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Abstract

We introduce FINDVER, a comprehensive
benchmark specifically designed to evaluate
the explainable claim verification capabilities
of LLMs in the context of understanding and
analyzing long, hybrid-content financial doc-
uments. FINDVER is divided into three sub-
sets: information extraction, numerical reason-
ing, and knowledge-intensive reasoning—each
addressing common scenarios encountered in
real-world financial contexts. We assess a
broad spectrum of LLMs under long-context
and RAG settings. Our results show that even
the current best-performing system, Claude-
3.5-Sonnet, significantly lags behind human
experts. Our detailed findings and insights high-
light the strengths and limitations of existing
LLMs in this new task. We believe FINDVER
can serve as a valuable benchmark for evaluat-
ing LLM capabilities in claim verification over
complex, expert-domain documents.

§ github.com/yilunzhao/FinDVer

1 Introduction

In today’s information explosion era, the respon-
sibility of verifying the truthfulness of the item is
often passed on to the audience.unverified claims
about a company’s financial performance fre-
quently circulate in online media, potentially mis-
leading investors. Therefore, it is crucial to verify
these claims using the companies’ original financial
documents (i.e., earnings reports and regulatory fil-
ings). Recent advancements in Large Language
Models (LLMs) have attracted significant attention
due to their capabilities in solving a broad range
of tasks (Touvron et al., 2023b; Jiang et al., 2023b;
OpenAI, 2023a). However, it remains particularly
difficult for applying them to document-grounded
claim verification in real-world financial domains
due to the following two reasons:

First, financial documents are typically long, in-
tricate and dense, and they include both quantita-

Claim to verify:

The number of customers with accounts over 
120 days past due increased by 65,300 from 
March 31, 2023 to March 31, 2024.

Figure 1: An example from the numerical reasoning
subset of the FINDVER benchmark. To verify the claim,
the LLM is required to first locate claim-relevant data
points within long and hybrid-content financial docu-
ments, and then apply numerical reasoning over the
extracted data points for claim verification.

tive tables and qualitative text (Chen et al., 2021;
Zhu et al., 2021; Zhao et al., 2022, 2023d; Koncel-
Kedziorski et al., 2024). Extracting and analyz-
ing claim-relevant data from these documents re-
quires complicated document comprehension abil-
ities and professional knowledge in financial do-
mains. Moreover, the type of reasoning involved
encompasses various unique aspects that are less
studied, necessitating a dedicated approach to eval-
uation and application.

Second, in the financial domain, where decisions
often involve significant stakes, it is often critical
to provide clear and comprehensible rationales for
any claim verification decisions (Atanasova et al.,
2020, 2023). However, existing context-grounded
claim verification benchmarks (Chen et al., 2020;
Kamoi et al., 2023; Lu et al., 2023; Glockner et al.,
2024) primarily focus on the task of entailment
classification and do not evaluate the reasoning
process. This hinders the practical application and
evaluation of LLMs in real-world scenarios.

In response to the aforementioned pressing need,
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Dataset Input Context Annotation / Data Creation # Label
w. Expla-
nation?

Reasoning-
Intensive?

PubHealthTab (Akhtar et al., 2022) Wikipedia table Crowd-sourced 4 ✗ ✗

TABFACT (Chen et al., 2020) Wikipedia table Crowd-sourced 2 ✗ ✓

INFOTABS (Gupta et al., 2020) Wikipedia table Crowd-sourced 3 ✗ ✓

SCITAB (Lu et al., 2023) Scientific table Expert & InstructGPT 3 ✗ ✓

HOVER (Jiang et al., 2020) Wikipedia articles Crowd-sourced 2 ✗ ✗

DOCNLI (Yin et al., 2021) News article From summrization datasets 2 ✗ ✗

ContractNLI (Koreeda et al., 2021) Contract Expert & Crowd-sourced 2 ✗ ✗

LLM-AGGREFACT (Tang et al., 2024) Doc from various domains From existing benchmarks 2 ✗ ✗

WICE (Kamoi et al., 2023) Wikipedia article Crowd-sourced 3 ✗ ✗

AMBIFC (Glockner et al., 2024) Wikipedia article Crowd-sourced 3 ✗ ✗

CLAIMDECOMP (Chen et al., 2022a) Political article Expert 6 ✗ ✗

SCIFACT (Wadden et al., 2020) Scientific paper abstracts Expert 2 ✗ ✓

LIAR++ (Russo et al., 2023) Political article From fact-check website 2 ✓ ✗

FullFact (Russo et al., 2023) Web page From fact-check website 2 ✓ ✗

PUBHEALTH (Akhtar et al., 2022) Health Web page From fact check website 4 ✓ ✗

FINDVER (ours) Long financial doc with tables Expert 2 ✓ ✓

Table 1: Comparison between FINDVER and existing context-grounded claim verification datasets. FINDVER is
distinguished by four unique characteristics: (1) Expert Annotation: It is annotated by financial experts to ensure
high data quality; (2) Complex Document Comprehension: It requires interpreting a mix of textual and tabular
data within a long-context financial document; (3) Examination on Reasoning-Process Explanation: It enhances
claim verifications with detailed explanations about the reasoning process, increasing the benchmark’s practical
value; and (4) Diverse Reasoning for Real-world Scenarios: It incorporates various reasoning challenges, such as
extracting complicated information, performing numerical calculations, applying external professional knowledge,
and conducting comparative analyses. Accordingly, we divide the benchmark into three focused subsets, each
tailored to mirror distinct real-world financial analysis scenarios.

we present FINDVER, a comprehensive and do-
main expert-annotated explainable claim verifica-
tion benchmark that first explores in the context of
financial documents. The LLMs are tasked with
generating explanations of their reasoning to verify
claims labeled as “entailed” or “refuted”, based on
the information in the provided document, which
contains both textual and tabular data. To iden-
tify the common reasoning-intensive scenarios in
claim verification based on financial documents,
we engage with domain experts and conducted a
preliminary study. This helped us determine three
key types of scenarios that frequently arise in real-
world settings: information extraction, numerical
reasoning, and knowledge-intensive reasoning. For
each scenario, we construct an evaluation set. Each
example in our dataset is annotated with detailed
supporting evidence and step-by-step reasoning-
process explanations.

We evaluate a wide spectrum of open- and
closed-source LLMs, specifically, 19 models from
10 organizations. The documents in our bench-
mark are exceedingly long; therefore, we em-
ploy two widely adopted real-world application
settings—retrieval augmented generation (RAG)
and long-context—in this study. The experimen-

tal results indicate that even the existing best-
performing LLM (i.e., Claude-3.5-Sonnet) still sig-
nificantly lags behind human experts (77.2% ver-
sus 93.3%), demonstrating the challenges of our
proposed benchmark. Our contributions are sum-
marized below:

• We introduce FINDVER, the first comprehensive
context-grounded claim verification benchmark
for financial domains, presenting new challenges
for state-of-the-art LLMs.

• We conduct an extensive evaluation that encom-
passes a wide range of LLMs, including those
specialized in finance and math. We also evaluate
both long-context and RAG settings to compre-
hensively assess the capabilities and limitations
of existing LLMs in our task.

• Our experimental results reveal a noticeable per-
formance gap compared to human experts. This
highlights the limitations of current LLMs in
complex real-world applications and the need
for continued advancements.

2 Related Work

Claim Verification Benchmark Claim verifica-
tion is a well-established research area with two
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main settings. The first is the open-domain setting,
which involves using an external retriever to find
the most relevant information from a large corpus
to verify claims (Vlachos and Riedel, 2014; Thorne
et al., 2018; Aly et al., 2021; Wadden et al., 2022;
Rangapur et al., 2024; Ma et al., 2024). The sec-
ond setting is context-grounded claim verification,
which requires models to verify claims based on
the provided document context (Chen et al., 2020;
Kamoi et al., 2023; Lu et al., 2023; Glockner et al.,
2024). This work focuses on the second setting, as
it allows us to eliminate variability and dependency
on the retriever’s performance, thereby focusing
on the evaluation of LLM performance on on ac-
curately verifying claims within a given context.
However, as illustrated in Table 1, existing context-
grounded claim verification benchmarks have four
notable limitations: they typically 1) focus on gen-
eral domains, overlooking the specific challenges
and intricacies present in specialized fields, 2) fo-
cus solely on entailment classification and do not
evaluate the reasoning processes of models, 3) do
not involve claims that require intensive reasoning
and complicated document comprehension. These
limitations hinder their effectiveness for evaluating
LLMs in real-world practice.

Financial Evaluation Benchmark NLP tech-
niques have been applied to various financial tasks,
such as named entity recognition (Salinas Alvarado
et al., 2015; Shah et al., 2023), sentiment analy-
sis (Malo et al., 2013; Maia et al., 2018), stock
movement prediction (Soun et al., 2022; Xu and
Cohen, 2018; Wu et al., 2018), and summariza-
tion (Zhou et al., 2021; Mukherjee et al., 2022;
Liu et al., 2022). More recently, there has been
an increasing focus on tasks involving financial
documents (e.g., annual reports and regulatory fil-
ings), which are crucial for providing insights into
a company’s performance and strategies. Several
QA benchmarks have been proposed to evaluate
models’ performance in answering questions based
on financial documents, with a particular focus on
numerical reasoning (Chen et al., 2021; Zhu et al.,
2021; Zhao et al., 2022; Chen et al., 2022b; Koncel-
Kedziorski et al., 2024; Zhao et al., 2024b,a). De-
spite these advancements, there remains a signif-
icant gap in the exploration of claim verification
tasks within the financial domain. While the re-
cent FIN-FACT benchmark (Rangapur et al., 2024)
addresses explainable multimodal financial fact-
checking, it primarily focuses on open-domain sce-

narios. Verifying claims derived from financial doc-
uments is crucial, as inaccuracies can significantly
influence investment decisions and market percep-
tions. To bridge this gap, we introduce FINDVER,
the first context-grounded claim verification bench-
mark, specifically designed for real-world financial
document comprehension.

3 FINDVER Benchmark

FINDVER provides a robust evaluation benchmark
for reasoning-intensive and explainable claim veri-
fication over long and hybrid-content financial doc-
uments. We present an overview of the FINDVER

construction pipeline in Figure 2; and detail the
task formulation, data construction, and quality val-
idation process in the following subsections.

3.1 Task Formulation

We formally define the task of FINDVER within
the context of LLMs as follows: Consider a single
financial document d, containing textual data P
and tabular data T , associated with a claim c that
needs verification. The expert-annotated data we
collect supports the following two tasks:

Entailment Classification The model is required
to determine the entailment label ℓ ∈ L =
{“entailed”,“refuted”}, based on the document
context:

ℓ = argmax
ℓ∈L

P LLM(ℓ | P, T, c) (1)

Reasoning-process Explanation Generation
The model is required to generate a natural lan-
guage explanation e:

e = argmax
e

P LLM(e | P, T, c) (2)

which articulates the reasoning process behind the
validity of the provided claim c, based solely on
the provided textual content P and tabular content
T within the financial document.

Notably, some claim verification systems, partic-
ularly those developed prior to the era of LLMs and
for previous datasets that did not require explana-
tion generation (Chen et al., 2020; Yin et al., 2021;
Koreeda et al., 2021), might not explicitly perform
explanation generation. Instead, they directly out-
put the final label. For such systems, FINDVER

can also be used for evaluation by focusing on the
entailment classification task.
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Figure 2: An overview of FINDVER construction pipeline.

3.2 FINDVER Subset Design

FINDVER is designed to mirror the real-world
challenges encountered in the financial domain.
Therefore, we ensure that the included annotators
are financial experts with professional experience
in comprehending and processing financial docu-
ments. Table 7 in Appendix presents the detailed
annotator biographies for FINDVER annotation.

To identify the common reasoning-intensive sce-
narios in claim verification based on financial doc-
uments, we engaged with domain experts and con-
ducted a preliminary study. This helped us deter-
mine three key types of scenarios that frequently
arise in real-world settings. Accordingly, we have
created three corresponding subsets of FINDVER.
(1) FDV-IE (information extraction), which in-
volves extracting information from both textual and
tabular content within a long-context document.

(2) FDV-MATH (numerical reasoning), which ne-
cessitates performing calculations or statistical
analysis based on data within the document.

(3) FDV-KNOW (knowledge-intensive reasoning),
which requires integrating external domain-specific
knowledge or regulations for claim verification.

3.3 Source Document Collection

Similar to Zhao et al. (2023a), we use the quarterly
(Form 10-Q) and annual reports (Form 10-K) of
companies as the source documents, which are pub-
licly available in the open-source database1 of the
U.S. Securities and Exchange Commission. We col-
lect a total of 523 documents that were first released
between January 1 to April 30, 2024, which is af-
ter the cutoff date of most pretraining corpora for
training foundation models. This helps to alleviate
issues related to data memorization to some extent.
After collecting the raw HTML-format documents,

1https://www.sec.gov/edgar/search/

we utilize the SEC API2, a commercial platform
API for extracting financial document content, to
process the collected documents, obtaining docu-
ments with both textual and tabular data.

3.4 Claim Annotation

Entailed Claim Annotation To address the po-
tential bias concerning the position of evidence
within the documents, we initiate the process by
randomly sampling multiple document contexts
from the given document. Annotators are then
tasked with creating “entailed” claims based on
the textual and tabular data within these contexts.
The annotators are instructed to simulate real-world
document comprehension scenarios, ensuring the
annotated claims are representative of practical fi-
nancial analysis and align with the scenarios de-
fined by the corresponding subsets. Annotators are
then tasked with carefully locating all evidence (i.e.,
indices of relevant paragraphs and tables) within
the entire document that support the claims, which
are used for the subsequent data validation.

Refuted Claim Annotation Following estab-
lished practices in the field (Wadden et al., 2020;
Chen et al., 2020; Lu et al., 2023), and since di-
rectly obtaining “refuted” types is difficult, we
instead perturb the original “entailed” claims into

“refuted” claim through expert annotation. Specif-
ically, expert annotators first create an “entailed”
claim using the same procedure detailed in the “En-
tailed Claim Annotation” paragraph. The anno-
tators are then instructed to perturb the “entailed”
claim to introduce factual errors that are directly
contradicted by the annotated evidence, and rewrite
the annotated reasoning-process explanation.

2https://sec-api.io/
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Annotation Quality %S ≥ 4

Claim
Fluency 92
Meaningfulness 90
Alignment with real-world scenarios 94

Evidence
Relevancy 89
Completeness 85

Reasoning-process Explanation
Fluency 95
Correctness 92
Comprehensiveness 90

Entailment Label
Correctness 94

Table 2: Human evaluation over 100 samples from the
FINDVER testmini set. Two internal evaluators were
asked to rate the samples on a scale of 1 to 5 individually.
We report percent of samples that have an average score
≥ 4 to indicate the annotation quality of FINDVER.

3.5 Explanation Annotation

After finishing the claim annotation, we pass it to
another annotator for explanation annotation. The
annotators are required to first read the claim care-
fully and annotate a detailed explanation of the
reasoning process. Such reasoning-process expla-
nations allow for a granular and informative evalua-
tion of model outputs, helping future work identify
reasoning errors and provide more accurate error
feedback. We compare the entailment label anno-
tated in this step with those in the claim annotation
step. A third annotator is introduced if the two
annotation versions are different. In practice, we
achieve an inter-annotator agreement of 90.3% for
entailment label annotation.

During our pilot annotation phase, we observed
variability in the format of reasoning-process ex-
planation annotated by different annotators, which
made the dataset less standardized. To ensure con-
sistency and clarity in our benchmark, we devel-
oped a predefined template for annotators to follow.
Specifically, annotators are required to commence
with the extraction of relevant information phase,
where they need to list all claim-relevant informa-
tion in a numbered list. Subsequently, they are
required to annotate the reasoning over the ex-
tracted information segment in a step-by-step
manner. For each step, they should elucidate the
associated reasoning. Finally, they annotate the
entailment label feature.

3.6 Data Quality Validation

To ensure the high quality of our annotated data,
for every annotated example, a qualified annotator
is assigned to validate several key aspects: (1) the
claim and reasoning-process explanation should be
grammatically correct and free of spelling errors;
(2) the claim should be closely related to financial
domains and meaningful in real-world scenarios;
(3) the annotated evidence should be relevant to
the claim and complete enough to verify it; (4) the
entailment label of the claim should be supported
by the annotated evidence; and (5) the reasoning-
process explanation should correctly interpret the
extracted evidence and apply appropriate reasoning
steps to correctly verify the claim. The validators
are asked to revise examples that do not meet these
standards. In practice, 347 out of 2,100 initial ex-
amples were revised by the validators. We also
report the human evaluation scores over 100 sam-
pled examples. As illustrated in Table 2, FINDVER

has a high annotation quality.

3.7 Dataset Preparation and Release

Table 3 provides an overview of the key statistics
for our benchmark. The dataset is randomly split
into two subsets: testmini and test. The testmini set
is intended for model development and validation.
It contains 600 examples, with 200 examples from
each subset. The test set comprises the remain-
ing 1,500 examples and is designed for standard
evaluation. To prevent data contamination (Jacovi
et al., 2023; Shi et al., 2024; Deng et al., 2024),
the ground-truth-related annotation features for the
test set will not be publicly released. Instead, we
provide an online evaluation platform where re-
searchers can assess their models and participate in
a public leaderboard.

4 Experiment Setup

We next present the experimental setup, covering
the evaluated LLMs, long-context and RAG setups,
implementation details, and the measurement of
human-level performance.

4.1 Experimented LLMs

We examine the performance of LLMs across
two distinct categories on FINDVER: (1) Propri-
etary LLMs, including GPT-4* (OpenAI, 2023a,b,
2024), Gemini-1.5-* (Gemini, 2024), and Claude-
3 (Anthropic, 2024); and (2) Open-source LLMs,
including Gemma (Team et al., 2024), Llama-
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Property FDV-IE FDV-MATH FDV-KNOW

Real-world scenarios in financial domains information
extraction

numerical
reasoning

knowledge-
intensive reasoning

# Document 221 225 217
Doc Length (i.e., word count) (Median/Avg/Max) 42K / 41K / 71K 43K / 41K / 71K 43K / 41K / 71K

# Tables per document (Median/Avg) 62 / 78.9 62 / 79.1 62 / 79.0

Claim length (Median/Avg) 47 / 47.2 24 / 25.1 36 / 37.1
# Text evidence per claim (Median/Avg) 2 / 1.8 1 / 1.3 3 / 2.6
# Table evidence per claim (Median/Avg) 1 / 1.0 1 / 0.9 1 / 1.2
% Claims w. table evidence 66.3% 71.1% 70.8%
Explanation length (Median/Avg) 70 / 73.1 74 / 76.2 96 / 100.7

Benchmark size (# Claims)
testmini size 200 200 200
test size 500 500 500

Table 3: Basic statistics of the FINDVER benchmark.

Adopted Chain-of-Thought Prompt

[System Input]
As a financial expert, your task is to assess the
truthfulness of the given claim by determining
whether it is entailed or refuted based on the provided
financial document. Follow these steps:
1. Carefully read the given context and the claim.
2. Analyze the document, focusing on the relevant
financial data or facts that related to the claim.
3. Document each step of your reasoning process to
ensure your assessment is clear and thorough.
4. Conclude your analysis with a final determination.
In your last sentence, clearly state your conclusion
in the following format: "Therefore, the claim is
{entailment_label}." Replace {entailment_label}
with either ’entailed’ (if the claim is supported by the
document) or ’refuted’ (if the claim contradicts or
partially contradicts the document).

[User Input]
Financial Report:
{Financial Report}

Claim to verify:
{Claim}

Follow the instructions and think step by step
to verify the claim.

Figure 3: The Chain-of-Thought prompt used.

2&3 (Touvron et al., 2023a; Meta, 2024), Yi-
1.5 (AI et al., 2024), Qwen-2 (qwe, 2024), Mis-
tral & Mixtral (Jiang et al., 2023a, 2024), In-
ternLM2 (Team, 2024), C4AI (Aryabumi et al.,
2024), GLM (Du et al., 2022), and Phi-3 (Abdin
et al., 2024). Table 8 in Appendix presents the
details of evaluated models (i.e., organizations, re-
lease time, max context length, and model version).

The experiments for open-sourced LLMs were

conducted using the vLLM framework (Kwon et al.,
2023). For all the experiments, we set temperature
as 1.0 and maximum output length as 512. We
adopt the Chain-of-Thought (CoT) prompting meth-
ods (Wei et al., 2022) for the FINDVER benchmark.
Specifically, the model is instructed to first output
a detailed reasoning process for verifying claims,
and then provide the entailment label of the claim
based on the generated reasoning process. Figure 3
presents the used prompts.

4.2 Long-Context and RAG Settings
As presented in Table 3, the documents within our
benchmark are notably lengthy. To effectively han-
dle this, we have implemented two real-world ap-
plication settings that are widely recognized for
their utility in dealing with extensive texts. For
Long-context Setting, we input the entire finan-
cial document into the model. We limit our eval-
uation to those models that have a context win-
dow larger than 100,000 tokens, which exeeds the
maximum length of the included financial docu-
ment. For RAG Setting, we leverage the current
best-performing embedding models (i.e., OpenAI’s
text-embedding-3-large) to retrieve the
top-10 paragraphs or tables that are most relevant to
the claims. These elements are then concatenated
in their original order as found in the document
before being fed into the model.

4.3 Implementation Details
Input Tabular Data Serialization Building on
previous research that assessed LLMs on tasks
involving tabular data (Chen, 2023; Zhao et al.,
2023b,c), we introduce our methodology for pro-
cessing tables within documents. Our approach
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Model Notes FDV-IE FDV-MATH FDV-KNOW Average

LongC RAG LongC RAG LongC RAG LongC RAG

Random Choice 50.0 50.0 50.0 50.0

Human Non-Expert 90.0 85.0 85.0 86.7
Human Expert 95.0 90.0 95.0 93.3

Open-source LLMs
InternLM2-Math-7b Math – 58.0 – 53.5 – 54.5 – 55.3
InternLM2-7B – 59.5 – 54.5 – 56.0 – 56.7
Gemma-7B – 59.5 – 55.5 – 55.0 – 56.7
GLM-4-9b 58.5 61.0 54.5 54.5 55.0 56.5 56.0 57.3
Llama-2-7B – 60.0 – 56.5 – 56.5 – 57.7
Mistral-7B-v3 – 59.5 – 56.5 – 57.0 – 57.7
Phi-3-medium-4k – 61.5 – 54.0 – 58.0 – 57.8
Llama-2-70B – 61.5 – 54.5 – 58.0 – 58.0
Phi-3-medium-128k 58.0 61.5 54.0 55.5 56.5 57.5 56.2 58.2
Meta-Llama-3-8B – 62.5 – 55.0 – 59.5 – 59.0
Yi-1.5-34B – 62.5 – 58.0 – 58.0 – 59.5
Meta-Llama-3-70B MoE – 65.5 – 61.5 – 61.5 – 62.8
C4AI Command R+ – 67.5 – 60.0 – 64.5 – 64.0
Qwen2-72B 67.0 68.0 62.5 61.5 60.5 65.0 63.3 64.8
Mixtral-8x22B – 70.0 – 62.0 – 67.0 – 66.3

Proprietary LLMs
Gemini-1.5-Flash 71.0 70.5 62.5 60.5 65.0 65.5 66.2 65.5
GPT-3.5-turbo – 79.0 – 64.0 – 70.5 – 71.2
GPT-4o 80.0 78.5 70.5 68.0 76.5 74.5 75.7 73.7
Claude-3.5-Sonnet 83.5 80.5 71.0 69.0 77.0 75.5 77.2 75.0

Table 4: Accuracy of entailment classification on the testmini set of FINDVER. We report results for LLMs with
CoT prompting under the long-context (LongC) and RAG settings. Numbers underscored indicate that models under
the long-context setting achieve better results than under the RAG setting.

involves distinguishing headers and cells in differ-
ent columns using a vertical bar (|) and separating
rows with new lines. This format allows us to in-
put flattened table data directly into LLMs. In our
initial experiments, we found that LLMs such as
GPT-* and Llama-3 can effectively interpret this
table representation. However, we suggest that fu-
ture studies should investigate more sophisticated
methods for encoding tabular data to enhance com-
prehension by LLMs.

Model Response Processing Following previ-
ous work (Lu et al., 2024), we adopt LLM for
processing model response. Specifically, we utilize
GPT-4o-mini to extract labels from the LLM out-
put, which can be either “entailed”, “refuted” or

“none”. The “none” label typically indicates that
the LLM output contains nonsensical symbols or
unintelligible text rather than meaningful content.
In cases where the output is labeled as “none”, we

assign the final label by making a random guess.

4.4 Human-level Performance
To provide a rough but informative estimate of
human-level performance by non-experts and ex-
perts on FINDVER, we randomly sampled 5 docu-
ments × 4 claims / document = 20 claims from each
validation subset, totaling 60 claims. We enroll two
experts (i.e., professionals with CFA license) and
two non-experts (i.e., undergraduate students ma-
jored in computer science) to individually verify
the claims by providing the NL explanations. Ta-
ble 4 presents the human-level performance.

5 Experiment Results

5.1 Main Findings
Table 4 and Table 5 display the primary results
for FINDVER. We reveals a significant accuracy
gap between human experts and LLMs. Notably,
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Model IE MATH KNOW Avg

Human Non-Expert 90.0 85.0 85.0 86.7
Human Expert 95.0 90.0 95.0 93.3

Open-source LLMs
InternLM2-Math-7B 57.0 53.8 54.6 55.1
InternLM2-7B 59.6 53.4 55.4 56.1
Gemma-7B 59.8 54.4 55.0 56.4
GLM-4-9B 61.4 54.2 57.4 57.7
Llama-2-7B 61.0 57.2 57.2 58.5
Mistral-7B-v3 59.8 56.0 56.4 57.4
Phi-3-medium-4k 61.8 54.0 57.2 57.7
Llama-2-70B 60.6 53.8 58.0 57.5
Phi-3-medium-128k 61.2 55.4 58.2 58.3
Meta-Llama-3-8B 63.4 55.0 60.2 59.5
Yi-1.5-34B 62.8 57.2 56.8 58.9
Meta-Llama-3-70B 65.0 61.2 60.4 62.2
C4AI Command R+ 67.4 59.0 65.4 63.9
Qwen2-72B 69.0 62.2 65.2 65.5
Mixtral-8x22B 71.0 62.8 68.2 67.3

Proprietary LLMs
Gemini-1.5-Flash 71.2 61.0 65.8 66.0
GPT-3.5-turbo 79.6 65.2 70.8 71.9
GPT-4o 78.6 69.4 73.8 73.9
Claude-3.5-Sonnet 81.0 68.2 74.0 74.4

Table 5: Accuracy of entailment classification on the
FINDVER test set. We report results for LLMs with CoT
prompting under the RAG setting. Due to computation
constraint, we did not evaluate the long-context setting.

Claude-3.5-Sonnet, the highest-performing LLM,
achieves an accuracy rate of only 77.2%, in stark
contrast to the 93.3% accuracy of financial experts.
This discrepancy highlights the complexity and
challenges of our benchmark.

For the less competitive LLMs, such as Qwen2-
72B, GLM-4-9B, and Phi-3-medium-128k, they
exhibit improved performance under the RAG set-
ting. In contrast, the currently more competitive
LLMs, such as GPT-4o and Claude-3.5-Sonnet,
generally perform better under the long-context set-
ting compared to the RAG setting. This indicates
the potential of developing long-context techniques
to manage tasks involving extensive documents in
specialized domains.

5.2 Chain-of-Thought Analysis

To better understand the effectiveness of CoT
prompting methods for our tasks, we select
the commonly-used proprietary and open-source
LLMs, GPT-4o and Qwen2-72B, for our experi-
ments. In the w/o CoT setting, we instruct the
LLMs to directly output the entailment label of the
claim using the provided document context (Fig-
ure 4). As illustrated in Table 6, both LLMs’ per-

Adopted Chain-of-Thought Prompt

[System Input]
As a financial expert, your task is to assess the
truthfulness of the given statement by determining
whether it is entailed or refuted based on the provided
financial document. You should directly output the
entailment label (‘entailed’ or ‘refuted’) without any
intermediate steps.

[User Input]
Financial Report:
{Financial Report}

Claim to verify:
{Claim}

Directly output the entailment label (‘entailed’ or
‘refuted’) of the claim.

Figure 4: The Direct Output prompt used.

Model w/o CoT w/ CoT

LongC RAG LongC RAG

Qwen2-72B 57.7 (-5.6) 59.5 (-5.3) 63.3 64.8
GPT-4o 70.1 (-7.1) 69.5 (-5.5) 77.2 75.0

Table 6: Accuracy of entailment for GPT-4o and Qwen2-
72B with and without CoT Prompting methods on the
FINDVER testmini set.

formance degrades in the w/o CoT setting. These
results highlight the importance of CoT reasoning
in enhancing performance for our task.

5.3 Error Analysis of Reasoning Process

The Claude-3.5-Sonnet model achieves a top ac-
curacy of 77.2% under the long context setting.
To better understand the model’s limitations, we
perform a detailed error analysis with human eval-
uators. We randomly select 25 instances from each
of the three subsets where the Claude-3.5-Sonnet
model fails to perform correctly. Our analysis has
identified four primary categories of errors: (1) Ex-
traction error: The model fails to correctly retrieve
relevant information from the context, resulting in
inaccurate verification. (2) Numerical reasoning er-
ror: The model encounters difficulties with correct
mathematical reasoning. (3) Domain knowledge
deficiency: The model lacks sufficient knowledge
in finance-related areas, which hampers its ability
to reason accurately. (4) Computation error: While
the model’s reasoning is correct, it makes computa-
tional mistakes during intermediate or final steps,
resulting in incorrect verification.
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6 Conclusion

This paper presents FINDVER, a comprehensive
benchmark designed to evaluate LLMs in claim
verification over long and hybrid-content financial
documents. Through extensive experiments involv-
ing 19 LLMs under long-context and RAG settings,
we have demonstrated that even the top-performing
models exhibit a significant performance gap com-
pared to financial experts. Our detailed findings
and insights reveal the strengths and limitations of
current LLMs in this new task. We believe that
FINDVER provides a valuable benchmark for fu-
ture research on LLMs’ ability to handle complex
claim verification tasks within the expert domain.

Limitations

In this work, we propose FINDVER and conduct
comprehensive analysis of different LLMs’ capa-
bilities on our task. However, there are still some
limitations: First, our evaluation does not include
recently released finance-specific LLMs (Wu et al.,
2023; Yang et al., 2023; Xie et al., 2023, 2024),
as these models are not yet compatible with the
vLLM framework used for inference. Due to com-
putational resource constraints, we do not tune
LLMs on a large-scale finance-domain data our-
selves. However, we believe that training on fi-
nance data can help improve LLMs’ capabilities in
FINDVER. Moreover, we only conduct human er-
ror analysis on the generated reasoning process of
models. We believe future work could explore the
development of LLM-based automated evaluation
systems (Liu et al., 2023; Zheng et al., 2023) for
automatically detecting reasoning errors within the
generated explanation.
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ID Finance Industry Experience English Proficiency Annotation Sets Evaluator?

1 1 working and 1 internship at US Native speaker FDV-KNOW ✓
2 >= 2 internship at US > 15 years FDV-MATH ✓
3 1 working at Singapore and 2 internship at US Native speaker FDV-KNOW ✓
4 2 working and >= 1 internship at US Native speaker FDV-KNOW ✗
5 1 internship at US, 2 internship at China 10 years FDV-IE ✗
6 1 internships at HK, China 15 years FDV-IE, FDV-MATH ✓
7 1 internships at China 10 years FDV-IE, FDV-MATH ✗

Table 7: Details of annotators involved in dataset construction. FINDVER is annotated by financial professionals
with extensive experience in comprehending financial documents, ensuring it accurately reflects the real-world
challenges in the financial domain.

Model Organization Release Time Max Length Source

GPT-4o (OpenAI, 2023a) OpenAI 2023-03 128k https://platform.
openai.com/

GPT-3.5-turbo (OpenAI, 2022) OpenAI 2022-11 16k https://platform.
openai.com/

Gemini-1.5-* (Gemini, 2024) Google 2024-02 128k https://ai.google.
dev/

Claude-3.5 (Anthropic, 2024) Anthropic 2024-03 200k https://www.anthropic.
com/api

Gemma (Team et al., 2024) Google 2024-02 8k google/gemma-7b-it

Llama-2 (Touvron et al., 2023a) Meta 2023-02 4k meta-llama/Llama-2-*-chat-hf

Llama-3 (Meta, 2024) Meta 2024-04 8k meta-llama/Meta-Llama-3-*-
Instruct

Yi-1.5 (AI et al., 2024) 01-ai 2024-05 32k 01-ai/Yi-1.5-*-Chat

Qwen-2 (qwe, 2024) Qwen 2024-06 128k Qwen/Qwen2-*-Instruct

Mistral (Jiang et al., 2024, 2023a) Mistral AI 2024-05 32k mistralai/Mistral-7B-Instruct-
v0.3

Mixtral (Jiang et al., 2024, 2023a) Mistral AI 2024-04 64k mistralai/Mixtral-8x22B-v0.1

InternLM2 (Team, 2024) internlm 2024-01 200k internlm/internlm2-chat-*

GLM (Du et al., 2022) THUDM 2024-06 128k THUDM/glm-4-9b-chat

Phi-3 (Abdin et al., 2024) microsoft 2024-04 128k microsoft/Phi-3-*-instruct

Table 8: Details of the organization, release time, maximum context length, and model source (i.e., url for proprietary
models and Huggingface model name for open-source models) for the LLMs evaluated in FINDVER.
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