re-
sults are presented in Table 2. Compared to the
pretrained model, utilizing hard negative samples
substantially improves model performance across
most datasets. However, performance also ex-
hibits considerable decline on the out-of-domain
and challenging Winoground. When compared

to using hard negative samples alone, the combi-
nation of our method and hard negative samples
yields superior performance improvements. For in-
stance, CLIP-Neg obtains a remarkable 71.9% ac-
curacy on VL-Checklist-Relation, which is further
elevated to 75.1% with our combined approach,
surpassing CLIP-Neg by 3.2%. Notably, on the
Winoground, the integration of our method signifi-
cantly enhances performance over CLIP-Neg, with
absolute improvements up to 4.7% in text score,
4.1% in image score, and 2.9% in group score. The
experimental results for the combination with an-
other representative hard-negative mining method
(CE-CLIP (Zhang et al., 2024)) are provided in
Appendix F, showing similar outcomes.

This phenomenon is plausible, as our method
enables the model to pay more attention to con-
cepts beyond object words. Consequently, when
combined with hard negative samples, the model
can more effectively discern nuance semantic dif-
ferences in positive and negative text samples, es-
pecially words related to different relations and
attributes, thereby enhancing its understanding of
compositional relationships in text. These results
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MSCOCO Flickr30K

Model T2I I2T T2I I2T
R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

CLIP 30.2 55.7 50.1 74.9 59.0 83.5 78.4 95.1

CLIP-CAE (AB) 38.3 65.2 54.9 78.7 64.4 87.1 80.2 95.6
CLIP-CAE (GCB) 34.8 61.9 48.5 74.8 59.8 84.2 73.5 92.5
CLIP-CAE (PB) 36.5 63.5 52.7 77.0 63.3 87.1 78.9 94.7
CLIP-CAE (GB) 38.8 65.6 54.4 78.2 65.1 87.6 80.1 94.9
Avg. 37.1 64.1 52.6 77.2 63.2 86.5 78.2 94.4

Table 3: Downstream results on MSCOCO and
Flickr30K. Highlighted in bold denote an improve-
ment over baseline, while the underlined ones indicate
a performance degradation compared to baseline.

further validate the effectiveness and plug-and-play
nature of our method.

4.3 Results on Downstream Retrieval Tasks

In practical applications, CLIP is often utilized
for image-text retrieval. Previous study (Cascante-
Bonilla et al., 2023; Yuksekgonul et al., 2022) sug-
gests that improvement in compositional under-
standing may negatively affect the model’s perfor-
mance on image-text retrieval, which is also ver-
ified in Table 10 in the Appendix. To investigate
this, we evaluate our model on the downstream
image-text retrieval task. As shown in Table 3,
our approach shows overall improvements in text-
to-image retrieval, albeit it exhibits a minor un-
derperformance in image-to-text retrieval on the
Flickr30K. This discrepancy could be due to the
exclusive regularization imposed on the text en-
coder in our method. The overall improvements
in text-to-image retrieval present the potential of
our plug-and-play method in enhancing the gen-
eral text embedding models. Additional results and
analyses in comparison with other methods can be
found in Appendix G.

4.4 Analysis

4.4.1 Analysis of Text Embedding
Semantic Textual Similarity We evaluate our
text encoder and text encoder of CLIP and CLIP-
FT on the task of Semantic Textual Similarity
(STS), using two widely-used benchmarks: the
STS-Benchmark (Cer et al., 2017) and SICK-R
(Marelli et al., 2014). As indicated in Table 4,
our text encoder consistently outperforms CLIP-
FT across both benchmarks, especially on SICK-R.
Our CLIP-CAE significantly surpasses both CLIP-
FT and CLIP , with CLIP-FT exhibiting only a
nominal 0.1 improvement over CLIP. A slight de-
crease compared to CLIP-FT in Pearson correlation

SICK-R STS-Benchmark

Model Spearman Pearson Spearman Pearson

CLIP 67.9 68.6 61.5 59.1

CLIP-FT 68.0 73.5 66.3 64.0
CLIP-CAE 69.3 71.6 66.5 65.2

Table 4: Semantic Textual Similarity results on SICK-
R and STS-Benchmark. Highlighted in bold denote
an improvement over CLIP-FT, while the underlined
ones indicate a performance degradation compared to
CLIP-FT.

on SICK-R may be due to the non-linear nature ex-
isting in high-dimensional embedding space. These
results demonstrate that our text encoder excels in
capturing nuanced semantic differences and com-
plex semantic relationships within texts, resulting
in embeddings with superior semantic representa-
tional properties. This indicates that our model
not only achieves superior cross-modal image-text
alignment but also enhances text representation.
Consequently, our method not only boosts multi-
modal capabilities but also shows promise for ap-
plication in uni-modal language tasks, which will
be explored in our future work.
Text Embedding Ingredients We conduct an anal-
ysis on ARO-Relation and ARO-Attribute datasets
to validate that our text encoder can capture re-
lations and attributes within captions more effec-
tively. Specifically, for each sample, we separately
encode the correct caption and the relation or at-
tribute phrase annotated within these captions to
obtain their respective text embeddings. Subse-
quently, we calculate the cosine similarity between
the embeddings derived from the full caption and
the relations or attributes phrases. As shown in Fig.
3, it can be observed that the embeddings gener-
ated by the text encoder of CLIP-CAE exhibit a
significantly higher overall similarity compared to
those produced by CLIP and CLIP-FT. This find-
ing indicates that the text encoder of CLIP-CAE
places greater emphasis on relations and attributes
when encoding text, resulting in embeddings that
encapsulate more information about these semantic
elements.

4.4.2 Relationship between Attribution Score
and Performance

We investigate the variations in the model’s per-
formance as a function of attribution scores for
relations or attributes. We utilize a pretrained
CLIP model to conduct experiments on the ARO-
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(a) relation (b) attribute

Figure 3: The similarity distribution between the text
embeddings obtained by encoding the entire text and
those derived from encoding specific relations or at-
tributes within the text.

Figure 4: Cumulative accuracy on ARO-Relation of
CLIP vs. the attribution score ratio between relation and
object tokens.

Relation. The focus level of the model on relations
is quantified by the ratio of the attribution score for
the relation tokens to that of the object tokens. Con-
currently, we assess the model’s accuracy across
all samples with ratios below the current value. As
illustrated in Fig. 4, the ratios for all samples pre-
dominantly fall within the range of 0.36 to 0.38.
Within this interval, a higher attribution score ra-
tio corresponds to a cumulative increase in accu-
racy. This trend indicates that the more attention
the model allocates to the relation tokens, the better
it differentiates the compositional nuances in the
correct caption and false caption, thereby exhibit-
ing better compositional understanding capabilities.
This phenomenon further substantiates the reason-
ability of our proposed method.

4.4.3 Ablation
We conducted ablation studies under various train-
ing configurations, with the results presented in Ta-
ble 5. It can be observed that utilizing only LAttr

results in a performance decline across multiple

benchmarks. This performance degradation can
be due to the absence of LITC , which serves as a
constraint to align image and text features. With-
out this constraint, features may undergo exces-
sive deviation, thereby compromising the original
alignment performance. When the LITC is com-
bined with our attribution loss, the model exhibits
superior performance across all benchmarks, thus
demonstrating the effectiveness of our approach.

Model LITC LAttr ARO Sugar-Crepe VL-CheckList VALSE ComVG Avg.

CLIP 60.7 69.8 65.7 66.1 66.7 65.8
CLIP-FT ✓ 59.5 71.5 69.6 64.3 63.0 65.6
CLIP-FT ✓ 65.6 74.2 64.2 67.2 70.8 68.4
CLIP-CAE ✓ ✓ 67.5 75.6 66.9 69.1 72.5 70.3

Table 5: Ablation of losses. LITC represents image-text
contrastive loss, LAttr denote our proposed attribution loss.

4.4.4 Case Study
To investigate whether our model more accurately
associates the regions in images corresponding to
compositional relationships with the relevant words
in the text compared to CLIP, we employ the Grad-
CAM (Chefer et al., 2021) tool to visualize the
region-level associations between the image and
the text. We randomly selected 200 action rela-
tion samples from ARO-Relation (with actions that
can be grounded in images, i.e., “cutting”, “eating”,
“feeding”, “holding”, “leaning on”, “lying on”, “rid-
ing”, “sitting on”, “touching”). We invite 5 volun-
teers to take a blind setting of which heatmap gets
the relation more visibly correct. Specifically, we
labeled the heatmaps from CLIP-CAE and CLIP as
0 and 1, respectively. The volunteers are unaware
of which model each heatmap came from and only
know the labels. We asked the volunteers to choose
which heatmap gets the relation more visibly cor-
rect for each sample (we also provide a “ambigu-
ous” choice, meaning that these two heatmaps are
pretty similar). The average evaluation results from
the five volunteers are shown in Fig 5. The result
shows that, out of the evaluation results from five
volunteers, there is an average of 68 samples for
which they think the heatmap of CLIP-CAE more
visibly correctly captures the relation compared to
CLIP. This interesting phenomenon is reasonable
because CLIP-CAE enables the model to focus
more on the relations in the text. As a result, there
is a higher component of relations in the text fea-
tures, leading to a better alignment between the
text features and the relation regions in the images,
which in turn makes the relation regions more visu-
ally grounded in the heatmap.
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Figure 5: Human voting results.

(a) Original image

the cat is touching the elephant

the elephant is touching the cat

CLIP CLIP-CAE

(b) Attribution map of CLIP (c) Attribution map of CLIP-CAE

Figure 6: A qualitative visualization case. Both image
and text attribution maps are displayed.

In Fig. 6, we show a qualitative example. This
case demonstrates that the original CLIP model ex-
cessively attends to object-specific regions in both
modalities. In contrast, our proposed CLIP-CAE di-
rects the model’s attention beyond objects to areas
representing relation. For instance, in this exam-
ple, CLIP-CAE more effectively focuses on the
regions depicting the interaction between the cat
and the elephant, specifically the area where they
touch, as well as the word “touch” in the text. This
demonstrates that our model is better at capturing
regions in image and text that represent composi-
tional concepts, such as the interaction between
two objects.

5 Discussion

Orthogonal to hard-negative mining As we
know, the three main components of machine learn-
ing are data, model, and loss function (Mitchell and
Mitchell, 1997). From the perspective of machine
learning, existing approaches can primarily be clas-
sified into two categories: data-driven and design-
ing new loss functions. A categorization of related
work is shown in the Appendix J. Our method falls
under the category of loss function, while hard-
negative mining methods fall under the category

of data-driven. Therefore, as different lines of re-
search, these two approaches improve the model
from different dimensions. The hard-negative min-
ing methods focus on constructing hard negative
samples in a similar way as the vision-language
compositionality benchmarks, which have signifi-
cantly advanced the field of visual-language com-
positional understanding. Also, from a machine
learning perspective, better data and better loss
functions often enable models to learn more effec-
tively (Bishop and Nasrabadi, 2006). This could
be one reason why our approach not only enhances
the performance of the baseline model, but also
combines with state-of-the-art hard-negative min-
ing methods to further boost their performance.

Relationship with ViLT (Kim et al., 2021)
ViLT proposes a unified, efficient, and simplest
model architecture for vision-and-language pre-
training, sharing a similar spirit with CLIP. Both
of them tried to achieve cross-modal object-level
alignment through general pre-training, i.e., CLIP
applied the image-text contrastive learning, while
ViLT applied the image-text matching (ITM) and
word patch alignment (WPA). Our method intro-
duces a generic framework to encourage the model
to pay greater attention to relation and attribute
words, which is orthogonal to the model archi-
tectures and learning objectives. This means our
method possesses the potential to be combined with
ViLT. It is also worth noting that ViLT designs a
word patch alignment algorithm, using the inexact
proximal point method for optimal transports. This
technique gives us new ideas to augment our ap-
proach further to design a new instantiation of our
method. The transportation-based heatmap for a
relation or attribute token can be used to represent
composition attribution.

6 Conclusion

In this work, we present an intuitive and novel
method to enhance the composition attribution and
the compositional reasoning ability of contrastive
vision-language models such as CLIP. Extensive
experiments across variant attribution methods and
seven benchmarks show the effectiveness of our
method. Our method can be easily integrated with
existing hard-negative mining techniques to further
boost the performance. We hope our methods can
provide useful insights to solve the compositional
understanding dilemma of VLMs and improve the
semantic representations of texts.

14624



7 Limitation

Despite our approach effectively enhances the
model’s compositional understanding ability across
various attribution methods without employing
hard negative samples, our method does not im-
pose explicit constraints or enhancements on the
visual component of VLMs. Analyzing and explic-
itly enhancing the visual model through diverse
attribution and interpretation methods will be a
focus of our future work. Furthermore, we also
intend to employ our approach to further interpret
and analyze existing model deficiencies, thereby
enabling precise optimization and enhancement.
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A Composition Attribution Deficiency

Fig. 7 illustrates the distribution of attribution
scores for object tokens and composition tokens de-
rived from other three distinct attribution methods
(attention-based, perturbation-based and gradient-
based). A consistent pattern emerges across these
distinct attribution methods: the attribution scores
for object words are markedly higher compared to
those for relation and attribute words.

B Evaluation datasets

To comprehensively evaluate the effectiveness of
our method, we conduct experiments on a total of
7 most commonly used benchmark datasets. The
following are the specific details for each dataset.

(1) ARO (Yuksekgonul et al., 2022) is a compre-
hensive benchmark designed to assess the compo-
sitional reasoning capabilities of vision-language
(VL) models. It consists of two distinct subsets
aimed at evaluating relation and attribute under-
standing, namely the Visual Genome Relation (VG-
Relation) and Visual Genome Attribution (VG-
Attribution) datasets. VG-Relation contains 48 dis-
tinct relation categories, encompassing 23, 937 test
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Figure 7: The attribution score distribution of object and composition token using attention-based, perturbation-
based, and gradient-based attribution method.

cases, while VG-Attribution includes 117 unique
attribute pairs, with a total of 28, 748 test cases.
Each test case in these datasets is accompanied by
an image, a corresponding correct caption, and a
swapped mismatched caption.

(2) VL-Checklist (Zhao et al., 2022) a large-
scale benchmark, comprising approximately 410k
images, constructed by integrating four existing
datasets: Visual Genome (Krishna et al., 2017),
SWiG (Pratt et al., 2020), VAW (Pham et al., 2021),
and HAKE (Li et al., 2019). For each image in
these datasets, two captions are provided: a posi-
tive caption, which accurately describes the image
and is sourced from the original dataset, and a neg-
ative caption, created by altering one word in the
positive caption. We report average results for each
of the main (Relation and Attribute) groups on VL-
Checklist.

(3) Sugar-Crepe (Hsieh et al., 2024) is a re-
cent benchmark designed to avoids ungrammatical
and nonsensical negative captions, and generates
hard-negative captions by swapping, replacing, or
adding linguistic elements. In this work, we cal-
culate the accuracy for subsets belonging to the
categories of relation and attribute within Sugar-
Crepe respectively.

(4) Winoground (Thrush et al., 2022) is a
modestly-sized dataset containing 400 samples de-
signed to assess the compositional reasoning ca-
pabilities of VL models. Each sample within the
dataset consists of two image-text pairs, charac-
terized by overlapping lexical content but distin-
guished by the alteration of an object, a relation,
or both. For every sample, two text-retrieval tasks
(text score) and two image-retrieval tasks (image
score) are defined, with a combined group score
representing overall performance. Recent study
(Diwan et al., 2022) has analyzed that successful
performance on Winoground necessitates compe-
tencies beyond simple compositionality. The study
identified a subset of 171 out of the total 400 sam-

ples that reliably probe compositional reasoning.
In contrast, other samples within the dataset ex-
hibit non-compositional characteristics, ambiguity,
reliance on invisible details, or association with
rare images or texts, necessitating complex reason-
ing that extends beyond simple compositionality.
Consequently, we report our results on this “clean”
subset following (Cascante-Bonilla et al., 2023).

(5) VALSE (Parcalabescu et al., 2021) is a bench-
mark specifically designed to evaluate the capabili-
ties of VL models across six distinct linguistic phe-
nomena. Each sample within this benchmark com-
prises an image paired with both a correct caption
and a false caption. The false caption is generated
by modifying a word or phrase within the origi-
nal caption, targeting a particular linguistic phe-
nomenon—such as verb argument structure, spatial
relation, or coreference. Three subsets within the
benchmark focus on action and spatial relations,
aligning closely with our task of compositional un-
derstanding. In this study, we report the average
accuracy across these three pertinent subsets.

(6) SVO-Probes (Hendricks and Nematzadeh,
2021) and ComVG (Jiang et al., 2022) assess
VLMs on verb (relation) understanding.

C Computational budget

In Table 6, we present the model sizes, as well as
the training and evaluation budgets for all the mod-
els in our paper. All experiments were conducted
on an NVIDIA Tesla V100 GPU with 32 GB of
memory.

D Error bars and confidence intervals

We have run the experiments for each method with
five different random seeds, and we report the
means, variances, and confidence intervals in Ta-
ble 7. From the results above, it can be observed
that the performance of our CLIP-CAE is consis-
tently higher than that of CLIP-FT by a non-trivial
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model CLIP CLIP-FT SDS-CLIP CLIP-CAE (Attention-Based) CLIP-CAE (GradCAM-Based) CLIP-CAE (Perturbation-Based) CLIP-CAE (Grad-Based)

#Params 151M 151M 151M 151M 151M 151M 151M
Training budge - 1.1h - 1.1h 1.1h 1.1h 1.1h
Evaluation budge 0.4h 0.4h 0.4h 0.4h 0.4h 0.4h 0.4h

Table 6: Model size and computational budge.

margin, and the variation in experimental results
across different seeds is relatively small (86.7% of
the experiments have a standard deviation of less
than 0.5).

E Hyperparameter ablation

We conduct comprehensive and separate ablation
studies about the hyperparameters, including the
learning rate and loss weight. The experiment
results in Table 8 make two observations: From
1e−7 to 5e−6, the overall optimal learning rates
for different finetuning objectives are the same,
which is also the best learning rate of vanilla
CLIP-FT. This implies that our finetuning objective
shares the same learning dynamics and loss land-
scape as the normal finetuning. The optimal loss
weights for different finetuning objectives varies
from 0.2 to 50, e.g., 0.2 for perturbation-based
and 50 for GradCAM-based methods. This is re-
lated to the differences in the gradient scales of
different types of loss. For example, the aver-
age gradient of the parameters with respect to the
contrastive loss is approximately 1/3 of that with
respect to the perturbation-based attribution loss,
while the gradient ratio is about 60 times when
change to GradCAM-based attribution loss, which
aligns with the corresponding optimal loss weights.

F More results when combined with
hard-negative mining methods

As our method is orthogonal to hard-negative min-
ing methods. We conduct experiments to combine
our approach with two state-of-the-art methods
(NegCLIP (Yuksekgonul et al., 2022) and CE-CLIP
(Zhang et al., 2024)). The experimental results are
shown in Table 9. From these results, it can be
observed that integrating our method with other
approaches consistently enhances overall perfor-
mance. This indicates that our method can effec-
tively combine with other methods to collectively
improve the model’s compositional understanding
capabilities, particularly these mainstream methods
based on hard-negative mining.

G More results on downstream retrieval
task

We compared our approach on the MSCOCO re-
trieval task with three representative state-of-the-
art hard-negative mining methods, i.e., CE-CLIP
(Zhang et al., 2024), DAC (Doveh et al., 2024),
TSVLC (Doveh et al., 2023). The experimental re-
sults are presented in Table 10, the numbers in the
bracket are the gain compared with CLIP. From the
results, there are two observations: (1) Considering
the text-to-image and image-to-text retrieval, all
methods introduce more improvement for the text-
to-image retrieval. And the improvements brought
by DAC and TSVLC are relatively minor. (2)
The hard-negative mining methods considerably de-
grade performance on image-to-text retrieval task,
with DAC and TSVLC exhibiting the most pro-
nounced reductions, ranging from 11% to 28%. In
contrast, our method incurs minimal negative im-
pact and, compared to CLIP, delivers substantial
improvements in both text-to-image and image-to-
text retrieval tasks. These results underscore the
effectiveness of our attribution-based objective rel-
ative to the hard-negative mining approaches.

It is worth noting that further hyperparameter
tuning can enhance the performance of our method
on downstream retrieval tasks. However, this im-
provement comes at the cost of a decline in compo-
sitional understanding performance. This suggests
the need for a trade-off between compositional un-
derstanding capabilities and downstream retrieval
performance.

H Analysis about the improvement on
winoground

As Winoground is an extremely challenging and rel-
atively small dataset, to better see the confidence of
the improvement on it, we follow the Winoground
paper to compute the confidence interval. Specif-
ically, we divide the dataset into 4 groups, then
obtained 4 scores for each model and score type,
and used Student’s t-distribution to compute the
95% confidence intervals. The results are shown in
Table 11 (average scores and confidence intervals).
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ARO Sugar-Crepe VL-Checklist VALSE SVO-Probes ComVG Winoground

Model Relation Attribute Relation Attribute Relation Attribute Relation Relation Relation Text Image Group

Random Chance 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 25.0 25.0 16.7

CLIP 58.7 62.7 68.8 70.8 63.6 67.7 66.1 79.5 66.7 31.6 11.1 9.4
SDS-CLIP 53.0 62.0 - - - - - - - - -

CLIP-FT
mean±std 64.74±0.33 66.28±0.10 71.06±0.33 77.54±0.16 60.84±0.15 67.44±0.08 67.4±0.42 84.08±0.04 70.72±0.12 33.1±0.75 8.78±0.82 5.54±0.29

confience interval [64.33, 65.15] [66.16, 66.40] [70.65, 71.47] [77.34, 77.74] [60.65, 61.03] [67.34, 67.54] [66.88, 67.92] [84.03, 84.13] [70.57, 70.87] [32.17, 34.03] [7.76, 9.80] [5.18, 5.90]

CLIP-CAE
(Attention-Based)

mean±std 69.84±0.10 65.30±0.13 72.08±0.23 79.16±0.10 65.42±0.16 68.44±0.05 69.14±0.34 84.52±0.16 72.80±0.19 33.90±0.54 12.54±0.72 7.96±0.48
confience interval [69.72, 69.96] [65.14, 65.46] [71.79, 72.37] [79.04, 79.28] [65.22, 65.62] [68.38, 68.50] [68.72, 69.56] [84.32, 84.72] [72.56, 73.04] [33.23, 34.57] [11.65, 13.43] [7.36, 8.56]

CLIP-CAE
(GradCAM-Based)

mean±std 71.02±0.19 65.32±0.07 72.74±0.16 77.80±0.18 67.00±0.14 68.44±0.12 68.16±0.30 83.58±0.19 73.36±0.36 29.58±0.78 9.82±0.41 6.78±0.44
confience interval [70.78, 71.26] [65.23, 65.41] [72.54, 72.94] [77.58, 78.02] [66.83, 67.17] [68.29, 68.59] [67.79, 68.53] [83.34, 83.82] [72.91, 73.81] [28.61, 30.55] [9.31, 10.33] [6.23, 7.33]

CLIP-CAE
(Perturbation-Based)

mean±std 69.64±0.15 65.22±0.12 74.08±0.17 79.70±0.15 67.72±0.12 69.92±0.07 68.98±0.15 84.16±0.10 73.06±0.31 27.98±0.88 8.32±0.70 5.76±0.42
confience interval [69.45, 69.83] [65.07, 65.37] [73.87, 74.29] [79.51, 79.89] [67.57, 67.87] [69.83, 70.01] [68.79, 69.17] [84.04, 84.28] [72.68, 73.44] [26.89, 29.07] [7.45, 9.19] [5.24, 6.28]

CLIP-CAE
(Grad-Based)

mean±std 67.72±0.29 65.80±0.13 73.20±0.35 79.00±0.22 61.60±0.24 67.74±0.10 68.68±0.32 83.66±0.05 72.60±0.19 29.32±0.24 9.02±0.58 6.32±0.41
confience interval [67.36, 68.08] [65.64, 65.96] [72.77, 73.63] [78.73, 79.27] [61.48, 61.72] [67.62, 67.86] [68.28, 69.08] [83.60, 83.72] [72.36, 72.84] [29.02, 29.62] [8.30, 9.74] [5.81, 6.83]

Table 7: Means, variances, and confidence intervals over five different random seeds.

ARO Sugar-Crepe VL-Checklist VALSE SVO-Probes ComVG Winoground

Model Hyperparameter Relation Attribute Relation Attribute Relation Attribute Relation Relation Relation Text Image Group

CLIP-FT

lr = 1× 10−7 67.9 65.9 69.5 76.9 63.1 66.8 66.3 81.7 70.5 33.9 8.8 7.0
lr = 5 × 10−7 65.1 66.1 71.0 77.7 60.9 67.5 67.5 84.1 70.4 32.8 7.6 5.3
lr = 1× 10−6 63.2 65.3 72.1 78.0 60.4 67.9 68.0 84.8 71.1 33.9 8.8 5.9
lr = 2× 10−6 61.6 64.9 72.7 78.2 59.8 68.3 67.0 85.2 71.4 31.0 9.9 6.4
lr = 5× 10−6 58.2 63.9 73.0 78.6 59.9 69.3 66.3 85.3 73 31.0 12.3 8.2

CLIP-CAE (Attention-Based)
lr = 5× 10−7

λ = 0.5 66.2 66.3 71.7 78.4 62.0 67.5 67.4 84.5 71.3 32.8 9.9 7.0
λ = 1.0 67.4 66.3 71.8 78.5 62.3 67.6 67.9 84.9 71.6 33.3 10.5 7.6
λ = 10.0 69.3 65.0 72.3 78.6 63.9 68.1 68.6 84.9 72.4 31.6 13.5 8.8
λ = 30.0 70.0 65.4 72.3 79.0 65.0 68.3 69.7 84.7 72.7 35.7 13.5 8.2
λ = 50.0 69.7 65.3 72.0 79.2 65.4 68.4 69.1 84.5 72.5 33.9 13.5 9.2

CLIP-CAE (GradCAM-Based)
lr = 5× 10−7

λ = 1.0 67.4 65.8 71.9 77.7 61.6 67.4 68.0 84.7 71.9 32.8 8.8 7.0
λ = 10.0 67.8 64.4 72.9 77.6 63.0 68.2 68.1 85.0 73.5 30.4 8.2 5.3
λ = 20.0 68.9 64.6 71.6 77.7 64.1 68.5 69.4 84.6 73.5 31.6 8.8 4.7
λ = 50.0 70.1 64.5 72.2 78.0 66.0 68.6 69.9 84.2 73.1 32.8 10.5 7.0
λ = 100.0 70.9 65.2 73.0 77.9 66.8 68.3 67.6 83.7 72.7 29.8 9.9 7.0

CLIP-CAE (Perturbation-Based)
lr = 5× 10−7

λ = 0.05 65.7 66.5 72.2 78.1 62.9 68.4 67.6 84.7 72.1 31.6 5.9 4.1
λ = 0.1 66.7 66.3 72.8 78.2 65.5 68.9 68.8 84.6 72.2 31.0 8.2 4.7
λ = 0.2 69.8 65.3 74.3 79.7 67.8 69.8 68.9 84.0 73.2 28.7 8.2 5.3
λ = 0.5 70.0 63.1 73.2 81.9 68.4 70.0 68.9 81.7 72.3 30.4 9.4 6.4
λ = 1.0 71.4 62.1 72.9 82.2 70.8 69.9 66.1 80.0 71.0 25.2 7.6 6.4

CLIP-CAE (Gradient-Based)
lr = 5× 10−7

λ = 1.0 67.0 66.6 72.1 78.6 61.0 67.5 68.3 84.3 71.4 30.4 6.4 4.1
λ = 5.0 67.6 66.3 71.4 78.7 60.8 67.5 68.7 83.8 72.5 29.8 7.0 5.3

λ = 10.0 68.1 65.8 73.7 79.0 61.7 67.9 69.2 83.6 72.4 29.8 8.8 5.9
λ = 20.0 67.3 65.3 74.0 79.7 62.7 67.9 69.2 83.6 72.4 28.7 8.8 5.3
λ = 50.0 66.9 65.0 75.8 80.0 64.2 67.7 68.1 83.7 71.6 28.1 9.9 5.9

Table 8: Hyper-parameter search.

ARO Sugar-Crepe VL-Checklist VALSE SVO-Probes ComVG

Model Relation Attribute Relation Attribute Relation Attribute Relation Relation Relation

NegCLIP 80.5 71.4 73.3 79.8 71.9 70.0 75.5 83.7 70.2
+ CAE 80.0 68.9 74.8 80.8 74.0 70.1 74.3 84.1 73.0

CE-CLIP 82.4 72.7 72.3 79.8 75.2 69.4 74.8 82.7 69.1
+ CAE 82.0 72.5 74.3 82.9 79.6 71.5 75.1 84.3 73.7

Table 9: Additional experiment results when combined with two representative methods using hard-negative mining
(CE-CLIP and NegCLIP). Note that for CE-CLIP, the hard-negative data for training is the same as NegCLIP.
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Model IR-R@1 IR-R@5 TR-R@1 TR-R@5

CLIP 30.2 55.7 50.1 74.9

CE-CLIP 42.2 (+12.0%) 69.4 (+13.7%) 47.1 (-3%) 74.6 (-0.3%)
DAC 31.4 (+1.2%) 57.0 (+1.3%) 23.9 (-26.2%) 47.0 (-27.9%)
TSVLC 33.3 (+3.1%) 58.2 (+2.5%) 37.2 (-12.9%) 64.3 (-10.6%)

CLIP-CAE 38.3 (+8.1%) 65.2 (+9.5%) 54.9 (+4.8%) 78.7 (+3.8%)

Table 10: Comparision with three state-of-the-art hard-
negative mining methods on MSCOCO retrieval tasks.

Model
Winoground

Text Score Image Score Group Score

NegCLIP 29.2 [21.88,36.67] 8.8 [0.35,17.35] 5.3 [0.00,12.53]
CE-CLIP 22.8 [10.18,26.12] 14.6 [0.00,23.54] 8.2 [0.00,7.59]

DAC 20.5 [12.00,29.05] 6.4 [2.99,9.91] 1.8 [0.00,5.32]
TSVLC 28.1 [15.41,40.79] 8.8 [0.35,17.35] 5.3 [0.49,10.11]

CLIP-CAE 33.9 [17.15,50.85] 13.5 [7.71,19.24] 8.2 [0.00,17.09]

Table 11: Means and confidence intervals on
Winoground are reported, we follow the Winoground
paper to compute the confidence interval.

From the results, we can observe that our
method indeed shows a non-trivial improvement
over other methods. We suspect that part of the
reason for Winoground’s performance being lower
than random chance stems from its extremely strict
metric calculation method. This method requires
that for a given sample (which includes two image-
text pairs, i.e., image_0, text_0, and image_1,
text_1), the model must simultaneously satisfy
Similarity(image_0, text_0) > Similarity(image_0,
text_1) and Similarity(image_1, text_1) >
Similarity(image_1, text_0) for the text score of
the sample to be 1. The same applies to the image
score. For the group score to be 1, it requires
that both the text score and image score be 1.
Then we simplify the original metric calculation
method to a more common one, where for every
image-text pair, if Similarity(image_0, text_0) >
Similarity(image_0, text_1) is satisfied, the text
score is 1, and similarly for the image score. The
calculation method for the group score remains
unchanged. We then re-evaluate different models
using this new metric method, and the results are
shown in Table 12. In the context of this common
computation method, all models perform better
than random chance (e.g., 50% for image score*),
and our method remains the best, outperforming
others by 4.7% ∼ 10.0% (group score).

I More details about the perturbation
method

In the perturbation-based method, we use the sets
of objects, relations, and attributes from the Visual

Model
Winoground

Text Score* Image Score* Group Score*

NegCLIP 59.6 53.5 34.5
CE-CLIP 56.1 53.8 33.0

DAC 56.1 52.9 29.2
TSVLC 58.5 53.8 32.2

CLIP-CAE 62.6 55.6 39.2

Table 12: The performance of different models when
using the simplified evaluation metric.

Genome dataset (Krishna et al., 2017) as the candi-
date sets for perturbing the concepts in the captions.
For the object and attribute candidate sets, we di-
rectly use their original sets, which respectively
contain 150 objects and 200 attributes. For the rela-
tion candidate set, we eliminate some insignificant
prepositions, such as “of”, “for”, and “with”, and
remove redundant relation terms with similar mean-
ings, like “on” and “above”. Finally, we retain 36
relations that represent distinct meanings.

For each concept to be perturbed, we replace it
with another concept from the corresponding can-
didate set (for instance, “standing” –> “riding”).
This ensures that the perturbed sentence continues
to preserve grammaticality and remains plausible.
Despite it is possible that perturbations may re-
place words with their synonyms. However, due
to the pre-processing steps, the number of words
with identical meanings in our candidate set is min-
imal, and since substitutions are made randomly,
the probability of replacing a word with one of the
same meaning is pretty low.

J Category of existing methods

To better clarify the distinctions and connections
between existing methods and our work, we have
categorized and summarized the relevant represen-
tative approaches in Table 13. Further discussion
details are provided in the Section 5 of the main
text.

K More results on Winoground and
ColorSwap

Winoground is an extremely valuable work that
allows researchers to gain a deeper understanding
of the shortcomings and limitations of VLMs. We
further investigate how other representative hard-
negative mining methods perform on Winoground.
We select four representative state-of-the-art meth-
ods for evaluation on Winoground. The results are
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Data-driven Design new loss function

NegCLIP
(Yuksek-
gonul et al.,
2022)

pioneer work of hard-negative
mining method

SDS-CLIP
(Basu et al.,
2023)

designing a loss to dis-
till knowledge from text-to-
image diffusion model

TSVLC
(Doveh et al.,
2023)

construct text hard-negative
samples

CLIP-CAE
(Ours)

a framework to enhance the
attribution of compositional
concepts

syn-CLIP
(Cascante-
Bonilla et al.,
2023)

using game engine to gen-
erate synthetic hard-negative
samples

-

DAC (Doveh
et al., 2024)

enhance the caption quality
and diversity, also including
hard-negative samples

-

CE-CLIP
(Zhang et al.,
2024)

generate text hard-negative
samples more accurately

-

Table 13: Comparison of different methods in data-
driven and loss function design approaches.

Winoground
Model

Text score Image score Group score
ColorSwap

CLIP 31.6 11.1 9.4 11.7
CLIP-FT 33.9 8.2 5.3 11.0

CE-CLIP 22.8 14.6 8.2 11.0
NegCLIP 29.2 8.8 5.3 10.3
DAC 20.5 6.4 1.8 9.7
TSVLC 28.1 8.8 5.3 7.7

CLIP-CAE 33.9 13.5 8.2 14.7

Table 14: Comparison with four state-of-the-art hard-
negative mining methods on Winoground and Color-
Swap.

shown in the Table 14. Surprisingly, these methods
generally performed poorly, with our CLIP-CAE
achieving the best overall performance. The rea-
son why our method shows relatively less improve-
ment on Winoground are twofold: on the one hand,
Winoground is indeed difficult (Diwan et al., 2022),
and on the other hand, evaluation on Winoground
may also present an out-of-distribution challenge.
We also conduct additional experiments on the re-
cently proposed ColorSwap (Burapacheep et al.,
2024), and we report the most difficult group score
in Table 14. From the results, CLIP-CAE consis-
tently surpass the CLIP-FT and four state-of-the-art
hard-negative mining methods with superior per-
formance on the overall performance of image and
text understanding.

L Performance on CLIP-Binding

We conduct experiments on the most difficult
dataset (probing complex color binding) in CLIP-
Binding (Lewis et al., 2024). The experimental
results are shown in Table 15. The results demon-
strate that in a zero-shot setting, CLIP-CAE is bet-
ter than CLIP-FT. This subtle improvement may be
because the images used in CLIP-Binding are all

Model
Two-object

(color binding)

CLIP 27.58
CLIP-FT 27.18

CLIP-CAE (Attention-Based) 27.32
CLIP-CAE (GradCAM-Based)) 28.41
CLIP-CAE (Perturbation-Based) 28.65
CLIP-CAE (Gradient-Based)) 28.08

Table 15: Experiment results on CLIP-Binding.

from the CLEVER (Johnson et al., 2017) dataset,
which has a significant domain gap compared to
natural images and their captions. We also ob-
served that the performance of all models on the
clip-binding test set is below 30%, indicating that
more effort is needed in the future to improve
VLMs’ abilities of performing complex composi-
tional concept binding. Integrating syntactic struc-
ture information from text or relative positional
information of objects in images into the model
explicitly might be a future direction to consider.
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