
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 14707–14719
November 12-16, 2024 ©2024 Association for Computational Linguistics

Weak Reward Model Transforms Generative Models into
Robust Causal Event Extraction Systems

Italo Luis da Silva1 Hanqi Yan1 Lin Gui1 Yulan He1,2
1King’s College London 2The Alan Turing Institute

{italo.da_silva,hanqi.yan,lin.1.gui,yulan.he}@kcl.ac.uk

Abstract

The inherent ambiguity of cause and effect
boundaries poses a challenge in evaluating
causal event extraction tasks. Traditional met-
rics like Exact Match and BertScore poorly
reflect model performance, so we trained evalu-
ation models to approximate human evaluation,
achieving high agreement. We used them to per-
form Reinforcement Learning with extraction
models to align them with human preference,
prioritising semantic understanding. We suc-
cessfully explored our approach through multi-
ple datasets, including transferring an evaluator
trained on one dataset to another as a way to de-
crease the reliance on human-annotated data. In
that vein, we also propose a weak-to-strong su-
pervision method that uses a fraction of the an-
notated data to train an evaluation model while
still achieving high performance in training an
RL model.1

1 Introduction

Causal event extraction is a crucial task in natu-
ral language understanding. It involves identifying
cause and effect clauses within an event and the
relationship between them. An example text along
with its causal event annotations from the Fine-
grained Causal Reasoning (FCR) dataset (Yang
et al., 2022) is shown in Figure 1. The emergence
of powerful generative models leads to a shift from
span-based extraction to the generation of struc-
tured information (Guo et al., 2023; Sainz et al.,
2023). However, recent studies suggest that Chat-
GPT (OpenAI, 2023) struggles to surpass smaller
supervised models (Han et al., 2023), even when
augmented with Chain-of-Thought (CoT) (Wei
et al., 2022b) and few-shot In-Context Learning
(ICL) (Brown et al., 2020).

We focus on fine-tuning smaller language mod-
els using text annotated with causal and effect spans

1Our code is available at https://github.com/oyarsa/
event_extraction/tree/causal-event-extraction.

Source Text
The firm’s gross margin is set to stabilize as Harley refocuses its
efforts on more profitable markets, and our base case assumes
that it stabilizes around 32% in 2029, helped by a more mea-
sured approach to entering new markets.

Gold Extraction
Cause: Harley refocuses its efforts on more profitable markets
Effect: The firm’s gross margin is set to stabilize
Relation: cause

Figure 1: Example instance from the Fine-grained
Causal Reasoning (FCR) dataset.

for causal event extraction. However, we observe
that unlike traditional named entity recognition,
where entities have clear and often unambiguous
boundaries, cause or effect spans may include in-
termittent text and could have blurred word bound-
aries. This means that even with minor word omis-
sions, the semantic meaning of the cause and effect
spans remains the same. Consequently, the same
text could have multiple valid annotations. There-
fore, training supervised models based on strictly
matching only one set of valid human annotations
may result in less robust models.

Evaluating causal event extraction is not straight-
forward. Evaluation metrics based on direct token-
level overlapping tend to neglect semantically valid
variations. Recent studies show that they do not
align well with human evaluations (Han et al.,
2023). This issue could be exaggerated under the
generative settings (Qi et al., 2023). While Large
Language Models (LLMs) are considered an al-
ternative in evaluating the generation tasks due to
their flexibility and ability to capture high-level se-
mantics, discrepancies still exist between GPT-3.5
evaluation outputs and human evaluations, so hu-
man evaluators remain crucial to provide reliable
feedback (Min et al., 2021), despite the high cost.

To address the high expense of human evalua-
tion, we explore training evaluators for causal event
extraction to account for semantic variations. We
sample event extraction results from GPT-3.5 and
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a fine-tuned FLAN-T5 (Chung et al., 2022) model,
inviting human annotators to label the correctness
of these extractions as ‘valid’ or ‘invalid’. These
human evaluation results are then used to train an
evaluator. Our experiments demonstrate that an
evaluator trained on a subset of human evaluations
from one dataset can be transferred to other datasets
without losing alignment with the actual human
evaluation results.

Furthermore, we propose using the evaluator as
a reward model to fine-tune the causal event ex-
traction model, FLAN-T5, through reinforcement
learning instead of traditional cross-entropy loss to
prioritise semantic similarity over exact matching.
The Policy Proximal Optimisation (PPO) (Schul-
man et al., 2017) algorithm is used to align gener-
ative models’ behaviours with human preferences.
In this method, a reward model is first trained on
human preference data and is used to produce feed-
back scores, guiding the policy model to reinforce
high scoring and penalise low-scoring generations.

In this paper, we incorporate the trained evalua-
tor as the reward model into PPO for causal event
extraction. Our contributions are threefold:
• We built a causal relation extraction platform

to collect human evaluation data, which is then
used to train an evaluator (i.e. a reward model). It
shows a 0.94 correlation with human evaluations.

• The reward model is integrated into the PPO al-
gorithm for fine-tuning a FLAN-T5 model for
causal event extraction. It achieves an average
improvement of 4% across three datasets.

• To decrease the reliance on human evaluations
and ground-truth references, we propose a weak-
to-strong framework to fully exploit data effi-
ciency of our proposed approach. We succeeded
in using 50% of the supervised data augmented
by weak supervision with dynamic filtering as a
reward model for RL training, obtaining compa-
rable performance with the full reward model.

2 Related Work

We will introduce the recent work in causal ex-
traction tasks, reward models for reinforcement
learning, weakly-supervised reward models and
data augmentation for generative models.

2.1 Causal event extraction

The goal of causal event extraction is to iden-
tify and extract cause and effect events from
an input text. Prior works focus on identi-

fying relations between entities, often trigger
words (Huguet Cabot and Navigli, 2021; Chen
et al., 2020; Ma et al., 2022). The works that fo-
cused on relations between events focus exclusively
on simple causal (Mirza and Tonelli, 2016; Mariko
et al., 2020) relations, with no fine-grained rela-
tions considered.

Existing works employed span-based extrac-
tion (Becquin, 2020) and sequence tagging (Saha
et al., 2022), but they are limited to single cause
and effect scenarios, with simple relations. How-
ever, the recent increase in generative models, such
as T5 (Raffel et al., 2020), GPT-3.5 and GPT-
4 (OpenAI, 2023) highlight another possibility.
They have shown the outstanding generalisation
to not only learn from IE training data through
fine-tuning (Paolini et al., 2021), but also extract
information in few-shot and even zero-shot sce-
narios relying solely on in-context examples or
instructions (Wei et al., 2022a; Wang et al., 2022a).
However, other works (Nasar et al., 2021; Zhou
et al., 2022) have shown deficiencies in scenarios
where there is a shortage of training data, an area
that has not been fully explored.

Traditional metrics such as exact match (EM)
and token F1 rely on the idea that a correct ex-
traction is one that completely matches the an-
notation. There are other automated metrics
such as ROUGE (Lin, 2004), BLEU (Papineni
et al., 2001), BLEURT (Sellam et al., 2020) and
BERTScore (Zhang et al., 2020) that attempt to
solve this problem, but we found them to not corre-
late well with human annotations. Our solution was
to train our own evaluation models so that they cor-
respond well with human evaluation. (Section 3).

2.2 Reward model in generative model
Reinforcement Learning through Human Feedback
(PPO) (Ouyang et al., 2022) has seen applica-
tions for instruction tuning (Shu et al., 2023; Lai
et al., 2023), controlled text generation (Castri-
cato et al., 2022; Shulev and Sima’an, 2024), sum-
marisation (Roit et al., 2023) and other generative
tasks (Cetina et al., 2021; Pang et al., 2023). How-
ever, to the best of our knowledge, it has not been
applied to causal event extraction as a mechanism
to combat the limitations of automated metrics.
Feedback acquisition is one of the significant com-
ponents, where humans or reward models assess
the quality of the base model’s responses to serve
as a supervision signal for generative models.

A critical aspect of this paradigm is to accu-
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rately model human preferences, which involves
the costly and time-consuming process of collect-
ing feedback data. Therefore, many recent works
focus on how to fully steer the capabilities of gener-
ative models with minimum supervision (Yu et al.,
2020; Otani et al., 2022).

Several methods have improved LLMs by (self-)
creating training data to augment fine-tuning. Self-
Instruct (Wang et al., 2022b) is a method for
self-instruction creation of prompts and responses,
which can be used to improve a base LLM. Several
approaches have also created training data by dis-
tilling from powerful LLMs, and shown a weaker
LLM can then perform well. For example, Al-
paca (Taori et al., 2023) fine-tuned a Llama 7B
model with text-davinci-003 instructions created in
the style of self-instruct. Alpagasus (Chen et al.,
2024) employed a strong LLM-as-a-Judge (Chat-
GPT) to curate the Alpaca dataset and filter to a
smaller set, obtaining improved results.

3 Approximating Human Evaluation

Automated metrics for the evaluation of generated
text have limitations in aligning with human eval-
uation. Metrics such as F1 score can measure the
overlap between the gold standard extraction and
model outputs, but fail to recognise the semantic
aspects of such comparisons. In causal event extrac-
tion, we often have situations where the output is
different and has incomplete overlap with the gold
standard but is nonetheless correct. Automated met-
rics are unable to deal with these situations since
they cannot account for semantic differences, such
as when adding or removing words does not change
the meaning of an extraction.

One way to circumvent this issue is to em-
ploy human annotators to evaluate model out-
puts. While effective, it is expensive and time-
consuming, severely limiting experimentation and
the development of new approaches.

To address these limitations, we propose to col-
lect human feedback to train an evaluation model
for high-quality feedback generation. The goal is to
have an automated way to evaluate model outputs
that approximates the judgement a human would
have made without the time-consuming and expen-
sive aspects of human evaluation.

3.1 Human Feedback Collection

Platform setup. We built a platform to collect hu-
man annotations for causal-effect extraction tasks.

For each sample, annotators are given the Source
Text, Cause and Effect. For both Cause and Ef-
fect, we provide the Reference and Model Output.
Annotators are asked to make a binary decision on
whether the Model Output is a valid extraction for
the given source text, with a sample only being
valid if both Cause and Effect are correct. See
Section E (Appendix) for more details.

To enhance the generalisability of the annotation
data, we first apply two different generative models,
FLAN-T5 and GPT-3.5, to generate the cause and
effect results for evaluation. We remove instances
where the generated outputs are exact matches with
the reference, as those cases are trivial to evalu-
ate. The remaining generated outputs are organised
using our tagged template. Figure 2 shows an ex-
ample instance from the FinCausal (Mariko et al.,
2020) dataset, including the Source Text, the Cause
and Effect spans, and the equivalent version in our
tagged format.

Source Text
It found that total U.S. health care spending would be about
$3.9 trillion under Medicare for All in 2019, compared with
about $3.8 trillion under the status quo. Part of the reason is
that Medicare for All would offer generous benefits with no
copays and deductibles, except limited cost-sharing for certain
medications .

Gold Extraction
Cause: Part of the reason is that Medicare for All would offer
generous benefits with no copays and deductibles, except limited
cost-sharing for certain medications.
Effect: It found that total U.S. health care spending would be
about $3.9 trillion under Medicare for All in 2019, compared
with about $3.8 trillion under the status quo.

Structured output (tagged format)
[Cause] Part of the reason is that Medicare for All would offer
generous benefits with no copays and deductibles, except limited
cost-sharing for certain medications. [Relation] cause [Effect]
It found that total U.S. health care spending would be about
$3.9 trillion under Medicare for All in 2019, compared with
about $3.8 trillion under the status quo.

Figure 2: An example instance from the FinCausal
dataset. Top to Bottom: Source text in original dataset,
Gold Standard Extraction, Structured output.

The gold standard extractions for cause and ef-
fect are formatted into the same structured output.
Finally, both the formatted model output and the
reference, along with the Source Text, are presented
to the annotators (shown in the following Exam-
ples). Our instructions for annotators primarily
address the shortcomings of the current evaluation
methods. We identify the two most common issues:
Wording Variation and Hallucination.
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Pitfalls of Existing Evaluation Schema. Three
representative cases are shown below. GPT-3.5 was
used as an evaluator. In both cases, GPT-3.5’s eval-
uation results differ from those of human evaluators.
The evaluator errors for Wording Variation always
occur in the span border, either adding some tokens
or removing some tokens. The Hallucination is-
sue happens when the generative model copies the
text correctly but generates incorrect numbers and
symbols. Swapped Events happen when the gener-
ative model identifies the correct events in the text,
but swaps the cause and effect. These examples
illustrate how even a competent model struggles to
reproduce human responses, motivating the need
for a specialised evaluation method.

Table 1 shows the incidence of these types of er-
rors in a random samples of 100 instances for both
GPT-3.5 and our trained evaluator model, demon-
strating how our evaluator is more robust.

Example 1
Source Text: Our near-term earnings forecast is depressed due to the
incorporation of crack spread futures curves despite a recent uptick.

Reference: [Cause] the incorporation of crack spread futures curves
despite a recent uptick [Relation] cause [Effect] Our near-term
earnings forecast is depressed.

Output: [Cause] the incorporation of poor crack spread futures
curves [Relation] cause [Effect] Our near-term earnings forecast is
depressed.

Evaluator: Invalid Human: Valid

Example 2
Source Text: Analyst Ratings This is a breakdown of recent ratings
and recommmendations for Auris Medical and Elite Pharmaceuticals,
as provided by MarketBeat.com. Auris Medical currently has a
consensus price target of $75.00, indicating a potential upside of
2,383.44

Reference: [Cause] Auris Medical currently has a consensus price
target of $75.00 [Relation] cause [Effect] a potential upside of
2,383.44%.

Output:[Cause] Auris Medical currently has a consensus price target
of $9.50 [Relation] cause [Effect] a potential upside of 655.21%
Evaluator: Valid Human: Invalid

Example 3
Source Text: CBRE’s preeminent competitive position derives in
large part from its lengthy track record of effective and ethical ser-
vice, which has bolstered its reputation..

Reference: [Cause] its lengthy track record of effective and ethical
service [Relation] cause [Effect] CBRE’s preeminent competitive
position.

Output: [Cause] CBRE’s preeminent competitive position [Rela-
tion] cause [Effect] its lengthy track record of effective and ethical
service Evaluator: Valid Human: Invalid

Instructions For Human Annotators. To alle-
viate the issues observed in the existing evaluation
methods, we establish criteria for annotators. Only
entries where both Cause and Effect satisfy all

Error type GPT-3.5 Our evaluator

Incorrect evaluation 54% 37%
- Word mismatch 28% 33%
- Hallucination 7% 0%
- Swapped Events 19% 4%

Correct evaluation 46% 63%

Table 1: Comparison of error types between GPT-3.5
and our trained evaluation model.

conditions should be considered as valid.
• Wording may differ between Reference and

Model Output. This is fine, as long as the Model
tokens come from the source text.

• There are no significant discrepancy between
Model Output and Reference, such as numbers,
subjects, time.

• If Cause and Effect happened to be in the same
sentence but not overlapping, make sure the to-
kens in Cause are not included in the Effect and
vice versa.

• In the rare cases where the Reference is obvi-
ously incorrect, ignore it and analyse the Model
Output with relation to the source text only.

3.2 Alignment with Human Feedback
We conducted human evaluation on the extraction
results from GPT-3.5 (10-shot) and FLAN-T5 on
the training sets of the three datasets: FCR (Yang
et al., 2022), FinCausal (Mariko et al., 2020) and
SCITE (Li et al., 2021).2 The Cohen’s Kappa is
0.75, 0.51 and 0.84 for FCR, FinCausal and SCITE,
respectively, showing a good level of agreement
between annotators on all datasets.

We use the extraction results from GPT-3.5 (10-
shot) and FLAN-T5 to train evaluation models by
obtaining human evaluations for the outputs of the
training sets for FCR and FinCausal. These human-
evaluated outputs were then used to train the eval-
uation models, while the development set outputs
were used to evaluate their performance3, with the
guiding metric being agreement between evaluator
outputs and the human annotation (Zheng et al.,
2023). Our goal is for these trained evaluators to
approximate human judgement so we can use them
as proxies for human evaluation in our experiments.

Our evaluation model is the DeBERTa-v3-
based (He et al., 2022) classifier, specifically the
xsmall variant, which we call DeBERTa-Valid. It

2Dataset statistics are shown in Table 5.
3We did not train an evaluator on SCITE because the num-

ber of training samples is too small.
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takes both the source text and the gold standard
extraction as inputs, along with the model output,
to produce a classification. It is a binary classifier,
with the positive class referring to ‘valid’ examples
and the negative class to ‘invalid’. We also explore
variations of the DeBERTa classifier:

• DeBERTa-Entailment: an instance is considered
correct if there is an entailment between the ex-
tracted output and the original source text. Its
inferior performance shows its inefficiency in
evaluating the generated cause/effects.

• DeBERTa-Valid variants: one variant excludes
the reference extraction, and another excludes
the source text. The poor performance of the vari-
ant without the reference shows its importance
to our evaluator. Notably, the version without
the source text also shows decreased agreement,
indicating that the evaluator still needs it, as the
references are not always reliable.

In addition, we use GPT-3.5 with or without
self-consistency as additional automated evaluators
for the causal event extraction task. To verify the
effectiveness of our trained evaluator models, we
calculate the agreement between our evaluator out-
puts and human evaluations on the development set,
along with categorical metrics such as Exact Match
in Table 2. We also examine the correlation be-
tween continuous metrics commonly used to eval-
uate extraction results, such as F1 and BertScore,
and human evaluations. Pearson correlation results
are shown in Tables 3. In both tables, we observe
the low scores of existing automated metrics, high-
lighting their inability to replicate human evalu-
ations. In contrast, our trained DeBERTa-based
model achives higher agreement and correlation
scores.

The results lead to the following observations:
(a) automatic metrics do not align well with hu-
man evaluation. (b) LLMs demonstrate simi-
lar results to SentenceTransformer (Reimers and
Gurevych, 2019) (SentTF), even with advanced
prompting techniques, such as CoT and Self-
Consistency (Wang et al., 2022a). (c) Supervised
classification models (DeBERTa-*) perform the
best. The inclusion of the reference is particularly
crucial, which allows the reward model to achieve
near-complete agreement with human evaluation.

We use DeBERTa-Valid, the best-performing
model, as our proxy for human evaluation and the
primary reward model in the following sections.

Metric T5 GPT-3.5
(10-shot)

Exact Match 55.60 72.04

GPT-3.5 64.85 35.88
GPT-3.5-self-consistency 85.58 77.92

DeBERTa-entailment 68.61 43.19
DeBERTa-Valid-w/o-Reference 65.03 35.98
DeBERTa-Valid-w/o-SourceText 92.51 82.47
DeBERTa-Valid 94.08 86.26

Table 2: Agreement between human annotations and
different metrics/evaluators on FCR (continuous metrics
omitted). Various metrics are used to evaluate causal
event extraction results from T5 and GPT-3.5 (10-shot)

Metric T5 GPT-3.5 (10-shot)

ROUGE-L 80.94 67.15
BLEU 76.73 66.46
BLEURT 77.93 68.63
BertScore 75.94 65.83
F1 80.61 65.64

SentTF 63.70 47.53

DeBERTa-Valid 87.04 72.98

Table 3: Pearson correlation between human evaluations
and different metrics/evaluators on FCR.

Transfer to other datasets. While using human
evaluation to train an evaluation model leads to
high-performing evaluators, this approach can be
costly, especially for large datasets. We propose an
alternative: train an evaluation model in one dataset
and transfer it to others with similar structure. This
is supported by the agreement between different
combinations of evaluators and datasets, as shown
in Table 4. We observe high agreement between the
FCR evaluator and the transferred datasets’ human
evaluations, demonstrating the evaluator’s transfer-
ability. As a result, we use the FCR evaluator as the
default reward model and the evaluator for causal
event extraction in our experiments.

Source i → Target j

FCR FinCausal SCITE

FCR 94.08 92.04 96.86
FinCausal 73.57 91.58 88.48

Table 4: Agreement between the feedback generated by
the reward model trained on dataset i and human evalu-
ation, when applying this model to generate feedback
for dataset j4.
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4 Causal Event Extraction with Weak
Reward Model

In this section, we introduce our Reinforcement
Learning (RL) framework designed to align our
generative extractor with human preferences. We
also describe our process for training a weakly su-
pervised reward model, which aims to minimise
the data needed for train the reward model.

4.1 Reinforcement Learning for Cause Event
Extraction

Our goal is to leverage the feedback from the
trained evaluator described in Section 3 to improve
the generative extractor to be better aligned with
human preferences. See Figure 3 for an overview
of our method.

Structured
Output

Extractor

Reward

Evaluator

Source 
Text

Gold 
Extraction

Figure 3: Architecture of our RL framework. PPO is
used to optimise the extractor given the reward from the
evaluator.

We initialise an RL policy from the FLAN-T5 su-
pervised fine-tuned extractor (our reference model).
It takes as input the source text and generates a
structured output representing the cause and effect
using our tagged format (Figure 2). Both input
and output are sequences of tokens from the model
vocabulary, which represents the action space. The
policy itself is a probability distribution over the
action space conditioned on the input tokens from
the source text.

The RL objective is to find the optimal policy
that maximises the reward. Our reward is generated
by the evaluation model described in Section 3. It
takes as input the source text, the gold standard
extraction and the output from the RL policy, gen-
erating a scalar score. This is done at the sequence
level, as a complete extraction is needed to deter-

4Because SCITE is a small dataset, we could not train an
effective evaluator with it. See Table 5 for dataset statistics.

mine the validity of the policy’s output. Therefore,
the score indicates whether the RL-generated ex-
traction is valid, relative to the source text and the
gold standard.

In addition to the reward model, we calculate the
Kullback-Leibler (KL) divergence to measure the
disparity between our policy and reference mod-
els. This helps us regulate the policy’s ability to
maintain the structured output format and prevent
it from forgetting how to extract causes and effects.
The final loss is a combination of the reward score
and the KL divergence. We use the Proximal Policy
Optimisation (PPO) algorithm to update the policy
parameters by optimising this loss. During training,
only the policy parameters are updated, while the
reference and reward models are frozen.

4.2 Training a Weak Reward Model using
Semi-Supervised Learning

Our approach works well but relies on the perfor-
mance of the reward model. While we have trained
a robust reward model, we explored scenarios with
more limited data. To investigate this, we designed
a weak-to-strong supervision process where we
used a small portion of our dataset to train the eval-
uator, treating the remaining data as unlabelled for
further improvements.

We randomly sampled x% of our labelled train-
ing data, where x is a hyperparameter. We first
trained a DeBERTa classifier reward model on the
x% data. We then used this classifier to generate
labels for the remaining data. To gauge the model’s
confidence in each example, we applied softmax
to its outputs and retained only those examples
where the predicted class probability ranked in the
top 75% separately for each class (’valid’ and ’in-
valid’). This ensured an equal proportion of ’valid’
and ’invalid’ weak labels. Next, we combined these
filtered examples with the original partial dataset
to create the final weakly-supervised dataset, and
trained a new DeBERTa model using this dataset.

Once we obtained a weakly-supervised reward
model, we integrated it into our RL process to de-
velop an RL-trained model. We then compared the
performance of this new model with the original
RL model trained with the full reward model. We
find that the weakly-supervised RL model has com-
petitive performance with the original RL model,
demonstrating the effectiveness of our method (Sec-
tion 5.3).
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5 Experiments

Datasets. We employ three causal extraction
datasets: FCR, FinCausal and SCITE. Table 5
shows statistics about them regarding the number
of examples in each split. Figure 2 shows an ex-
ample. Each entry contains an input context, cause
and effect spans. These are converted to our tagged
format, which represents the relations textually. Ta-
ble A1 (Appendix) shows more information.

Dataset Number of examples
Train Dev Test

FCR 19892 2482 2433
FinCausal 3397 641 817
SCITE 1078 191 -

Table 5: Dataset statistics.

Inplementation and Metrics. We use FLAN-
T5-Large as our policy model and DeBERTa-v3-
xsmall trained on human annotation data as our
reward model (Section 3). For evaluation, we ob-
tained the formatted outputs from FLAN-T5-Large
and gave them to our Human Proximal evaluator,
denoted as Human Prox.5, along with the refer-
ences and source text. We also include automatic
metrics such as Exact Match, Precision, Recall and
F1 for comparison.

Baselines. We compare with another extractive
IE model, Seq-tagging, which is a sequence la-
belling model to predict cause/effect BIO labels for
each token. For the generative IE models, we com-
pare with our backbone model FLAN-T5-Large.
We also compare with the commercial large lan-
guage models GPT-3.5 and GPT-4, both prompted
with a structure generative format, using in-context
learning. We also report metrics from the original
dataset papers (Yang et al., 2022; Mariko et al.,
2020; Li et al., 2021).

5.1 Main results

Table 6 shows the causal relation extraction results
of various models across three datasets. We see
that GPT-3.5 and GPT-4 underperform, along with
the other baselines, such as sequence tagging.

Our models perform much better, with the RL
variant achieving an improvement over the SFT

5This is the DeBERTa-Valid model trained with FCR de-
fined in Section 3.

version. This includes both automated metrics and
our Human Proximal (Human Prox.) evaluator.

Our Human Proximal evaluator is the trained
metric described in Section 3, which approximates
the human preference. We show that our super-
vised models achieve big improvement over both
baselines and GPT models, with the RL models
further improving on them. As this happens on all
three datasets, we establish the superiority of our
approach over the baselines.

P R F1 EM Human
Prox.

FCR

GPT-3.5 74.07 70.23 67.64 33.99 47.02
GPT-4 74.53 69.27 64.70 28.24 39.66
FCR-Baseline - - 74.54 23.01 -
Seq-tagging 77.76 77.78 77.74 41.30 52.82
FLAN-T5-Large (SFT) 80.02 80.48 80.96 54.13 64.42
FLAN-T5-Large (RL) 82.85 82.03 81.23 55.58 68.29

FinCausal

GPT-3.5 57.76 56.11 61.58 17.32 52.73
GPT-4 63.35 61.92 66.58 26.99 55.85
FinCausal-Baseline 50.99 51.74 51.06 11.11 -
Seq-tagging 21.59 27.05 60.82 01.56 05.62
FLAN-T5-Large (SFT) 78.19 77.93 78.52 66.61 81.12
FLAN-T5-Large (RL) 88.60 88.70 88.64 64.74 84.40

SCITE

GPT-3.5 46.66 86.08 60.48 53.66 52.88
GPT-4 37.97 83.70 52.23 46.86 57.59
SCITE-Baseline 83.33 85.81 84.55 - -
Seq-tagging 92.94 92.25 92.59 88.48 91.10
FLAN-T5-Large (SFT) 92.29 91.73 92.01 87.43 90.58
FLAN-T5-Large (RL) 94.54 93.70 94.12 93.98 92.67

Table 6: Causal relation extraction results on three
datasets with automatic metrics and human evaluation
showing our RL method performs the best in all three
datasets.

5.2 Ablation results of our Reward model

To analyse the effects of our reward model
trained on the human annotation dataset, we
replace it with two representative alternatives:
an entailment-based Natural Language Inference
model (Williams et al., 2018) and SentenceTrans-
former (SentTF). Entailment represents whether
the model output is a logical consequence of the
input text, indicating the cause-effect relation. Sen-
tenceTransformer is a pre-trained sentence embed-
ding method, which we use to embed the gold
extraction and model outputs, with the score be-
ing their normalised cosine similarity. Our reward
model achieves the best Human Proximal score
across the three datasets (Figure 4).
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Figure 4: Ablation results for reward model with Human
Proximal metric showing our reward model performs
the best.

Tolerance to Wording Variance. Our reward
model trained on the human annotation data cap-
tures the high-level semantic overlapping between
gold extraction and model outputs. It is also capa-
ble of identifying the correctness of model outputs
through source text understanding. Therefore, we
use the "without EM (w/o EM)" metric to measure
the percentage of correctly generated samples that
are not exactly matched with the provided refer-
ence. This highlights the main improvement over
automated metrics, where we can recognise results
that are correct but would have otherwise been
marked as incorrect because of their inexact result,
showing clear advantages for our evaluator over
using Entailment or SentenceTransformer.

5.3 Weak Supervision Evaluation

The results in Table 3 show an evaluator model
highly aligned with human preference data. How-
ever, this requires a time-consuming and expensive
process of manual annotation. To decrease the
reliance on this process, we looked for ways to
decrease the training set size.

We chose the FCR-based DeBERTa-Valid evalu-
ator from Section 3, as it showed the highest agree-
ment with human evaluation and other datasets.
We experimented with subsets of different sizes
and evaluated their performances. The results (Fig-
ure 5) show we can decrease the training set size
with a small impact on the human agreement of the
resulting evaluator. This motivated us to pursue a
way to train a high-quality evaluator with less data.

Our weak supervision process has three steps.
First, we sample a random subset of the training
data as our initial supervised dataset and use it to
train a partial evaluator. Second, we apply this par-
tial evaluator to the remaining data, which we treat
as unsupervised. We obtain the weak classifica-

tion labels and the confidence of the evaluator for
each entry and use a filtering process to determine
which ones to keep. Third, we combine the filtered
entries with the original subset and train a final
evaluator. Our filtering process separates the weak
labels into positive and negative sets, and for each
set, takes the top 75% entries by confidence, so the
final filtered set has an equal number of positive
and negative entries.

Table 7 shows the results of our weak supervi-
sion experiments. We experimented with different
subset sizes and found that the 50% subset achieves
the best performance in terms of the Human Prox-
imal and w/o EM metrics. It also matches the
performance of the Full RL model, showing we
can successfully decrease the reliance on human-
annotated data without a performance cost.
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1.00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Correlation VS Percentage of Full Training Samples

Figure 5: Evaluator agreement with human annotation
by percentage of FCR data used.

Model P R F1 HumanProx. w/o EM ↑
SFT 80.02 80.48 80.96 64.42 10.29
Full RL 82.85 82.03 81.16 68.29 12.71
30% + weak 80.28 84.19 82.18 68.37 12.63
50% + weak 80.11 84.18 82.09 68.86 13.07
80% + weak 81.18 82.23 81.72 67.41 11.60

Table 7: RL with weakly-supervised models, showing
the weakly-supervised variants are able to match the
fully-trained model performance.

6 Conclusion

We have explored several evaluation approaches
to address the inherent ambiguity of the causal
event extraction task. We find that using a gener-
ative model to perform extraction performs well,
but that evaluation with automated metrics is chal-
lenging. Our findings demonstrate the ability to
faithfully reproduce human evaluation results us-
ing a DeBERTa-based classifier trained on human
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evaluation of extraction outputs. We also apply
the evaluator as a reward model to Reinforcement
Learning, further aligning our generative extractor
model to human preferences.

We explore multiple datasets, showing how our
approach can be generalised and employed our
trained evaluator in a transfer setting, reducing
the need for further annotation of new data. Fi-
nally, we propose a weak-to-strong approach where
we only use a subset of annotated data to train a
weakly-supervised evaluator that can match the per-
formance of the fully-trained version.

Limitations

The datasets we used are limited to ones where
the causes and effects are spans of the source text.
Our approach does not work well with datasets
where the events are instead represented by trigger
words, as is common in other datasets, or when the
answers are free text, not spans of the source text.

Another limitation is how we define the input
of our evaluation. We require the reference and
without it, the evaluator does not perform well.
This means we are limited to datasets where we
have such a reference, preventing us from applying
the evaluator to those with blind data where we
only have the source text.

Finally, we focused on small models like
DeBERTa-v3 and FLAN-T5 because of how small
our datasets were. We expected smaller models
would be more data-efficient than large ones like
Llama.
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A Dataset Transformation

Our chosen datasets come in different formats,
which we must transform into our tagged format.
FCR is a collection of JSON files, where each entry
contains the text and character indices for the cause
and effect spans. FinCausal contains semicolon-
separated CSVs, where each entry contains the in-
put text and each cause effect spans as text. SCITE
comprises XML files, where each item is a tagged
representation of the sentences and their spans.

We convert them to a common format that is
used as the base for all of our models: a tagged
representation, shown in Figure 2. For FinCausal
and SCITE, which do not contain relations like
FCR does, we hard-code the Relation to ‘cause’.

The original SCITE dataset has examples with
more than one relation, which our models do not
support. We opted to use only the first causal rela-
tion for each example.

B Further Dataset Statistics

Table 5 in the main text shows the count of in-
stances per dataset and split. We now show the
average number of words for the source text, cause
and effect clauses in Table A1.

Dataset Average number of words
Context Cause Effect

FCR 31.37 10.43 10.79
FinCausal 42.77 18.23 17.20
SCITE 18.68 2.15 2.03

Table A1: Dataset statistics: average number of words
per part.

C Implementation Details

We used the KL divergence during training to en-
sure that the policy does not deviate too much from
the format it learned during supervised fine-tuning
(SFT). We found that some of the batches during
RL training would lead to very high KL values,
which would move the model too far in a given
direction, often leading to parameter collapses (i.e.
model weights going to NaN or infinity) or degen-
erate output (no longer recognisable as structured
text).

To prevent this, we found that skipping batches
with high KL values (over 2) made training con-
siderably more stable, as we only applied updates

from batches whose output was not too far from the
reference model. The downside is that this slows
down training, as skipping batches means fewer
updates, potentially leaving the policy in a local op-
timum. In our experience, this trade-off was worth
it, considering we still achieved improvements in
all our main RL experiments.

Hyperparameters. The SFT models used
FLAN-T5-Large as the base. The hyperparameters
were the same across all datasets: input sequence
length of 128 tokens, 20 training epochs, fixed
learning rate of 0.0001 and greedy decoding for
generation. We used an early-stopping scheme
with the patience of 5 epochs without improvement
based on the token F1 metrics.

The RL models were mostly similar, too: we
used a single epoch, with the PPO process using a
learning rate of 0.00014. The initial KL coefficient
varied by dataset, with FCR using 0.4, SCITE us-
ing 0.2 and FinCausal 0.05. For generation, the RL
models used beam search (2 beams) with multino-
mial sampling. Other parameters used the default
values from the Transformers and TRL libraries.
Other configuration options, such as reward nor-
malisation and scaling, did not lead to any improve-
ments. We found the RL models to be highly sensi-
tive to the hyperparameters.

The evaluation (reward) model was based on
DeBERTa-V3-xsmall. Its input sequence length
was 400 tokens (to fit the input context and refer-
ence extraction), learning rate of 0.00001 and 100
epochs, with early stopping patience of 10 epochs
without improvement based on the classification
F1 score. The reward models were largely robust
across different hyperparameter values and even
sizes: with larger DeBERTa models not leading to
significant improvements, we preferred using the
smallest model to decrease memory concerns when
using it alongside the larger FLAN-T5 model

D Software Used

Versions. We used Transformers6 4.33 to train
the FLAN-T5 and DeBERTa LLMs. For RL train-
ing, we used TRL7 0.8.6. All experiments were
run using Python 3.12 on Ubuntu 20.04 with an
NVIDIA A100 40 GB GPU running CUDA 12.2.
We also used NumPy8 1.24 and PyTorch9 2.0.

6https://github.com/huggingface/transformers
7https://github.com/huggingface/trl
8https://numpy.org
9https://pytorch.org
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Licenses. From the software mentioned above,
NumPy and PyTorch use the BSD license, TRL
and Transformers use Apache-2.0, and Python uses
the PSF license. The original code for this project
is licensed under GPL-3.0.

AI assistance. GitHub Copilot10, ChatGPT11

and Claude12 were used to assist in the develop-
ment of the code, while Perplexity13 was used for
general queries.

E Human Annotation

We built an online annotation platform using
Streamlit14 version 1.35. It was deployed on a
Digital Ocean15 Droplet. Figure 6 shows a screen-
shot of the annotation page of the platform with an
example from the FinCausal dataset.

The users were able to read the source text and
compare the reference and model outputs for each
entry before selecting whether the entry was ‘valid’
or ‘invalid’. The platform saved the answers as
soon as they were confirmed and allowed the users
to leave and return later to continue from where
they stopped.

Figure 6: Screenshot of our annotation platform show-
ing an example from the FinCausal dataset

10https://github.com/features/copilot
11https://chat.openai.com/
12https://claude.ai
13https://perplexity.ai/
14https://streamlit.io
15https://www.digitalocean.com
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