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Abstract

In the era of data-driven decision-making,
Long-Form Table Question Answering
(LFTQA) is essential for integrating structured
data with complex reasoning. Despite recent
advancements in Large Language Models
(LLMs) for LFTQA, evaluating their effec-
tiveness remains a significant challenge. We
introduce LFTQA-Eval, a meta-evaluation
dataset comprising 2,988 human-annotated
examples, to rigorously assess the efficacy
of current automated metrics in assessing
LLM-based LFTQA systems, with a focus
on faithfulness and comprehensiveness. Our
findings reveal that existing automatic metrics
poorly correlate with human judgments and
fail to consistently differentiate between
factually accurate responses and those that are
coherent but factually incorrect. Additionally,
our in-depth examination of the limitations
associated with automated evaluation methods
provides essential insights for the improvement
of LFTQA automated evaluation.

§ https://github.com/YukiiWWW/LfTQA-Eval

1 Introduction

In the current landscape where decisions are in-
creasingly driven by data, the utility of tabular data
provides a well-organized and efficient means of
presenting data, which is essential for informed
decision-making processes (Pasupat and Liang,
2015; Zhao et al., 2022a,b; Tang et al., 2024; Zhao
et al., 2024a,b). Within this context, long-form ta-
ble question answering (LFTQA) has emerged as a
vibrant area of research, bridging the gap between
structured data and the comprehensive insights re-
quired in real-world scenarios (Nan et al., 2022;
Zhao et al., 2023a). As illustrated in Figure 1, given
the complex question and numerous data points in
a table, an LFTQA system must understand the re-
lationships within the data and perform human-like

According to the voting result, which representative election in 
North Carolina districts was the most competitive, and why?

The race in the North Carolina 7th district was the most competitive, as the 
Democratic incumbent Mike McIntyre won by a slim margin, with only a 0.2% 
difference between him and his Republican challenger David Rouzer. Furthermore, 
this election was the only one among all North Carolina districts in 2012 that resulted 
in a margin of victory within less than 1 percent.

District Incumbent First Elected Party Candidates

North Carolina 3 Walter Jones Jr 1994 Republican Walter Jones Jr (R) 63.2%
Erik Anderson (D) 36.8%

North Carolina 4 David Price 1996 Democratic David Price (D) 74.4%
Tim D'Annunzio (R) 25.6%

North Carolina 6 Howard Coble 1984 Republican Howard Coble (R) 60.9%
Tony Foriest (D) 39.1%

North Carolina 7 Mike Mcintyre 1996 Democratic Mike Mcintyre (D) 50.1%
David Rouzer (R) 49.9%

North Carolina 8 Larry Kissell 2008 Democratic Richard Hudson (R) 54.1%
Larry Kissell (D) 45.9%

North Carolina 10 Patrick Mchenry 2004 Republican Patrick Mchenry (R) 57.0%
Patsy Keever (D) 43.0%

Title: United States House of Representatives Elections, 2012

Figure 1: An example of the Long-form Table Question
Answering (LFTQA) task investigated in our work.

reasoning over the tabular content to compose the
paragraph-long answer.

Recent studies highlight the exceptional per-
formance of Large Language Models (LLMs) in
LFTQA tasks (Zhao et al., 2023b; Chen, 2023; Ye
et al., 2023). However, the reliable evaluation of
LLM-based systems in this domain remains a rel-
atively unexplored area. Unlike conventional text
generation tasks, where automatic metrics such
as BLEU and ROUGE can somewhat effectively
gauge the fluency and surface-level coherence of
the generated text, LFTQA demands a more nu-
anced assessment approach. These traditional met-
rics, primarily designed for shorter texts, often fall
short in LFTQA where the answers not only need
to be contextually rich and structurally complex
but also deeply rooted in logical reasoning derived
from the underlying tabular data. They struggle to
evaluate the logical structure and reasoning accu-
racy essential for long-form responses, as they do
not account for the correctness of data interpreta-
tion or the ability to maintain a coherent argument
over extended narratives. This limitation signifi-
cantly impacts their utility in scenarios where the
decision-making process relies heavily on the ac-
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curate and logical processing of structured data,
necessitating the development of new metrics that
can more effectively measure these critical aspects.

Our research demonstrates that existing auto-
matic metrics are inadequate in distinguishing be-
tween high-quality, factually accurate answers and
those that are merely coherent. This discrepancy is
alarming because developers might choose subopti-
mal systems for real-world applications if they rely
solely on automatic metrics to compare and rank
different LFTQA systems. To better investigate the
automated evaluation methods for LFTQA tasks,
we have constructed a meta-evaluation dataset
named LFTQA-Eval, consisting of 2,988 human-
annotated examples. Specifically, we gathered out-
puts from leading LLM-based systems on the FE-
TAQA (Nan et al., 2022) and QTSUMM (Zhao
et al., 2023a) datasets. We then benchmarked ex-
isting automatic evaluation metrics for these tasks,
leveraging our collected human annotations across
two distinct dimensions: faithfulness and compre-
hensiveness. Our experimental results demonstrate
that all the examined automated metrics exhibit
low correlations with human judgments, reveal-
ing their unreliability in determining the quality of
LLM-generated answers and comparing different
LLM-based systems. Moreover, we conducted an
in-depth analysis of the failures associated with
automated evaluation methods, supplemented by
illustrative examples that provide valuable insights
into potential areas for enhancement.

2 LFTQA-EVAL Construction

To better investigate the automated evaluation meth-
ods for LFTQA tasks, we have constructed a
meta-evaluation dataset named LFTQA-Eval. The
following subsections discuss the data collection
methodology and annotation process.

2.1 Collecting LLM Output for LFTQA
We examine LFTQA automated evaluation meth-
ods on FETAQA and QTSUMM. Table 1 illustrates
the basic data statistics of these two datasets.

• FETAQA (Nan et al., 2022) is designed for free-
form table question answering, with answers av-
eraging 18.9 words. It requires models to extract
question-relevant information from the given ta-
ble, and then aggregate and reason over this infor-
mation to produce a coherent long-form answer.

• QTSUMM (Zhao et al., 2023a) requires models
to perform reasoning and analysis akin to hu-

Property FETAQA QTSUMM

Table Source Wikipedia Wikipedia

Unique Tables 1,942 424
Avg. Rows per Table 14.2 12.0
Avg. Columns per Table 5.7 6.7
Avg. Table Title Length 5.4 7.4

Avg. Query Length 14.0 22.3
Avg. Summary Length 23.3 67.8

# QAs in Development Set 1,001 1,052

Table 1: Basic statistics of the FETAQA and QTSUMM
test sets used in our experiments.

man thought processes on tables sourced from
Wikipedia to produce paragraph-length answers.
Compared to the FETAQA dataset, outputs in
QTSUMM are longer, averaging 68.0 words.

Collecting LLM Output We collect output from
eight popular LLMs using zero-shot prompting
methods, including Llama-2&3-70B (Touvron
et al., 2023), Qwen1.5-72B (Bai et al., 2023),
Mistral-7B (Jiang et al., 2023a), DeepSeek-LLM-
67B (DeepSeek, 2023), Gemma-7B (Team et al.,
2024), OLMo-7B (Groeneveld et al., 2024), Yi-1.5-
34B (01.AI, 2023), Phi-3-Medium (Abdin et al.,
2024), and GPT-3.5-Turbo&4o (OpenAI, 2023).
We use chat or instruct versions for each model.
Additionally, we select the most recent, largest, and
best-performing checkpoint available as of paper
submission (i.e, June 15, 2024). We randomly sam-
ple 150 examples from the development sets of
FETAQA and QTSUMM, and collect correspond-
ing model outputs of these sampled examples. This
results in a total of 2,988 examples within the final
LFTQA-Eval benchmark (we exclude 12 empty
model responses).

2.2 Evaluation Criteria
The automated evaluation of LFTQA tasks is chal-
lenging due to the unique features of LFTQA:
1) conducting intricate reasoning across multiple
sources of information, and 2) ensuring factual ac-
curacy while avoiding hallucination. To evaluate
the reliability of automated evaluation methods for
LFTQA, we collect human evaluation scores for
each model output based on the the dimensions
of Faithfulness and Comprehensiveness, respec-
tively. Our preliminary study indicates that LLM-
based systems exhibit the capability to generate
texts that are both fluent and coherent, devoid of
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spelling and grammatical errors. Therefore, we
have excluded the evaluation of fluency and coher-
ence from our analysis.

• Faithfulness: A good answer should be firmly
rooted in the source table. It should consist of
correct information from the table and precisely
address the posed question, avoiding any inaccu-
racies or hallucinations.

• Comprehensiveness: A good answer should
comprehensively include all relevant information
from the tabular data that addresses the user’s
question, fully meeting their informational needs.

2.3 Collecting Human Evaluation Scores
We tasked annotators to evaluate answers using a
Likert scale ranging from 1 to 5 for the criteria
of faithfulness and comprehensiveness, individu-
ally. To ensure the high quality of annotations,
we hired eight undergraduate students proficient
in English. Before starting the annotations, each
annotator completed a one-hour online training ses-
sion and reviewed a guide detailing the task execu-
tion steps. The annotators were compensated at an
approximate hourly rate of $10, aligned with the
complexity and duration of the task. Each sample
was independently evaluated by two different an-
notators to mitigate individual bias and variance in
scoring. For each instance, we use the average of
the two annotators’ scores as the final human eval-
uation score. Instances of significant disagreement
(a variance greater than 2 points) were re-evaluated
by an additional annotator. We achieved substantial
inter-annotator agreements, with Krippendorff’s al-
pha for faithfulness- and comprehensiveness-level
annotation at 0.738 and 0.714, respectively. This
highlights the high-quality of LFTQA-Eval.

2.4 Collecting Automated Evaluation Scores
We examine following automatic metrics that are
widely used in the LFTQA task, investigating their
reliability in evaluating model performance:

• BLEU (Papineni et al., 2002) computes the ge-
ometric mean of the modified precision scores
of the translated text and incorporates a brevity
penalty factor. We use SacreBLEU (Post, 2018)
for BLEU score calculation.

• ROUGE (Lin and Hovy, 2003) assesses the de-
gree of lexical similarity between the generated
text and the reference text. We employ F1 score
for ROUGE-L.

• METEOR (Banerjee and Lavie, 2005) is devel-
oped to address the limitations of BLEU by intro-
ducing a method where alignment is established
through the mapping of unigrams.

• BERTScore (Zhang et al., 2020) measures the
similarity between the generated output and the
reference text by utilizing contextualized token
embeddings derived from a pre-trained model.

• TAPAS-Acc (Liu et al., 2022) assesses the
faithfulness of table-to-text generation using
TAPAS (Herzig et al., 2020) pretrained on the
TabFact (Chen et al., 2020) dataset.

• AutoACU (Liu et al., 2023c) presents a reference-
based automated evaluation system, utilizing
atomic content units (ACUs) to gauge the simi-
larity between text sequences.

We also adopt an LLM-based evaluation system,
G-Eval (Liu et al., 2023a), to the LFTQA task.
G-Eval employs LLMs using a chain-of-thought
approach and the form-filling paradigm to assess
the quality of generated text. We adopt the official
prompt of evaluation instruction to assess the faith-
fulness and comprehensiveness of the generated
answers, separately. The evaluation prompts used
are presented in Appendix. We use the Llama-3.1-
70B, GPT-4o-mini, and GPT-4o as the evaluators.
For each model output collected in Section 2.1, we
measure the scores of aforementioned metrics as
automated evaluation scores.

2.5 Evaluating Automatic Evaluation Metrics
To evaluate the performance of automatic metrics,
the human evaluation result on the same evalua-
tion target is considered the gold standard, and
metric performance is measured by the correla-
tion between the human evaluation scores and auto-
matic metric scores. Following previous work (Co-
han and Goharian, 2016; Fabbri et al., 2021; Liu
et al., 2023b), we calculate the correlation at the
instance-level. Specifically, given n QA examples
and m LFTQA systems, the human evaluation and
an automatic metric result in two n-row, m-column
score matrices H , M respectively. The instance-
level correlation can be computed as the average of
sample-wise correlations as follows:

rins(H,M) =

∑
i C(Hi,Mi)

n
, (1)

Where Hi and Mi represent the evaluation results
for the i-th data sample, with C denoting a func-
tion that computes a correlation coefficient. In this
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FETAQA QTSUMM

Metric Comp. Faith. Comp. Faith.

BERT-Score 0.052 0.041 0.085 0.072
TAPAS-Acc 0.064 0.008 0.022 0.076
ROUGE 0.104 0.206 0.186 0.124
METEOR 0.191 0.216 0.204 0.187
AutoACU 0.143 0.262 0.268 0.188
BLEU 0.293 0.415 0.425 0.341

G-Eval4o−mini Faith. 0.397 0.466 0.466 0.342
G-Eval4o−mini Comp. 0.381 0.486 0.508 0.359
G-Eval3.1−70B Comp. 0.424 0.521 0.543 0.426
G-Eval3.1−70B Faith. 0.435 0.534 0.545 0.433
G-Eval4o Faith. 0.470 0.628 0.633 0.470
G-Eval4o Comp. 0.500 0.650 0.662 0.493

Table 2: Results of instance-level Pearson correlations
between automatic metrics and human judgments on
FETAQA and QTSUMM datasets.

study, we employ Pearson correlation to measure
the correlations between human and automated
evaluation systems.

3 Experimental Results

3.1 Main Results

Table 2 illustrates the instance-level Kendall’s tau
correlation between automatic and human judge-
ments. We can draw following two conclusions
based on the results: Existing automatic met-
rics fail in assessing the answers generated by
LLM-based systems. Table 2 reveals a general
trend of low correlations across a range of met-
rics (e.g., BERT-Score, ROUGE, METEOR, and
TAPAS-Acc), when evaluating individual LLM-
generated responses. This indicates a widespread
issue among current automatic metrics in measur-
ing the faithfulness and comprehensive of LLM-
generated answers, pointing to a systemic failure to
align with human judgments at the instance level.
LLM-based metrics demonstrate a significant
improvement over traditional automated met-
rics in terms of correlation with human evalu-
ation. G-Eval consistently achieves positive and
high correlation scores, demonstrating the effec-
tiveness of LLM-based metrics. Moreover, com-
pared to Llama-3, GPT-4o yields higher scores, in-
dicating that its evaluation results correspond more
closely with human assessments. This superior
performance reflects the enhanced evaluation ca-
pabilities of larger-size models in aligning with
human judgment standards for the LFTQA task.

3.2 Case Study

To gain deeper insights into the failure cases of
automated evaluation systems for LFTQA tasks,
we conduct detailed human analyses by exploring
scenarios where automated evaluations fall short.
We identify three primary failure scenarios along
with their underlying causes as follows:

The Effect of Question As we delve deeper into
the examples, we observe that the clarity of the
questions significantly impacts the quality of the
generated answers. Ambiguous questions can lead
the model to misinterpret the key elements, result-
ing in the retrieval of incorrect information from
the tables. Furthermore, we discovered that some
questions were subjective or open-ended, which
led to a variety of perspectives and content in the
answers. The information related to these ques-
tions may not be directly presented or elaborated
in the given tables. Instead, it should be inferred
and evaluated from external materials, requiring
careful speculation and analysis. In contrast, both
the ground truth and generated answers typically
reflect only a subset of these potential viewpoints.
Table 3 in Appendix presents detailed examples.

The Effect of Ground Truth Although ground
truth is used as the standard reference in the eval-
uation process, it has certain issues that affect the
quality of the assessment. Ground-truth answers
often include extensive descriptive details, which
can make them redundant and contain content ir-
relevant to the questions. Additionally, in some
instances, the ground truth fails to provide the spe-
cific information requested in the question. This
can lead to lower evaluation scores, even when
the generated outputs are accurate. Table 4 in Ap-
pendix presents detailed examples.

The Effect of Generated Answer LLM-based
models excel at incorporating additional, reasoning-
intensive information that is not present in ground-
truth answers. They generate direct, parallel struc-
tures in their responses, which align well with hu-
man expression in real-world applications. How-
ever, current automated metrics struggle to capture
this supplementary information and concise struc-
tures, resulting in automated evaluation scores that
are significantly lower than human scores. Table 5
in Appendix presents detailed examples.
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4 Related Work

Table Question Answering (QA) challenges mod-
els to derive accurate answers from data presented
in tables. This field is bifurcated into short-form
QA (Pasupat and Liang, 2015; Zhong et al., 2017;
Zhao et al., 2023c), which focuses on concise an-
swers, and long-form QA (Nan et al., 2022; Zhao
et al., 2023a), which demands the generation of
paragraph-length responses that require advanced
reasoning capabilities. Unlike short-form Table
QA, where accuracy—the proportion of questions
correctly answered—is the primary metric, the eval-
uation of LFTQA systems introduces unique chal-
lenges, particularly in ensuring the faithfulness and
consistency of the generated responses to the un-
derlying tabular data and posed questions. These
responses must not only be accurate but also co-
herent and contextually relevant. In the era of
LLMs (Zhao et al., 2023b; Chen, 2023; Ye et al.,
2023), refining the automated evaluation methods
to better capture the complexities of LFTQA re-
mains a critical and ongoing area of research.

To evaluate automatic metric performance for
text generation, several human evaluation bench-
marks have been collected (Cohan and Goharian,
2016; Dhingra et al., 2019; Gabriel et al., 2021;
Fabbri et al., 2021; Jiang et al., 2023b; Liu et al.,
2024), comprising system-generated text and their
human evaluation scores. The human evaluation re-
sult on the system-generated text is considered the
gold standard, and metric performance is measured
by the correlation between the human evaluation
scores and automatic metric scores. To the best of
our knowledge, we are the first to examine the au-
tomated evaluation methods for LFTQA research.

5 Conclusion

Our exploration into the evaluation of LLMs for
LFTQA tasks reveals a significant gap between
current automatic metrics and human judgment,
particularly in assessing answer faithfulness and
comprehensiveness. The insights from the LFTQA-
Eval dataset highlight the need for more nuanced
evaluation methods that align more closely with
human evaluative standards. Addressing this dis-
crepancy is essential for advancing the reliability of
LFTQA systems and ensuring their practical utility
in real-world scenarios.

Limitations

Our analysis is limited to 2,988 examples for which
we have collected. While a larger evaluation set
would allow for more statistically significant con-
clusions, this would require a significantly greater
allocation of time and resources. We encourage
future research to adopt our protocol and expand
the benchmark for further analysis.
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Hailey Schoelkopf, Riley Kong, Xiangru Tang,
Mutethia Mutuma, Ben Rosand, Isabel Trindade,
Renusree Bandaru, Jacob Cunningham, Caiming
Xiong, Dragomir Radev, and Dragomir Radev. 2022.
FeTaQA: Free-form table question answering. Trans-
actions of the Association for Computational Linguis-
tics, 10:35–49.

OpenAI. 2023. Gpt-4 technical report. ArXiv,
abs/2303.08774.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1470–
1480, Beijing, China. Association for Computational
Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Xiangru Tang, Yiming Zong, Jason Phang, Yilun Zhao,
Wangchunshu Zhou, Arman Cohan, and Mark Ger-
stein. 2024. Struc-bench: Are large language models
good at generating complex structured tabular data?
In Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies

(Volume 2: Short Papers), pages 12–34, Mexico City,
Mexico. Association for Computational Linguistics.

Gemma Team, Thomas Mesnard, Cassidy Hardin,
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay
Kale, Juliette Love, Pouya Tafti, Léonard Hussenot,
Pier Giuseppe Sessa, Aakanksha Chowdhery, Adam
Roberts, Aditya Barua, Alex Botev, Alex Castro-
Ros, Ambrose Slone, Amélie Héliou, Andrea Tac-
chetti, Anna Bulanova, Antonia Paterson, Beth
Tsai, Bobak Shahriari, Charline Le Lan, Christo-
pher A. Choquette-Choo, Clément Crepy, Daniel Cer,
Daphne Ippolito, David Reid, Elena Buchatskaya,
Eric Ni, Eric Noland, Geng Yan, George Tucker,
George-Christian Muraru, Grigory Rozhdestvenskiy,
Henryk Michalewski, Ian Tenney, Ivan Grishchenko,
Jacob Austin, James Keeling, Jane Labanowski,
Jean-Baptiste Lespiau, Jeff Stanway, Jenny Bren-
nan, Jeremy Chen, Johan Ferret, Justin Chiu, Justin
Mao-Jones, Katherine Lee, Kathy Yu, Katie Milli-
can, Lars Lowe Sjoesund, Lisa Lee, Lucas Dixon,
Machel Reid, Maciej Mikuła, Mateo Wirth, Michael
Sharman, Nikolai Chinaev, Nithum Thain, Olivier
Bachem, Oscar Chang, Oscar Wahltinez, Paige Bai-
ley, Paul Michel, Petko Yotov, Rahma Chaabouni,
Ramona Comanescu, Reena Jana, Rohan Anil, Ross
McIlroy, Ruibo Liu, Ryan Mullins, Samuel L Smith,
Sebastian Borgeaud, Sertan Girgin, Sholto Douglas,
Shree Pandya, Siamak Shakeri, Soham De, Ted Kli-
menko, Tom Hennigan, Vlad Feinberg, Wojciech
Stokowiec, Yu hui Chen, Zafarali Ahmed, Zhitao
Gong, Tris Warkentin, Ludovic Peran, Minh Giang,
Clément Farabet, Oriol Vinyals, Jeff Dean, Koray
Kavukcuoglu, Demis Hassabis, Zoubin Ghahramani,
Douglas Eck, Joelle Barral, Fernando Pereira, Eli
Collins, Armand Joulin, Noah Fiedel, Evan Senter,
Alek Andreev, and Kathleen Kenealy. 2024. Gemma:
Open models based on gemini research and technol-
ogy.

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter
Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava,
Shruti Bhosale, Daniel M. Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull,
David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin
Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami,
Naman Goyal, Anthony S. Hartshorn, Saghar Hos-
seini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor
Kerkez, Madian Khabsa, Isabel M. Kloumann, A. V.
Korenev, Punit Singh Koura, Marie-Anne Lachaux,
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai
Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew
Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan
Saladi, Alan Schelten, Ruan Silva, Eric Michael
Smith, R. Subramanian, Xia Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin
Xu, Zhengxu Yan, Iliyan Zarov, Yuchen Zhang, An-
gela Fan, Melanie Kambadur, Sharan Narang, Aure-
lien Rodriguez, Robert Stojnic, Sergey Edunov, and
Thomas Scialom. 2023. Llama 2: Open foundation
and fine-tuned chat models.

14702

https://doi.org/10.18653/v1/2024.findings-naacl.280
https://doi.org/10.18653/v1/2024.findings-naacl.280
https://doi.org/10.18653/v1/2024.findings-naacl.280
https://doi.org/10.18653/v1/2023.emnlp-main.1018
https://doi.org/10.18653/v1/2023.emnlp-main.1018
https://doi.org/10.18653/v1/2023.emnlp-main.1018
https://doi.org/10.1162/tacl_a_00446
https://api.semanticscholar.org/CorpusID:257532815
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/2024.naacl-short.2
https://doi.org/10.18653/v1/2024.naacl-short.2
http://arxiv.org/abs/2403.08295
http://arxiv.org/abs/2403.08295
http://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288


Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei
Huang, and Yongbin Li. 2023. Large language mod-
els are versatile decomposers: Decomposing evi-
dence and questions for table-based reasoning. In
Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR ’23, page 174–184, New
York, NY, USA. Association for Computing Machin-
ery.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

Yilun Zhao, Yunxiang Li, Chenying Li, and Rui Zhang.
2022a. MultiHiertt: Numerical reasoning over multi
hierarchical tabular and textual data. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 6588–6600, Dublin, Ireland. Association for
Computational Linguistics.

Yilun Zhao, Hongjun Liu, Yitao Long, Rui Zhang,
Chen Zhao, and Arman Cohan. 2024a. Financemath:
Knowledge-intensive math reasoning in finance do-
mains. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 12841–12858, Bangkok,
Thailand. Association for Computational Linguistics.

Yilun Zhao, Yitao Long, Hongjun Liu, Ryo Kamoi,
Linyong Nan, Lyuhao Chen, Yixin Liu, Xian-
gru Tang, Rui Zhang, and Arman Cohan. 2024b.
DocMath-eval: Evaluating math reasoning capabili-
ties of LLMs in understanding long and specialized
documents. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 16103–16120,
Bangkok, Thailand. Association for Computational
Linguistics.

Yilun Zhao, Linyong Nan, Zhenting Qi, Rui Zhang,
and Dragomir Radev. 2022b. ReasTAP: Injecting ta-
ble reasoning skills during pre-training via synthetic
reasoning examples. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 9006–9018, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Yilun Zhao, Zhenting Qi, Linyong Nan, Boyu Mi, Yixin
Liu, Weijin Zou, Simeng Han, Ruizhe Chen, Xiangru
Tang, Yumo Xu, Dragomir Radev, and Arman Cohan.
2023a. QTSumm: Query-focused summarization
over tabular data. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1157–1172, Singapore. Associa-
tion for Computational Linguistics.

Yilun Zhao, Haowei Zhang, Shengyun Si, Linyong Nan,
Xiangru Tang, and Arman Cohan. 2023b. Investi-
gating table-to-text generation capabilities of large
language models in real-world information seeking
scenarios. In Proceedings of the 2023 Conference on

Empirical Methods in Natural Language Processing:
Industry Track, pages 160–175, Singapore. Associa-
tion for Computational Linguistics.

Yilun Zhao, Chen Zhao, Linyong Nan, Zhenting
Qi, Wenlin Zhang, Xiangru Tang, Boyu Mi, and
Dragomir Radev. 2023c. RobuT: A systematic study
of table QA robustness against human-annotated ad-
versarial perturbations. In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 6064–
6081, Toronto, Canada. Association for Computa-
tional Linguistics.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning.

A Appendix

G-Eval for Evaluating Faithfulness

### Task Introduction:
Given a complex question and a generated answer
about a table, your task is to rate the answer’s
Faithfulness.

### Evaluation Criteria:
Faithfulness(1-5): A good answer should accurately
and completely address the given question.It must
be based entirely on the information provided and
should not include any unfaithful or hallucinated
content.

### Evaluation Steps:
1. Thoroughly review both the table and the question,
ensuring a full understanding of the information they
convey. Identify and analyze key points, critical data,
and important details within the table that is relevant
to the question.
2. Carefully examine the proposed answer, focusing
on its faithfulness. Check for factual correctness and
verify whether the answer reflects and aligns with
the information presented in the table.
3. Evaluate the answer’s faithfulness using a strict 1
to 5 rating scale, with 1 being the lowest and 5 the
highest.

Figure 2: G-Eval for Evaluating the faithfulness of the
LLM generated answer.
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Error Type Example Explanation

Question is ambiguous Question: Who were the top three scorers for
the 1961-62 Michigan Wolverines men’s basket-
ball team and how many points did they score?

It may take individual scores but is phrased in
a way that could be interpreted as asking for a
total score, potentially leading to the total score
being treated as another player in the ranking.

Subjective issues Question: How did the performance of Tom
Brady in terms of passing yards during the Reg-
ular Season 2011 compare with other quarter-
backs listed in 2011?

The subject of these questions might result in
multiple reasonable interpretations and answers.
For example, responses could pertain to Tom’s
scoring rate, passing rate, ball handling perfor-
mance, etc., each in different ways.

Open-ended questions Question 1: Summarize the basic information
of the episode(s) written by Damon Lindelof.
Question 2:Summarize the performance of
Weekend Hussler in the Caulfield Guineas.

These questions involve various perspectives and
require external information to be adequately ad-
dressed. For example, the first question might
pertain to understanding the play, including plot
trends, character development, and thematic el-
ements in the episode. Different background
knowledge and perspectives will result in vary-
ing answers.

Table 3: Case studies on evaluation errors due to the effects of questions.

Error Type Example Explanation

Redundancy in Ground
Truth Answer

Generated Answer: The quantity of the aircraft
models that were first introduced between the years
1980 and 1985 inclusive is 3 and their build years
are 1978, 1979, and 1971.
Ground Truth Answer:The number of aircraft mod-
els that were initially launched within the timeframe
extending from the year 1980 up to and including the
year 1985 amounts to a total of three distinct models.
Specifically, the construction years for these models
are identified as the years 1978, 1979, and 1971 re-
spectively.

Ground truth answers tend to include ad-
ditional details that may not directly con-
tribute to answering the question in some
cases while the generated answers are con-
cise with all essential information. Based
on the example provided, the ground truth
answer offers a more comprehensive and de-
tailed description of the launch times of the
aircraft models.

Mismatch Between
Question and Ground
Truth Answer

Generated Answer: The track that has the lowest
bpm on the Speed SFX series is ’Rhythm & Police
(K.O.G G3 Mix)’ and the track with the highest bpm
on the Speed SFX series is the ’Mission: Impossible
Theme’.
Ground Truth Answer: The Speed SFX’s lowest
bpm is 175 on tracks 5, and the highest bpm is 195
on 20 in the Speed series.

The ground truth focuses on the BPM val-
ues without mentioning specific track names,
which is the primary detail the question asks
for. Conversely, the prediction accurately
identifies the tracks by name, directly ad-
dressing the question. Therefore, the ground
truth fails to provide the specific information
that the question seeks.

Table 4: Case studies on evaluation errors due to the effects of ground truth answers.

14704



Error Type Example Explanation

Inconsistency in LLM
Output Length

Generated Answer: The HP LaserJet 4250 has
a faster CPU speed of 460 MHz compared to
the 4200’s 300 MHz and its print speed is also
higher at 43 pages per minute (PPM) compared
to the 4200’s 35 PPM, yet both printers come
with a standard memory of 48 MB and can be
expanded up to a maximum of 512 MB.
Ground Truth Answer:The HP LaserJet 4200
and 4250 models, both in HP LaserJet 4000 se-
ries, have some same and different specifica-
tions. In same parts, both models come out
in November 2002 and stop in June/November
20051. They have print resolution of 1200 DPI.
Also, both printers can make the memory big-
ger, up to 512 MB. But, there are some different
things between these two models. The LaserJet
4200 has 300 MHz CPU speed, but 4250 has
faster 460 MHz CPU. Also, 4200 model can
print 35 pages in one minute (PPM), but 4250
can print a little faster, 43 PPM".

The GT length is 68, while the LLM-generated
length is 52.16. This indicates that the predicted
output is significantly shorter than the actual
answer. Generated responses tend to be con-
cise and straightforward, focusing on delivering
key points efficiently. In contrast, the actual an-
swer provides more extensive information, with
greater detail and elaboration. This difference
highlights a tendency for automated responses
to prioritize brevity.

Answers’ Different
Structures

Generated Answer: The quantity of the air-
craft models that were first introduced between
the years 1980 and 1985 inclusive is 3 and their
build years are 1978, 1979, and 1971.
Ground Truth Answer: Between the years
1980 to 1985 altogether, Agderfly added three
airplane models to its fleet. In the year 1980,
one Piper Chieftain made in 1978 was added,
also one Piper Tomahawk was made in 1979
in the same year. The 1985 year, one Piper
Seneca which was made in 1971. In total, during
this time, Agderfly added three aircraft models
whose combined quantity is four units.

Generated answers tend to be structured with
parallel objects, while ground truth answers of-
ten utilize complex clauses to introduce related
information thoroughly. In this example, the
generated answer simply lists the years, while
the ground truth introduces the information for
each year in a single, comprehensive sentence.
This discrepancy in structure can result in mis-
alignment between automated predictions and
the expected answers, impacting the accuracy of
evaluations and interpretations.

Table 5: Case studies on evaluation errors due to the effects of generated answers.
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G-Eval for Evaluating Comprehensiveness

### Task Introduction:
Given a complex question and a generated answer
about a table, your task is to rate the answer’s
Comprehensiveness.

### Evaluation Criteria:
Comprehensiveness(1-5): A good answer should
provide all the necessary information to address the
question comprehensively. Additionally, it should
avoid including details that, while consistent with the
tabular data, are irrelevant to the given question.

### Evaluation Steps:
1. Carefully review the table and the question,
ensuring you understand the full scope of the
information provided. Identify all relevant points
and details necessary to answer the question
comprehensively.
2. Analyze the proposed answer to determine if it
covers all the key aspects and addresses the question
fully. Check whether the answer omits any important
information or includes unnecessary details.
3. Evaluate the answer’s comprehensiveness using
a 1 to 5 rating scale, where 1 indicates the least
comprehensive and 5 indicates the most.

Figure 3: G-Eval for Evaluating the Comprehensiveness
of the LLM generated answer.
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